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Abstract— Solving the direct kinematics (DK) of parallel
robots, i.e. finding all the possible poses of the platform for
given input values, is most of the time a difficult problem.
This is evidently true for cable-driven parallel robots (CDPR)
that are more complex than classical parallel robot because
of the unilateral nature of the cable actions but also if cable
deformations are taken into account. Furthermore there are
many different deformable cable models and developing a
DK algorithm for each of them will be a tremendous task.
Consequently using a numerical continuation scheme that starts
from the DK solutions for non-deformable cables and then
moves toward the solution for deformable cables appears to
be an interesting approach. To use this scheme we have to
assume that the cable model relies on physical parameters that
have limit values for which the deformable cable acts like a
non-deformable one. Under that assumption we are then able
to derive a possible maximum of solutions for the DK, whatever
is the cable model. We then apply this approach for a specific
complex cable model, the catenary case, to show that this
approach is computer efficient but requires to address difficult
theoretical issues in order to obtain a solving algorithm that is
guaranteed to determine all DK solutions.

I. INTRODUCTION

Cable-driven parallel robot (CDPR) have the mechanical

structure of the Gough platform with rigid legs except

that the legs are cables whose length may be controlled.

Numerous prototypes of CDPRs have been developed e.g.

large scale maintenance studied in the European project

Cablebot [1], large telescope system [2], control of aerial

robot [3], rescue robot [4], [5] and transfer robot for elderly

people [6] to name a few. We will assume that the output

of the coiling system for cable i is a single point Ai, while

the cable is connected at point Bi on the platform. A cable

may be assumed to be mass less and non-deformable i.e.

the cable shape is the linear segment going from A to B
and its length does not change whatever is the tension in the

cable or may be deformable i.e. the previous assumptions on

the cable shape and/or its lengths do not hold. For example

figure 1 presents a robot with sagging cables. In this paper

we will assume that the platform is suspended i.e. there

is no cable that is pulling the platform downward except

possibly for the action of the cable own mass. The kinematics

analysis of parallel robot with rigid legs leads usually to

simple inverse kinematics and complex direct kinematics that

involves solving a square system of equations that is derived

from the geometry of the robot.

Let us now consider now CDPR and assume first that the

cable are not deformable and have no mass. As far as DK
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Fig. 1. Cable driven parallel robots with sagging cables

number of cables 2 3 4 5 6

solutions 24 156 216 140 40

TABLE I

MAXIMAL NUMBER OF SOLUTIONS OF THE DK OF CDPR ACCORDING

TO THE NUMBER OF CABLES UNDER TENSION

is concerned it can be shown that for suspended CDPRs

there will be at most 6 cables under tension simultaneously

whatever is the total number of cables and furthermore a

DK solution may have any number between 1 and 6 of

cable(s) under tension, the other cables being slack. Hence

a full DK analysis implies to solve the DK for all possible

combinations of cables whose number lies between 1 and

6. Unfortunately for combination with less than 6 cables

static equilibrium has to be taken into account into the DK

solving as there is more unknowns (the pose parameters) than

geometrical equations. This addition of equations/unknowns

that are not present in the rigid legs case leads to a larger

number of equations than in the rigid case [7], [8]. and

consequently to solving problems [9], [10], [11], [12], [13],

[14]. Still solving (i.e. finding all solutions) is possible and

upper bounds for the total number of solutions N has been

determined according to the number of cables under tension,

see table I [15]. Note that for the cases of 3, 4 and 5 cables

under tension no example with N solutions has never be

found up to now and consequently the given N may be

overestimated.

If we assume now that the cables may be elastic and/or

deformable, then the DK becomes even more complex. Tak-

ing this deformation into account in the kinematics implies

to have a cable model that describes the cable characteristics

(shape and tension) according to the tension to which it



is submitted and to the location of the anchor points of

the cable.The shape of the cable at the anchor point B is

important as it defines the line of action of the cable on the

platform and a mechanical equilibrium of the platform shall

result from the cable actions.

Some numerical kinematics algorithm have been proposed

for simple cable model [16], [17], [18], [19] or for a

catenary cable model [20]. However these analysis are rather

computer intensive and to the best of the author knowledge

no bound on the maximum number of solution of the DK

has been established up to now. The purpose of this paper is

to propose another solving approach that may be sued with

any cable model under very minimal assumptions and may

allow to determine a generic upper bound on the maximum

number of solutions.

II. CABLE MODEL

We denote by ρ the length of the cable after deformation,

l0 is length at rest, n its tangent vector at B and by τ the

cable tension measured at point B. A physical cable model

relies on a set P of parameters that allows one to describe

the physical properties of the cable material with respect to

deformation under tension. A cable model is a set of relations

T(A,B, ρ, l0,n, τ,P) = 0 (1)

that allows one to determine the values of n, τ for given

values of A,B, l0,P . Note that a valid cable model must

provide a unique solution for n, τ in that case.

As example of cable model we may mention the Irvine

sagging cable model that is valid for elastic cable with

mass [21]. Comparison of the model and a real CDPR have

shown a very good agreement [22]. In this model we consider

the vertical plane that includes the cable and assume that the

cable is attached at point A with coordinates (0,0) while

the other extremity is attached at point B with coordinates

(xb ≥ 0, zb). The vertical and horizontal forces Fz, Fx are

exerted on the cable at point B and the cable length at rest

is L0. With this notation the coordinates of B are related to

A(0, 0)

B(xb, zb)

Fx

Fz

Fig. 2. A deformed cable

the forces Fx, Fz [21] by the Cn functions:
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0
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where E is the Young modulus of the cable material, µ its

linear density, A0 the surface of the cable cross-section and

Fx > 0. Note that within the DK context the coordinates

of the B will be unknown so that this model involves the

two variables Fx, Fz but also the unknown rotation angle α
around the z axis that allow to write the above equations in

the vertical cable plane. If xr
b , y

r
b , z

r
b = zb are the coordinates

of B in the reference frame, then we must have:

yb = sinαxr
b + cosαyrb = 0 (4)

while xb will be obtained as xb = cosαxr
b − sinαyrb There

are 2 solutions to equation (4) but we will retain the one

leading to a positive xb. Hence the cable model is constituted

of the 3 equations (2,3,4) that involve Fx, Fz, α. Note that

for known positions for the A,B and length at rest L0 the

system of equations (2,3) admits a single solution although

it is constituted of non linear and non algebraic equations.

III. DK KINEMATICO-STATIC EQUATIONS

We consider a CDPR with m deformable cables, numbered

from 1 to m, whose lengths are supposed to be known. To

parametrize the CDPR pose we use as unknowns the 3 coor-

dinates of four Bi points (that may be assumed to be points

B1, B2, B3, B4). Such choice allows for simpler Jacobian

and Hessian matrices (and therefore faster to evaluate) and

larger uniqueness region for the Kantorovitch theorem. A

consequence of such a modeling is that the coordinates of

the remaining B points may be written as

OBj =

k=4
∑

k=1

βkOBk ∀j ∈ [5,m]

where the βk are constants that can be determined before-

hand. A pose is therefore parametrized by 12 unknowns but

we have 6 additional constraints:

||BiBj||
2
= d2ij ∀i, j ∈ [1, 4], j > i (5)

where dij is the known distance between Bi, Bj . For solving

the DK we consider the constraints due to the cable model

(1) that introduces n additional unknowns while providing n
constraints. Additionally we have to consider the mechanical

equilibrium of the CDPR. If F is the external force applied

on the platform and τ the vector of the amplitudes of the

tensions applied by the cables on the platform at B we have

F = J
−Tτ (6)

where J
−T is the transpose of the inverse kinematic jacobian

matrix, that is pose dependent. The j-th row Jj of J
−T is

given by

Jj = ((nj CBj × nj))

where nj is the unit vector of the line of action of the cable

j at point Bj . Thus the total number of unknowns is 12 (the

pose parameters) +m× n while we have as constraints the

6 equations (6)+ the 6 constraints equations (5) + m × n



(equation 1). Hence we always end up with a square system

of equations.

IV. NUMERICAL CONTINUATION

A numerical continuation method [23], [24], [25] is an

approach to solve n non linear equations F(X) = 0, where

X is a n dimensional vector (of reals in our case), by using a

higher-dimensional embedding and solution tracing. For that

purpose a continuous differential mapping H is used, that

depends on a set of parameters λ so that

• H(X, λ0) = 0 has known solutions in X

• H(X, λf ) = F(X)

The solutions of F are obtained by starting from the solutions

of H(X, λ0) and tracing these solutions by modifying λ by

small increments until λ reaches λf . For example a simple

continuation mapping is given by

H(X, λ) = λF(X) + (1− λ)(X−U) (7)

where λ0 = 0 and λf = 1 and U is a known vector. If we

assume that F(X,P) is dependent of a set of parameters

P and that solutions of F = 0 can be found for P = P0

while solution have to be found for P = Pf we may use as

mapping:

H(X, λ) = λF(X,Pf ) + (1− λ)F(X,P0) (8)

For solving the DK with numerical continuation the fol-

lowing assumptions will be required:

1) the set T is constituted of continuous and differentiable

functions,

2) the number of relations in T should be such that the

DK equations including the cable model must be a

square system

3) for each parameter in P there is a limit value such that

the cable model will be asymptotically identical to the

non deformable cable model

For example the catenary cable model (2,3) and all kineto-

static equations satisfy the first assumption. Regarding the

second assumption the limit of xb when µ → 0, E → ∞ is

obtained from equation (2) as xb = L0Fx/
√

(F 2
x + F 2

z . In

the same way the limit of zb in (3) when µ → 0, E → ∞
is zb = FzL0/

√

(F 2
x + F 2

z . These limit values are coherent

with the non deformable cable model and therefore the DK

equations with the catenary as cable model satisfy both above

assumptions.

V. APPLYING NUMERICAL CONTINUATION

According to the implicit function theorem being given a

solution X0 for the DK equations there will be an unique

solution in the vicinity of X0 for the DK equations obtained

for a ”small” change in the equations, provided that they

are not singular. The amplitude of the perturbation that will

lead to a unique solution of the DK that is close to X0

may be obtained through the Kantorovitch theorem [26].

Provided that the jacobian of the new system has an inverse

at X0 and that some conditions are satisfied for the norm

of the equations at X0, for the norm of the inverse jacobian

and for the norm of the Hessian matrix of the system for

any X in a ball centered at X0, then the theorem ensures

that there is a single solution of the new system in this

ball and guarantees that the Newton-Raphson scheme will

converge toward this solution. Using this result we may apply

successive small incremental changes in the equations that

will ”push” them toward the final set of DK equations and

therefore will provide us a solution for the DK.

A. The inverse model

In this section we will assume that the cable model is the

catenary one and that the homotopy mapping is based on

changes in the parameters E, µ with

E = E0 − λ1(Es − E0) µ = µ0 − λ1(µs − µ0) (9)

applied on the DK equations with the catenary model. Here

Es, µs have respectively a very large and a very small value,

E0, µ0 are the objective values while λ1,2 are in the range

[0,1]. Hence for λ1 = λ2 = 0 the DK equations are

the one with the real cables while for λ1 = λ2 = 1 we

will get equations that should have a solution close to the

non-deformable cables case. Physically at each step of the

continuation scheme this mapping is equivalent to fix the

platform in its current pose and to substitute the existing

cables by cables that have a larger E and a smaller µ and then

let the platform go to a new pose. There will always be such

a pose but according to the changes in E, µ the change in

pose may exceed the conditions of the Kantorovitch theorem

or the CDPR may cross a singularity.

We will also assume that a solving algorithm for the DK

with the real cables has allowed us to determine the DK

solution(s) for given cable lengths. Starting the scheme from

one of these solutions and provided that it does not encounter

a singularity it should converge toward a DK solution that

is very close to a solution obtained for the DK for non-

deformable cables. Note that for a CDPR with m cables this

solution may have from 1 to 6 cables under tension, the other

one being slack, whatever is m ≥ 6.

Regarding singularity we will assume the following con-

jecture:

Conjecture singularity occurs only at isolated poses or

for bifurcation points so that the crossing of two kinematic

branches will lead to no more than two new kinematic

branches.

Under that conjecture the continuation scheme that starts

from the r DK solutions of the CDPR with deformable

cables will lead to at more r DK solutions of the CDPR

with non-deformable cables. Note that our continuation

scheme involves non-algebraic equations and shall be a

multi-parameter homotopy as we may have to manage as

many E, µ variables as cables.

B. The direct model and the maximum number of DK solu-

tions

We now revert the process explained in the inverse

model for obtaining the DK solutions for the CDPR with

deformable cables. The starting poses of the continuation



scheme will be the DK solutions for the non-deformable

cables and we will use a homotopy mapping that is similar

to (9) except that we revert the role of E0, Es and µ0, µs

E = Es − λ1(E0 − Es) µ = µs − λ1(µ0 − µs) (10)

so that for λ1,2 = 0 we have a cable model that is very close

to the non-deformable case while for λ1,2 = 1 we have the

current CDPR. We may assume that Es is large enough and

µs is small enough so that the Newton scheme with as initial

guess a non-deformable DK solution will converge toward a

solution of the DK equations with the catenary cable model.

The physical meaning of this homotopy mapping is the same

than for the inverse model and it may be thought that just

changing the cables at each step of the continuation will

always lead to a CDPR pose that is close to the previous

one.

Using the same reasoning than for the inverse model

and under the same conjecture, each solution of the DK

with non-deformable cables among the p possible one will

lead to at most one solution of the DK with deformable

cables. Consequently the number of DK solutions with the

deformable cables cannot exceed p.

Note that this scheme starts with a non-deformable cables

state with possibly some slack cables. However during the

iterations it may perfectly happen that an initially slack cable,

which therefore does not support the platform, becomes

supportive and vice-versa.

For the CDPR with non-deformable cables, being given a

distribution of slack and under tension cables there is always

a finite number of solutions to the DK problem whose upper

bound is provided in table I. Hence the total number of so-

lutions of the DK with deformable cables cannot exceed the

total number of slack/under tension combinations multiplied

by their maximal number of DK solutions. Consequently the

upper bound of the number of DK solutions for a CDPR

with m cables may be established as 40 Cm
6 (6 cables under

tension) +140 Cm
5 (5 cables under tension) + 216 Cm

4 (4

cables under tension) + 156 Cm
3 (3 cables under tension) +

24 Cm
2 (2 cables under tension). Note that we do not consider

the case of only one cable under tension as this is a very

special case. For a CDPR with 8 cables the above formula

leads to a maximum of 33488 solutions. Note however that

for the time being we have only an example of 8-cables

CDPR with 19 DK solutions [27].

VI. DETAILED STUDY OF AN EXAMPLE

We consider the large scale robot developed by LIRMM

and Tecnalia as part of the ANR project Cogiro [16].

(figure 3). This robot is a suspended CDPR (i.e. there is

no cable pulling the platform downward) with 8 cables,

whose Ai coordinates are given in table II. Note however

that the same method may be used for fully constrained

CDPR. The cables are assumed to follow Irvine cable model

(2,3) with the following characteristics: E = 1009N/m2

(Young modulus), µ = 0.346 kg/m (linear density) and 10

mm diameter. The mass m of the platform is 10 kg. We

will assume that the non-deformed cables lengths are the one

Fig. 3. The robot developed for the the ANR Cogiro project. Although
the robot is real we present a CAD drawing that allows one to better figure
out the CDPR.

x y z x y z

-7.175 -5.244 5.462 -7.316 -5.1 5.47

-7.3 5.2 5.476 -7.161 5.3 5.485

7.182 5.3 5.488 7.323 5.2 5.499

7.3 -5.1 5.489 7.161 -5.27 5.497

TABLE II

COORDINATES OF THE ATTACHMENT POINTS ON THE BASE (IN METERS)

given in table III, that correspond to the pose (1,0,2) in meters

and for an orientation of the platform such that the reference

frame and the mobile frame are aligned. The DK solutions

for the sagging cable haven been determined in [27] using a

specific algorithm based on interval analysis which has led to

19 solutions for the DK. For using this algorithm we have to

assume that we are looking for solutions within a bounded

domain for the unknowns. Being given the coordinates of

the A points and the cable lengths we may safely provide a

bounds for the 12 coordinates of the B1, B2, B3, B4 points.

As for the 8 angles αi that appear in equation (4) we may

use as bounds the interval [0, 2π]. However regarding the

unknowns Fx, Fz we have as only known constraint Fx > 0.

In [27] we have assumed an upper bound of 10mg for Fx

while Fz was assumed to lie in the range [−10mg, 10mg].
Furthermore to speed up the solving algorithm we have

assumed that there was no other DK solution(s) within an

hyper-cube centered at a DK solution with edge of length

0.2.

For determining all the DK solutions for the non-

1 2 3 4

10.48215 9.838952 10.16035 8.96827

5 6 7 8

10.310003 8.421629 8.663245 8.655556

TABLE III

NON-DEFORMED CABLE LENGTHS FOR THE DK



deformable cables model and for all possible combinations

of cable under tension we have also used an interval

analysis-based solving algorithm. Note that we retain only

the solutions such that for all the cables that are not under

tension the distance between the A and B point is lower

than the nominal cable lengths (this additional constraint

is included in the solver which allow to speed up the

determination of the DK solutions). We get DK solutions

for the following combinations (the number of solution(s)

is between parenthesis): [1,3,4,7] (1), [1,3,4,8] (1), [1,4,5,7]

(2), [1,4,5,8] (1), [1,4,7,8] (1), [2,3,6,7] (1), [2,4,5,7]

(1), [2,5,6,8] (1), [3,4,5,8] (1), [3,4,7,8] (1), [3,6,7,8] (1),

[4,5,7,8] (1), [5,6,7,8] (1), [1,2,3,4,7] (2), [1,2,3,6,7] (2),

[1,2,3,6,8] (3), [1,2,5,6,7] (1), [1,3,4,5,7] (1), [1,3,4,5,8] (3),

[1,3,4,6,7] (1), [1,3,4,7,8] (1), [1,3,6,7,8] (1), [1,4,5,7,8] (1),

[1,5,6,7,8] (1), [2,3,4,5,8] (1), [2,3,4,6,8] (1), [2,4,5,6,7] (1),

[2,4,5,6,8] (1), [2,4,5,7,8] (1), [2,5,6,7,8] (1), [3,4,5,6,8] (1),

[3,4,6,7,8] (1), [4,5,6,7,8] (1),[1,2,3,4,7,8] (1),[1,2,3,5,6,8]

(1), [1,2,3,6,7,8] (3),[1,2,4,6,7,8] (3), [1,2,5,6,7,8] (2),

[1,3,4,5,6,7] (1), [1,3,4,5,7,8] (1), [1,4,5,6,7,8] (2),

[2,3,4,5,6,7] (1), [2,3,4,5,6,8] (1), [2,3,4,6,7,8] (1),

[2,4,5,6,7,8] (1), for a total of 58 solutions.

The continuation mapping (10) has been implemented in

Maple and all calculations are performed with a 300 digits

accuracy. We have been able to retrieve 17 out of the 19

DK solutions for the CDPR with deformable cables while

finding 10 new solutions. But among the 58 branches the

continuation scheme stops in a singularity in 28 cases.

We have tested several other continuation mapping. One

of them was to change first the µ variables, one at a time.

For determining which µi (i.e. the value of µ for cable i)
should be modified by ∆µ we compute the absolute value d
of the determinant of the jacobian of the DK equations for the

current value of µi and then calculate first the DK solution

for the system where only one of the µ is modified, µk.

For each change we calculate the absolute value dkm of the

determinant of the jacobian of the DK equations. The cable

which will be submitted to a change in its µ is determined

according to the following rules:

• if there is at least one k such that dkm > d, then we

select the k that maximizes dkm
• otherwise choose the k that minimizes d− dkm

As soon as one of the µk reaches its objective value then it is

no more modified. When all the µk have reached their objec-

tive we then modify the E until it too reaches its objective.

This approach has allowed us to find 4 additional solutions

and to retrieve one of the missing solution. Among the 28

paths that have led to a singularity using the (10) mapping 11

have been successfully solved with the new mapping. The 16

paths that still led to a singularity are obtained for the com-

binations: [1,3,4,8], [1,4,5,7], [3,6,7,8], [4,5,7,8], [5,6,7,8],

[1,2,3,4,7], [1,2,5,6,7], [1,3,4,5,7], [1,3,4,5,8], [1,3,6,7,8],

[1,4,5,7,8], [1,5,6,7,8], [2,3,4,6,8], [2,4,5,7,8], [1,2,3,6,7,8].

We have therefore found a total of 14 new solutions that

are presented in table IV that leads to a total of 36 solutions.

An examination of these new solutions has shown that either

at least one of the Fx, Fz was outside the range used by our

initial solving scheme or that the solution is very close to

a previously found one. However one of the solution is still

missing (table V) for which cables 3, 6, 7 are supportive

while the other cables lie partly below their B points on

the platform. Using the inverse model and a very specific

mapping we have been able to identify the non-deformable

case [3,6,7,8] as solution. A test case for further analysis of

DK algorithm will be to determine if we can recover this

missing solution.

It must be noted that the continuation scheme is signif-

icantly faster than the interval analysis based solving algo-

rithm even if the computation time of the non-deformable

cables combinations is included. The computation is however

still relatively intensive with a total computation time of

about 6 minutes to get all solutions. Note however that real-

time DK solving for which we are looking for a solution

close to a pose that has been determined a few milliseconds

before may be safely performed using the approach proposed

in [28].

solution xb1 yb1 zb1 xb2 yb2 zb2
1 0.69 0.75 2.66 1.04 -0.71 3.3513

2 0.71 0.42 4.01 1.48 -1.04 3.9514

3 0.91 0.89 4.14 1.36 -0.70 4.2539

4 1.01 1.27 4.84 1.27 -0.36 4.9155

5 1.17 1.07 4.97 1.07 -0.27 3.9947

6 1.24 0.80 4.01 0.32 0.08 5.1909

7 1.24 0.64 3.84 0.44 0.34 5.2519

8 1.27 0.65 4.41 -0.04 -0.31 4.1096

9 1.40 0.51 3.70 0.02 -0.37 3.9712

10 1.47 -0.31 2.51 0.53 0.42 3.6533

11 1.58 -0.15 3.48 0.34 0.07 2.4052

12 1.66 0.38 5.14 0.46 0.72 4.0576

13 1.79 -0.03 4.40 0.33 -0.72 4.0919

14 1.94 -0.09 4.95 0.42 -0.26 4.3155

solution xb3 yb3 zb3 xb4 yb4 zb4
1 0.56 -0.23 2.39 1.27 -0.51 2.3910

2 1.24 -0.16 4.68 0.84 -0.81 4.6906

3 0.58 0.00 3.74 0.40 -0.41 4.3558

4 1.72 0.66 5.27 2.00 0.28 4.6719

5 1.68 0.73 4.14 1.95 0.05 4.3744

6 1.28 -0.09 4.54 1.32 0.14 5.2599

7 1.31 -0.07 4.58 1.45 0.35 5.1984

8 1.10 -0.37 4.39 0.85 -0.48 3.6761

9 0.42 0.74 3.95 0.03 0.44 3.3711

10 1.03 0.62 2.61 0.29 0.44 2.6742

11 0.60 -0.44 3.44 0.23 0.23 3.3930

12 1.62 0.83 4.22 1.14 1.41 4.3372

13 1.15 -0.04 3.60 1.10 -0.79 3.4418

14 1.01 -0.34 5.33 0.83 -0.95 4.9229

TABLE IV

THE 14 NEW SOLUTIONS FOUND WITH THE NUMERICAL CONTINUATION

xb1 yb1 zb1 xb2 yb2 zb2
1.04 0.90 3.63 0.54 -0.12 4.8247

xb3 yb3 zb3 xb4 yb4 zb4
1.52 0.33 4.34 1.27 -0.37 4.1751

TABLE V

THE MISSING SOLUTION

Still for several kinematic branches the continuation



scheme ends up in a singular state although we have tried nu-

merous continuation mapping, including several one working

in the complex field.

VII. DISCUSSION

The previous example shows that numerical continuation

may provide DK solutions for any cable model but that

it raises multiple issues. Clearly we have to figure out

what happen at the singular points of the DK equations.

A first singularity may occur if the wrench system that is

applied on the platform is linearly dependent. A numerical

instability may also occur if a Fx comes close to 0. For the

purpose we have investigated the case where the initial set

of non-deformable cables under tension is [4,5,7,8] while the

remaining cables are slack. The DK equations are denoted

F(X, E, µ) with F0(X, E, µ) the system obtained for a large

value of E and a small value of µ for which we have been

able to determine a solution using as initial guess the solution

of the non-deformable cables DK. The system F1(X, Eg, µg)
is the one obtained with the objective value for E, µ. The

continuation mapping that was used is

H(X, λ) = (1− λ)F0 + λF1 (11)

A singularity occurs close to λ = 0.01351913 where the

determinant value of the jacobian of H is −1.254445e− 10
while for λ = 0 this determinant is of order 1e27. Close to

the singularity the supportive cables are [1,4,5,7,8] and there

are two cables that have a large value for Fx.

We have first investigated the singular values of the

mechanical equilibrium equations and have found that all

of them were larger than 0.12. We have also considered the

pairs of equations (2,3) for each cable and have found that

the determinant of the jacobian of the pair have a very low

value for the cables having a high Fx.

We have then used the continuation mapping proposed in

( 10). A singularity occurs for µ = 5.660946e− 03, a value

that is not significantly changed by modifying E. At this step

the supportive cables are [4,5,7,8] and the Fx of cables 5 and

8 are large while the determinant of the jacobian of the DK

equations is lower than 1e− 11 while initially its value was

of order 1e27. As for the previous continuous mapping the

determinant of the jacobian of the pairs of equations (2,3)

is very low for cables 5 and 8. Hence although different

continuation mapping are used we still end up in a singular

configuration.

We have then tried the mapping ( 10) for one of the so-

lution of the [1,2,5,6,7,8] combination where xb1 = 0.8258,

yb1 = 1.242, zb1 = 3.51553. The continuation scheme

stopped at µ = 2.672010e − 04 with as supportive cables

[1,2,5,6,7,8]. In that case the Fx have all a reasonable

value. On the other hand one of the singular values of the

equilibrium equations have a low value that may suggest that

we are close to a parallel singularity. However the value of

this singular value is not sufficient to explain the extremely

low value of the determinant of the jacobian of the DK

equations. Note that a faster decrease in E toward its goal

leads to a singularity at µ = 2.672113e− 04.

We have then tried the mapping (11) that stops for λ =
1.059387e − 03. The supportive cables are the same than

for the previous mapping and the Fx have also reasonable

values. The analysis of the singular values of the jacobian of

the mechanical equilibrium equations shows that one of the

singular value is low.

This experimental study raises several issues:

• it appears that a singularity may happen because of the

bad conditioning of the pair of equations (2,3) when Fx

is large and µ is small. This may motivate the use of a

continuation mapping that monitor the value of Fx and

choose a path that minimize their maximum value.

• another approach for avoiding the bad conditioning will

be to use a simplified cable model (such as the one

proposed in [18]) while the E is high enough and the

µ quite low and to switch to the full catenary model as

soon as the µ reaches some threshold

• the continuation parameters may be non only E, µ but

also the cable length at rest. This suggest to test a

continuation mapping that plays on E, µ, L0 but our

initial test have shown that modifying slightly the L0

after each successful iteration of the mapping still leads

to a singularity.

• the second example shows that the poor conditioning of

equations (2,3) is not sufficient to explain the singularity

in the continuation scheme. It is however unclear if the

closeness to a parallel singularity is sufficient to explain

the non convergence of the continuation scheme

• we are dealing with a multi-parameter continuation

problem with a high number of parameters (for a

CDPR with 8 cables we may consider as parameters the

E, µ, L0 for a total of 24 parameters). Therefore there

is a very large variety of continuation mappings and

finding the one that avoid singularity is a very complex

problem

Note that continuation may also be applied to the inverse

kinematics problem (IK). We have already proposed a spe-

cific algorithm for solving the IK [20] and our first trial

for using a continuation scheme, that will be presented in

another paper, have shown that although we have been able to

recover the IK solutions it is still necessary to used different

continuation mapping to avoid singularity.

As mentioned by the reviewers the above example assumes

a low platform mass so that the weights of the cables have

an as strong influence as the the platform. However other

examples have been investigated with a much higher platform

mass (up to 100 kg) and still multiple solutions have been

found.

VIII. CONCLUSION

We have investigated the use of a numerical continuation

scheme to determine the DK solutions of a CDPR with

deformable cables by starting from it DK solutions for non-

deformable cables, whatever is the cable model, provided that

this model satisfies minimal assumptions. We also exhibit a

bound for the maximal number of DK solutions under the

assumption that all DK solutions for deformable cables may



be found by following the kinematic branches issued from

the DK solutions for non deformable cables. As expected for

multi-parameters continuation scheme we have to manage the

singularity problem: several kinematic branches has led us

to a singularity, When comparing the solution found with a

simple continuation scheme and solutions S that have been

found by a dedicated solving algorithm all the solutions

of S have been found except for one solution, while new

solutions have been discovered, thereby leading to a CDPR

that 36 solution for its DK. Recovering all known solutions

has required to use different continuation mapping but in

some cases all the tested mappings has not allowed us to

avoid to encounter a singularity. It appears that in some

cases the singularity is inherent to the poor conditioning of

the cable model but in other cases the singularity cannot

be attributed to the cable model. In the same way it may

happen that the continuation scheme stops in the pose that

is very close to a parallel singularity but is is unclear if this

proximity is sufficient to explain the non convergence of the

continuation. Clearly the singularity of the DK system have

to be investigated from a theoretical view point, an issue that

has to be investigated anyway for a safe control of the CDPR.

Finally note that the proposed approach is also relevant for

solving the inverse kinematic problem, which will be the

topic of another paper.
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