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Abstract—We are considering an d.of. parallel robot  parameters? that defines the geometry of the robot.
that has to move within a given workspace and whose  This geometry is defined by the location of the attach-
geometry is defined by a set of parameters. The motion of ment pointsA; (B;) of the legs on the base (platform).

active joints of the manipulator are measured with sensors We define a reference fran, and a mobile frame
with a known accuracy +Ap. These errors together with X, Y,z

bounded manufacturing errors on the parameters describing ~ C» Xr; ¥r, zr. We will not assume that thel; or the B
the geometry of the robot induces a positioning errorsAX are coplanar but we will assume that the projection of the

of the platform. We present an algorithm that allows one  A;'s on a plane that is perpendicularzaare located on a
to determine geometries of the robot ensuring that these jrcle with radiusR; while the projection of theB;’s on a

positioning errors will lie within pre-specified limits for any | dicular t | ted ircle of radi
pose of the robot in its workspace even if the physical plane perpendicular ta, are localed on a circie or radius

realization of the robot differs from the theoretical model 71 (figure 1). We define the angl, «; in such way that
while staying within the given manufacturing errors bounds .

A by-product variant of this algorithm allows one to compute B, By

the maximal positioning errors of a given robot up to a pre- Bg

. latform
defined accuracy. P

Yr
I. INTRODUCTION ™ c

It is well known that the performances of parallel robots Bs B
are very sensitive to their geometry. In this paper we
will consider a Gough platform (but the approach may be
extended to any type of parallel robot as soon as its inverse
jacobian has an analytic form) and we intend to determine A
the geometries of this type of robot such that the errors : Ag
in the positioning of the platform lie within prescribed
intervals. A

Error analysis is a complex problem that has been “:
mostly addressed in term of finding the positioning errors As
of a given robot at some specific location within the . o
workspace [1], [2], [4], [3], [7], [8], [12], [13], [15],
[16], [17], [18]. Our approach differs first because we will Fig. 1. The geometrical parameters of the robot
consider not only specific poses but the whole workspace.
Then we will mostly consider therror synthesigproblem

B,
As

base

O Yy

the coordinates of thel;, B; in the reference and mobile

i.e. finding the geometries of the robot that lead to havel"rames are:

at least a required accuracy althoughior analysiswill

be possible by using a variant of our algorithm. Finally A; = (Ricosb;, Rysinb;, z;)
we will also take into account the differences between the B; = (ricosaj,risinay,zb;)

theoretical geometrical model of the robot and the real h , | of 2 ical i
values of this model so that any real robot manufactured€Nce We have irP a total of 26 geometrical parameters:

according to our design solutions will have the required!t1: 1 @nd 6 quadruples;, z;, a;, 2b;. We will assume that
accuracy. all these parameters are bounded i.e. we are looking only

It is well known that the positioning errorsX of the for values of these parameters that lie within a given set

latform are related to the leg lengths measurement errotcg rangesk p.
pAp by: g feng The poseX of the robot will be defined by the co-

Ap = JY(P.X)AX 1 ordinatesz., y., z. of the cente_r of the platformC in
P (P, X) @) the reference frame together with 3 angigs ¢-, ¢3 that
where J~! is the inverse jacobian matrix of the robot, allows one to calculate the rotation matik between the
that is pose dependent but also depends on the geometricabbile and reference frame.



We assume that the robot will have to move withinits inverseJ ! is perfectly known. Indeed for the Gough
a given workspacéV that is supposed to be defined asplatform the i-th row ofJ~! is:
intervals for thex., y., z., 1, 2, ¢35 parameters (but the A:B: CB: x A.B:
approach may be extended to more complex workspace Jt= ((||ATBT|| , ||;&~B~|1| -
geometries as we will see later on, see section IlI-C). i i
We have a desired vector of maximal positioning errorgvhere||A;B;|| is the Euclidean norm of the vectdy;B;
AX, that is defined as a set of allowed ranges for the errorsr, in other words, the length; of leg i.
on ., y., z. and for the angular errors. We will denote by  Consider now the linear system
AX? the i-th component of this vector. TP X)AX = Ap 5)

Equation (1) may be rewritten as:
_ The problem we intend to solve is to find interval values
AX = J(P. X)Ap (2) for each parameters such that by choosing any value for
The element at i-th row and j-th column of will be the parameters in these intervals the linear system will be
denoted asJ;; and we define the normJ;| of the i-th  such that for allX in W and all values ofAp; in [-1,1]

) (4)

row of the jacobian as all the solutionsAX of the system lie in the rangaX,.
J
ke If all the geometry and pose parameters lie within given
i = Z | Jir| ranges, then interval analysis allows to determine a range
e for each element of/* that include all possible values

for the elements (even taking into numerical round-off

errors). The drawback of interval analysis is that these

. . . ranges will usually be overestimated with a negative impact

pnderthls assumption the maximal absolute valuéf; on gt]he efficiencyyas we will examine il theg systems

IS exac;ly|Ji|. ) ! : ) defined by the interval matrix have a solution included in
Our first goal is to find robot geometries for which we AX,. However we may limit this overestimation by using

can ensure that whatever is the pose of the robot within th@lassical methods of interval analysis, such as the use of

workspace the positipning error will be ir1_c|uded BX . . the derivatives of the elements with respect to the geometry
But our second goal is that this feature will still hold even i and pose parameters [5], [6]

the values of the geometrical parameters of the real robot The interval evaluation]fl of J=! will be computed

differ by a limited amount from their theoretical values. using the procedur€onput e_Jacobi an(Pz, X;) that

Hence we are looking not for values for the geometrical :
akes as input the ran , X7 for the geometry and
parameters but for rangés,, for each of them such that pose param[()eters 9er, Xz g y

they satisfy the property: Note an interesting property of the system (5). Each
VP € Ip, j€,260landVX € W g:eTent;gjl/of tl\r;lelti_—tT .IineboIhJ*_ld mayf tbhe writien i?5)
(X AXi e formU;; /p;. Multiplying both sides of the system
(X, P)I € d 3) by the diagonal matrixd, whose diagonal elements grg
Il. THEORETICAL ANALYSIS leads to the system:

Note that as (2) is a linear system we may chogsg as
value for the sensor error and scafeX, correspondingly.

A. Dealing with manufacturing tolerances J7UP,X)AX = A,Ap (6)
As mentioned previously we intend to find the solution

of the synthesis problem such that even with manufacturin . . o :
ame solutions than (5). This system is interesting for us

errors the property (3) will be satisfied. We may assum the derivai off ith { 1o th K
that the manufacturing tolerances on the geometrical pa> '€ dervatives oly;, p; with respect o theé unknowns

rameters are bounded and that their bounds are knowf'< relatively simple while Fhe derivative U.[L'j/pi may be .
If P is used as nominal value of a given geometricalgli'}e C.ﬁmp}_fx' fHence Ithe interval e;{alu?tlon of the mdairlx
parametersP; for the manufacturing process we may thm 'V\t” sul er IrOT' a O;Vflr overestimation compared 1o
assume that the real value @t will lie in the range € intefval evajuation of .
[P} — €, P" + €. C. Solving interval linear systems

This implies that if we find a solution intervdlp, = Finding the solutiond” of a linear svstem:
[a,b] for the parameteP; whose width is larger or equal 9 y ’
to 2¢;, then we are able to guarantee that the real robot AY =b (7)
will satisfy property (3) by choosing as theoretical manu- ) ) ) _ _
facturing value a number in the range— ¢;,b — ¢;] as where A is an interval matrix and3 an interval vector is

this guarantee that the real value will beZp,. a classical problem in_ interval ane_llysis. _
We want to determine the solution set defined by:

Y33(A,b)={y[,3Ac A,TIbe b, Ay=0>0}, (8)

hereJ,,! is the matrix((U;;)). This system has hence the

B. Dealing with the jacobian matrix

A main difficulty of this problem is that in general for
parallel robots the matrix) has an unknown analytical To determineX53(A,b) or only the tightest enclosing
form (or at least a very complex one, that is useless) whildox is an NP-hard problem and hence expensive in high



dimension as its shape can be quite complicated. Howeveais a set of ranges, one for each of the geometry and pose

it is possible to find a box enclosure Bf 5(A, b) by an
interval vectorYg with limited overestimation, provided
that the intervals are narrow enough.

parameters. The algorithm will create and discard boxes
that are stored in a list. Initially this list has only one
element{Rp,W} and the i-th box in the list will be

The numerical conditioning of the system (7) is essentiatlenoted3; while the total number of boxes i will be
for an efficient solving. This quality may be improved if n. A box B; may bebisectedusing theBi sect i on(3;)

the matrixA is diagonally dominan{see [11]) i.e. roughly
if this matrix is close to the identity matrix. That is podeib
by preconditioningthe system i.e. by multiplying both
terms of equation (7) by a conditioning scalar mafsik
Indeed the system becom®BAY = Mb (¥55(A,b) C
¥53(M.A, M.b) but oftenY C Y’ —see [5]). Usually the

procedure. In this procedure we consider the varidhle
that has the largest interval. Its intervalf = [ay, by]

is bisected at its middle point in order to create 2 new
intervalsZ¥ = [ag, (ax + bx)/2], Z§ = [(ar + bk)/2, bx].
The bisection process oH; results in 2 new boxes that
have the same ranges th#) except for the variablé,

best conditioning matrix is the matrix obtained by takingone of the box having for this variable the rarigje while

the middle point of all the interval elements Af then by
inverting it : M = [Mid(A)]~!.

the other hag}.
The algorithm will process the boxes ihin sequence,

The basic method to provide the solution of (7) is anl being the number of the box that is currently processed

interval adaptation of th&auss-elimination methoathich

and the algorithm starts with= 1.

computesY without the need of an initial estimation of  The algorithm proceeds along the following steps:

Y. However if such initial estimation is available, it is 1) if I >n thenEXI T
possible to apply an iterative fixed point algorithm such as 2) J;=Conput e_Jacobi an(B))
the Interval Gauss-Seidel schergeven by 3) if Li near _Sol ve(J;, B;)=1, thenB; is solution
Y1 — Y,NCHb-D.Yy) a) storeB; in the result file, =1+ 1, go to 1
with C = Diag(A) andD = A — C. 4) if the widths of all the ranges i, are lower than
Another iterative method, thérawczyk iterative scheme 2¢j thenl=1+1,got0 1 _
may be used. It is defined as 5) Bi secti on(B3;): the 2 new boxes created by this

Yk,+1 — Yk Nb + (I - A).Yk

but numerous other methods may also be applied [6].

For the application at hand we will use an interesting

propriety of those iterative algorithms: Y1 C Yy

procedure are stored ifi at positionn+1 andn+ 2.
n=n+2,l=1+1,goto1l
This algorithm is straightforward:

« solution are determined at step 3
« boxes that may contain solution but which are too

then all the solutions of all the linear systems are included
in Y41, [11]. By applying these methods on the system
(5), we are able to calculate an interval evaluation of the

small to ensure that a physical instantiation will be
enclosed in the solution are eliminated at step 4
the algorithm will stop when reaching step 1 when all

solutionsAX and if this evaluation is included IAXy ,

boxes in the list have been processed

then property (3) is satisfied for any geometry and pose Note that we may take into account constraints on the

parameters within their respective range. We are thus ab

to design a procedutei near _Sol ve(J;l,PI,XI) that
will return 1 if all the solutions of (5) are included in
AX,; whatever are the values af;, X; in their range
Pr,Xz. Otherwise, the procedure will return 0.

Note that all the methods that are used to find th
solutions set of a linear system are very sensitive to th

width of the interval of the elements of tle matrix. Hence
it is interesting to use iki near _Sol ve the matrix./,;!

of the system (6) instead of the matrix ! of (5). Another
reason to use/,.! instead of J~! is that most of the

€

I&eometry parameters during the computation by introduc-
ing a filtering procedure before step 2. For example we
may want that the attachment points on the platform and
on the base are at a minimal distance from each other to
avoid interference problems. Accordingly we may design
a procedure that calculate an interval evaluation of the

Bistances between each pair of attachment points. If the

upper bound of the evaluation is lower than the distance
threshold the box will be discarded. If the upper bound is
greater than the threshold, then the box will be bisected.

methods used to determine the solution of a linear system The described algorithm returns as result an approxima-

involve at some point the calculation of the ratg; /A;;.

In our caseA;;, A;; are written asU;;/p;, Uii/p; and
clearly the interval evaluation of;;/U;; will be always
less overestimated thdW;;/p;)/(Usi/p:). See section lll-
B for further details.

[1l. THE ALGORITHM
A. Algorithm principle

tion of the set of all possible solutions of the synthesis
problem. It must be noted that, as all interval analysis
based method, it may be implemented using a distributed
approach i.e. using a set of computers: a master program
will manage the listC and send a box to process to a free
slave computes. This slave computer program execute a
few steps of the algorithm with its own boxes li8t until
either Ls is exhausted or that the number of boxe<ig

We present here an outline of the algorithm. As usuahas reached a given threshold. Then the slave computer will

for an interval analysis based method we definkoa B

return to the master program the li§g (possible empty)



that has to be processed together with another set (alsse of derivatives may reduce the size of the solution
possibly empty) of synthesis solutions. The master prograranclosure by a 5 to 90 %.
will include Ls in £ and will send another box to process C. Improvement based on workspace bisection

tos. The above algorithm may fail if the considered

Failure of the algorithm may occur if the components of . .
the inverse jacobian matrix have a very complex form. In_workspace is large. Indeed in that case the ranges for the

deed interval analysis will usually overestimate the rsngecimep%nzrr:tioffsazulnr\;irseesj?gf?;]aen rgg;zlgtrmagrgi]g?;;
for these components and the size of this overestimatioﬁ1 ge ev 9 9 yp '

increase with the complexity of the analytical form of the enceTIead|r_13 ttho' a fa'tl;l”e of thel near ‘%Ol \g_a prct)_ce- |
components. A consequence of this overestimation is th ure. 10 avoid this problem we may consider bisecting aiso

theLi near _Sol ve procedure may fail to determine if all the workspace parameters as soon as the ranges for_the
solutions of the linear systems are included XX ; even geometry parameters are small enough. We will have a list

if the size of the ranges for the geometry and Workspacglc b|? Xes (tobavgld tin)t/ amblgut?]y ;/ve _\I/;nILuse tge _Eo:jat;on
parameters is small, workspace boxin that case) that will be submitted to

Another possible cause of failure is that we do notthe Li near _Sol ve procedure. All workspace boxes that

take into account the dependency of the components &atisfy propgrty (3) are eIimingtgd from the list, th_e other
the inverse jacobian matrix. Indeed the interval matkix one being bisected. Only a limited number of bisection

that will be considered byLi near _Sol ve.describes a I?]ealrlr?:ilsogl Igrtirt]tlw;n duenglti)r?r L?/it[\e?hc:ec(iaovr\fetioer:r?g:eg
larger set of linear systems than the one that we will ge 9 9 9 yPp '

by calculating the matrix for all values of the parameters ence we design a workspace procedure returns 1 if for

: . o Il the boxes in the list property (3) has been verified and
in their range. But taking into account the dependencyg otherwise. This roczduee r)rlwa(l )be used either before
between the elements &, b is difficult. ' P y

In the following sections we present possible improve-Or after s'_[ep 4.°f the above algorithm. It is relatlvel.y_
computer intensive and hence should be carefully used: in
ments of the method. ; . ! .
our implementation we use it only when a given number
B. Improvement of the Gauss elimination scheme of geometry parameter ranges have a width such that they
will be no more bisected.

Note that the workspace algorithm allows one to deal
with more complex workspace than the hyper-cube we have
been considering up to now as soon as we are able to design
where thEA, b elements are function of the unknowlXs a test that allows one to determine if a box is either fU”y
When the unknowns lie in given ranges we may ComputénSide the workspace or fully outside the workspace. In the
an interval evaluatio’A (©) of A and an interval evaluation later case the workspace box will be rejected from the list
b(© of b (possibly using the derivatives of the componentswhile in the former case the accuracy within the box will

of A,b to improve these interval evaluations). The Gausde considered. _
elimination scheme may be written as [10] Assume for example that the workspacedbis a sphere

i i ] ] ] centered ab; (z1, y1, 21) with radiusi; and that the ranges
AD =AY —Al(v;_l)Aﬁ_l)/A%-_D Vi, j>k (9) for x.y., z in the workspace box ar&.,Y., Z.. We
pd) — pli=1) _ A(,Jf‘l)b,(.j‘l)/A,(.?ﬂ‘l) (10) compute the interval evaluation &f. —x1, Yo —y1, Zc — 21
! ! v 7 and denote byX, X the lower and upper bound of the
The enclosure of the variabl§ can then be obtained from interval X. Then the interval evaluation of the square of
Yif1,...,Y, by the distance between a point in the workspace box$nd
a a a is (Xe—mx1)2 4+ (Yo —y1)? + (Z. — 21)? and:
Y = (b§] Y- ZA% DYk)/A%‘ Y (11) o if (Xo—21)2+ (Yo — 41)2+ (Z. — 21)2 is lower than
k>j 13, then the workspace box is fully inside the sphere
The important point is that in the above equations appear o if (X, — 1)+ (Y. — y1)2+ (Z. — 21)? is greater than
the product and ratio of elements that are not independent 1%, then the workspace box is fully outside the sphere
in our problem. Hence the enclosure solution we get doel none of these two conditions are satisfied, then a part of
not take into account this dependency. the workspace box is inside the sphere while its comple-
Note that by using classical derivation rules an intervalmentary is outside the sphere (indeed in that case as there
evaluation of the derivatives of the elements at iteratioris only one occurrence of the unknown,y., z. in the
j ie. Az(,i:), bgj), Y; may be calculated as soon as thesquared distance expression, the interval evaluationeof th
derivatives of the elements having the supersdyiptl) are  squared distance is exact: there are points in the workspace
available. As the derivatives at iteration (0) are simplg th box whose squared distancedpis exactly either the lower
derivatives of the components &f, b that are available we or upper bound of the interval evaluation). In that case we
may therefore compute the derivatives of all the elementwill just use theLi near _Sol ve procedure to check if the
at iteration(yj) and use these derivatives to improve theirworkspace box satisfy the property (3). If this is the case
interval evaluations. Our experiments has shown that theve discard the workspace box otherwise it will be bisected.

Let us assume that we have anx n interval linear
system:
AX).Y =b(X)




D. Improvement based on Oettli theorem graphically the full result. Hence we will just present a

We present here an approach that may allow to desSimple example in _vvhich thé, o angles are suppos_ed to_
termine larger solution boxes than with near _Sol ve. have a manufacturing tolerances of 0.001 rad while their
Assume that at the middle point of a box (i.e. for a givenf@nges have exactly 2 times this tolerance (thereby these
robot geometry) and at the center of the workspace thearameters will not b(_e touched by the bisection process)
robot accuracies are included im\X, while for some and the attachment points B are supposed to be perfectly
other geometries within the box and some points of thé&oPlanar.
workspace at least one of the accuracies that is not included 1€ parametersi;, r; have a tolerance of 0.001 and
in AX’,. As the solutions of (5) are continuous functionsheir initial range is [193,195] and [9,10]. The workspace
of the geometry and workspace parameters there must exist Small with a range of [-1,1] for.,y. and [199,201]
points within the box where at least one of the extremafO’ zc While the pitch, yaw, roll angles have a range
accuracy is exactly the upper bound AKX, while the of [-0.005,0.005] rad. The desired accuracy-+s10 for
other accuracies lie i\X?,. If it is possible to prove that “%e;Ye; Ze @nd= 1 for the angular errors. The smaller the

no such point exists, then the box is a solution box. Fofadius of the platform is, the closer we are to a singular

this proof we will rely on Oettli theorem [14]: let configuration. Hence the amplification factor betwe.e_n the
leg lengths measurements and the platform positioning
Ax=Db (12)  error will be high if the platform radius is small.

If we do not use the improved Gauss elimination scheme
described in section I11-B the result is a list of 819 solatio

taking th id-noint of th f th tAof boxes for a total volume of 2.0235e-33. The computation
axing the mid-point of the range ot the componen time for establishing this result is about 34mn on a DELL

andb. be the mid-vector ob. We defineA as the matrix D400, 1.7 Ghz. With the improved Gauss elimination
whose components are the half diameter of the ranges q§fchen,1e we get 677 solution boxes for a total volume of
the components aA and similarlys as the vector whose 7.663e-33 in a computation time of 1 hour and 7 mn. Both
components are half the diameter of the rangb.oDettli results are presented on figure 2.

theorem states that there are systetns= b with A in A,

z in X andb in b that have solutions if and only if:

be a set of linear systems with an interval matrix and
b an interval vector. LetA. be the matrix obtained by

|Acx —be| < Alz|+6 (13)

We will use this theorem on (5) to determine if there is a
system that admit a solution with one of its component
being fixed toAX?, while the others may have any value
in AX’. As for b it may be any of the 64 vectors that have
+1 or -1 as entries. If we show that (13) is never satisfied
whatever isc and for alli in [1,6], then we have proven that
we have a solution box. The computation amounts to verify
384 inequalities of type (13) (64 inequalities correspogdi

to the different combination fob, this for each of the 6
components ofc that are fixed to their extremal value).
Verifying (13) is a complex issue but may be done using a
bisection approach as the 5 unknowng:itthe components

of x that are not the i-th component) have bounded values.
As we will see in the example this computation is intensive

but allows one to obtain larger solution boxes.
Fig. 2. In grey the allowed region faR;,r1: for all these base and
IV. |MPLEMENTATION AND RESULTS platform radius the desired accuracy is reached (the daatea is the
result obtained without the improved Gauss eliminationesod).
The previous algorithms have been implemented us-

ing theBI AS/ Prof i | interval arithmetics package (that The computation time is relatively large but it must be
implement basic operations of interval arithmetics) andunderstood that the result presents guaranteed solutions t
the C++ libraryALI AS that implement high-level interval the synthesis problem. It may be decreased by using a
analysis procedures such as the bisection, the lineamsystaistributed implementation although we believe that im-
solver or the interval evaluation using the derivatives. Aprovements of the algorithm are still possible. Solutiores a
Maple interface toALI AS allows one to produce auto- obtained almost immediately and most of the computation
matically the C++ code that is necessary for the intervals spent in the workspace procedure when trying to deter-
evaluation of theU;;, p; quantities, together with their mine if a box is solution of the synthesis problem. Hence
derivatives. we cannot claim to obtain all the synthesis solution unless

As the result of the algorithm is a list of possible rangeswe allow for a computer intensive use of the workspace
for the 26 geometry parameters it is impossible to represemrocedure.



A large number of boxes may be produced (simplyis based on its overall size. The lack of such negative test
because there may be a large number of possible desigmohibits us to use various methods of interval analysis tha
solutions), but file storage is not a problem. Furthermorallows to filter boxes.
we may reduce this number by using the output of the Our prospective are to develop:
algorithm as an input for another algorithm that will deal , aigorithms that will allow to determine that a whole
with another performance index (for example the reachable  pox is not a solution
workspace [9]) and that will eliminate some of the boxes. , algorithms that take more into account the dependency

1 :
V. ERROR ANALYSIS betwgen the cpmponents of the' ™ matrix .
. algorithms to improve the speed of the error analysis.

Assume now that we have determined a geometry forthe 5 possibility is to use a fast local optimization pro-
robot, that satisfies property (3). We want now to proceed  .oqure as soon as it has been determined that some
to an error analysis of this robot i.e. we want to determine elements of the accuracy at the middle point of a box
what are the extremal positioning errakX,. over the pre- are larger than the current maximal value
specified workspace (indeed at this stage we only know that
AX, is included in AX, ). But the objective is also to REFERENCES
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