
Some properties of the Irvine cable model and

their use for the kinematic analysis of

cable-driven parallel robots

J-P. Merlet

HEPHAISTOS project, Université Côte d’Azur, Inria, France
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Abstract. Cable model has a strong influence on the complexity of the
kinematic analysis of cable-driven parallel robots (CDPR). The most
complete model relies on Irvine equation that takes into account both the
elasticity and the deformation of the cable due to its own mass and has
be shown to be very realistic. This model is complex, non algebraic and
numerically ill-conditioned, thereby leading to difficulties when using it in
a kinematic analysis involving several cables. We exhibit some properties
of this model that may drastically improve the analysis computation time
when used in kinematic studies.
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1 Introduction

In this paper we will consider the Irvine sagging cable model that has been
proposed for elastic and deformable cable with mass [3] and that has been shown
to be in very good agreement with experimental results [9]. This model assumes
that the cable lies in a vertical plane, the cable plane, and is therefore a 2D
model. A reference frame is defined in this plane with its origin at Ai, one of
the extremity of the cable. The coordinates of the other cable extremity Bi are
(xb ≥ 0, zb) and we will assume that Bi is below Ai so that zb ≤ 0 (Assumption
1). Vertical and horizontal forces Fz, Fx > 0 are exerted on the cable at point
Bi (figure 1).

For a cable with length at rest L0 the coordinates of B are given by:

xb = Fx(
L0

EA0

+
sinh−1(Fz)− sinh−1(Fz − µgL0

Fx
)

µg
) (1)

zb =
Fz

EA0

− µgL2

0
/2 +

√

F 2
x + F 2

z −
√

F 2
x + (Fz − µgL0)2

µg
(2)

where E is the Young modulus of the cable material, A0 the cable cross-section
area and µ the cable linear density.

Studying the properties of the Irvine cable model is justified by its use in the
kinematic analysis of cable-driven parallel robots (CDPR). The model will evi-
dently play an essential role for the inverse and direct kinematics (IK and DK)
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Fig. 1. Notation for a sagging cable

which in turn plays a role in workspace and singularity analysis. This model also
influences the static analysis whose purpose is to determine the tension in the
cables [2]. Previous works have focused on the analysis of equations (1,2) whose
unknowns are xb, zb, L0, Fx, Fz, especially assuming that 3 of these 5 unknowns
have a fixed value [7] in which case the solution is unique but has to be deter-
mined numerically (case 1). Other works have addressed the even more complex
case of the IK of CDPR in which n cables are attached to a rigid body in a known
pose (hence the cable plane and the xb, zb of each cable are known) with the pur-
pose of determining the L0. Here we have a system of 2n equations (1,2) with 3n
unknowns but the mechanical equilibrium of the platform imposes 6 additional
equations. If n = 6 we end-up with a square system of equations [4],[8],[10] (case
2). For the IK solving authors have used optimization or have assumed that the
solution is sufficiently close to the rigid leg case one which is therefore used as
initial guess for a solving based on the Newton scheme. However these methods
cannot guarantee to find the solution in case 1 or all solutions in case 2 where
there may be multiple solutions. The problem is even more complex for the
DK of CDPR: in that case the kinematic constraints is always a square system
that has usually multiple solutions. We have addressed these issues in previ-
ous publications using as solving method an interval analysis-based approach
that is guaranteed to provide all solutions provided that the unknowns may be
bounded [5, 6]. However the efficiency of this approach is heavily dependent on a
careful modeling and analysis of the equations at hand, transforming a problem
that is almost intractable to one that may be solved in a few seconds.

Interval analysis is based on interval evaluation of a function f in the un-
knowns {x1, x2, . . . xn} that are supposed to be bounded i.e. for each xi we have
xi ∈ [xi, xi]. Such bounds defines a box in the n-dimensional space of the un-

knowns. Being given such a box B the interval evaluation f̂ of f over B is an
interval [f, f ] such that for any point X in B we have f ≤ f(X) ≤ f . In other

words f is either equal to or a minorant of the minimum fmin of f over B while f
is equal to or a majorant of the maximum fmax of f over B . The interval evalua-
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tion of f is relatively easy to obtain as soon as f is expressed in terms of classical
mathematical functions using the natural evaluation which basically consist in
replacing the operators by interval equivalents. For example interval evaluation
of the Irvine equations may be obtained by natural evaluation. However the ef-
ficiency of interval algorithms is drastically dependent upon the tightness of the
interval evaluation: the closer f, f are to fmin, fmax, the faster will be the algo-

rithm. An interval evaluation will be denoted tight if f̂ = [fmin, fmax]. But the
natural evaluation may lead to large under or overestimation of the minimum
and maximum as soon as there are multiple occurrences of the unknowns in f
(it may be proven that if there is only a single occurrence of each unknown in

f , then f̂ is tight, up to round-off errors). The tightness will improve when the
widths of the intervals for the unknowns decrease but an efficient way to improve
the tightness of the evaluation is to consider the derivatives of f and their own
interval evaluation. Let fi be the derivative of f with respect to xi and let [fi, fi]

be its interval evaluation over B. If fi > 0 or fi < 0, then f is monotonic with

respect to xi. Consequently f̂ may be obtained as [Minf̂(Bi),Maxf̂(Bi)] where
Bi) are the boxes that are derived from B with xi set to xi or xi. Note that this
process has to be applied recursively. Indeed assume that for some i we have
fi < 0, fi > 0 while for j > i f is monotonic with respect to xj so that f̂ will be
obtained using Bj. But the interval evaluation of fi for Bj may differ from the
one obtained for B as xj has now a fixed value instead of the interval value that
has been previously used for the interval evaluation of fi. Using this process we
may tighten the interval evaluation of f up to the point where f̂ = [fmin, fmax]
if f is such that all fi, i ∈ [1, n] are positive or negative.

We present in the next sections some interesting properties of the Irvine
equations that can be used for analysis or solving purposes.

2 Properties of the Irvine equations

A preliminary property will play an important role: we have assumed that B has
an altitude that is equal or lower to the one of A with the direct consequence
that Fz ≤ µgL0/2.

2.1 Derivatives of the Irvine equations

The sign of the derivatives of the Irvine equations may be obtained with interval
evaluation but it is interesting to determine beforehand if they may be inherently
monotonic.

Under assumption 1 we may establish the sign of derivatives of equations
(1),(2) that will be presented without proof as they are trivial. We have

∂zb
∂L0

< 0
∂zb
∂Fz

> 0
∂zb
∂Fx

> 0 (3)

As all derivatives of zb have a constant sign, then its interval evaluation for
interval values for Fx, Fz , L0 will always be tight and can be computed efficiently
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using only floating point operators. This may have an impact on the IK solving
in which zb has a fixed value: If ẑb ∩ zb = ∅, then (2) has no solution for the
current Fx, Fz, L0 box. We have also:

∂xb

∂L0

> 0
∂xb

∂Fz

> 0
∂xb

∂Fx

> 0 (4)

It may also be interesting to consider the distance D = x2

b + z2b between A and
B. We have ∂D/∂L0 > 0 but no general monotonicity can be obtained with
respect to Fx, Fz .

Let Fx, Fz , L0 being bounded i.e. Fx ∈ [Fx, Fx], Fz ∈ [Fz , Fz ], L0 ∈ [L0, L0].
Let us assume that zb is fixed and consider the equation f(L0, Fz , Fx)− zb = 0.
Using the implicit value theorem it may be shown that the solution of this
equation satisfy

∂Fx

∂L0

> 0
∂Fx

∂Fz

< 0

so that Fx is restricted to lie in the interval [F ′

x, F
′

x] where F
′

x is the solution of (2)

obtained for L0 = L0, Fz = Fz and F ′

x is the solution of (2) obtained for L0 = L0,

Fz = Fz . The range for Fx may therefore be calculated as [Fx, Fx]∩ [F ′

x, F
′

x] and
the equation has no solution if this intersection is empty. More generally if we
consider (2) when 2 of the unknowns are fixed and denotes by S its solution
in the last unknown we get [L′

0, L
′

0
] = [S(Fx, Fz), S(Fx, Fz)] and [F ′

z, F
′

z ] =

[(S(Fx, L0), S(Fx, L0)].

2.2 New forms for the Irvine equation

A property of interval analysis is that two mathematically equivalent forms of
f may have different interval evaluations. For example f1 = x2 + 2x + 1 and
f2 = (x + 1)2 are equivalent but f̂2 will be tight with only one occurrence of x

while f̂1 will not if x < 0. Therefore interval analysis algorithm are partly based
on heuristics that compute various interval evaluations of the same f expressed
in different ways and returning f̂ as their intersection. We present in this section
various new relationships between the quantities appearing in the Irvine equa-
tions. They are usually expressed in implicit form G(xb, zb, Fx, Fz , L0) = 0 (and
the interval evaluation of G may allow one to discard boxes in an interval anal-
ysis algorithm but it may also happen that the analysis of G provides bounds
for one variable being given interval values for the other unknowns.

Using the zb equation

Fx as function of zb, Fz, L0 Let

a2 = F 2

x + F 2

z b2 = F 2

x + (Fz − µgL0)
2 a2 − b2 = µgL0(2Fz − µgL0)
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then zb may be written as

zb =
(a− b)

µg
(
(a+ b)

2EA0

+ 1) =
L0(2Fz − µgL0)

2EA0

+
a− b

µg
(5)

Let us assume now that zb, Fx, L0 are given so that (2) has only Fx as un-
known. Our objective is to get an expression of this unknown. Let us define

a2 = F 2

x + F 2

z b2 = F 2

x + (Fz − µgL0)
2 U =

L0(Fz − µgL0/2)

EA0

− zb

so that equation (2) may be written as

U +
(a− b)

µg
= 0 (6)

We have also

a2 − b2 = 2FzµgL0 − (µgL0)
2 = V = (a+ b)(a− b) = (a+ b)(−Uµg)

from which we get

b = − V

Uµg
− a

Reporting b in (6) leads to

2a = −Uµg − V

Uµg
= W (7)

Note that U, V are not function of Fx so that W is expressed only as a function
of Fz, L0. As a

2 = (W/2)2 = F 2

x + F 2

z we get

F 2

x = (W/2)2 − F 2

z (8)

where the right-hand term is a function of Fz, L0 only. This equation provides
Fx if zb, L0, Fz are fixed. Let’s assume now that Fz has an interval value and
consider P = F 2

x = (W/2)2 − F 2

z . Our problem is to determine the value of Fz

so that P > 0. The polynomial P is of degree 4 in Fz and factors out in 4 terms
that are linear in Fz . The root of P are

s1 =
µgL0

2
+

µgA0Ezb
2A0E + µgL0

s2 =
µgL0

2
+ (zb − L0)

A0E

L0

and

s3 =
µgL0

2
+ (zb + L0)

A0E

L0

s4 =
µgL0

2
− µgA0Ezb

2A0E − µgL0

If we assume 2A0E > µgL0 then the roots in Fz are ordered as s2, s1(< µgL0/2), s4(>
µgL0/2), s3 and P will be positive if Fz ∈ [s2, s1]. If 2A0E < µgL0 then the roots
are ordered as s2, s4(< µgL0/2), s1(< µgL0/2), s3. Therefore there are 2 possible
ranges for Fz leading to a positive P : [s2, s4], [s1, µgL0/2]
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L0 as function of zb, Fz , Fx We are now interested in determining L0 when

Fx, Fz , zb are fixed. Let U1 =
√

F 2
x + F 2

z , U2 = µgFz/EA0, U3 = (µg)2/(2EA0)
and U4 = −µgzb + U1. Equation (2) may be written as

U2L0 − U3L
2

0
+ U4 =

√

F 2
x + (Fz − µgL0)2 (9)

Squaring the previous equation leads to

Ps = (U2L0 − U3L
2

0 + U4)
2 − (F 2

x + (Fz − µgL0)
2) = 0 (10)

As U1, U2, U3, U4 are not function of L0 this equation is a fourth order polynomial
in L0. Using the Sturm sequences it is possible to show that Ps has only 2 roots
in the range [0,∞]. But it may be seen that (10) leads to 2 possibilities for (9)
namely

U2L0 − U3L
2

0 + U4 = ±
√

F 2
x + (Fz − µgL0)2

The negative version leads to zb > 0 which is not valid under assumption 1 and
therefore solving Ps (whose roots may be obtained in analytical form) leads to
a single solution for L0.

Fz as function of zb, Fx, L0 We consider determining Fz for given L0, Fx, zb.
Equation (8) is a 4th order polynomial Q in Fz with the constraint that W > 0.
Using Budan-Fourier theorem [1] it is possible to show that Q has 0 or 2 roots in
the range ]−∞, µgL0/2] but only one this root will lead to a positiveW > 0. The
analysis of the sign of W is complex but it may be shown that if EA0 ≫ µgL0,
then Fz must belong to the range [µgL0/2 +EA0zb/L0, µgL0/2− µgz2b/(2L0)].

Using the xb and zb equations

Fz as function of xb, zb, Fx, L0 First we will consider the calculation of Fz

being given Fx, L0, xb, zb. We define

u =
Fz

Fx

v =
Fz − µgL0

Fx

so that equation (1) may be written as

(
xb

Fx

− L0

EA0

)µg = sinh−1(u)− sinh−1(v) (11)

We defineH1 = xb/Fx−L0/(EA0) and considering that sinh−1(u)−sinh−1(v) =
sinh−1(u

√
1 + v2 − v

√
1 + u2) and taking the hyperbolic sine of both terms of

equation (11) we obtain:

H = sinh(H1)µg = u
√

1 + v2 − v
√

1 + u2 (12)

We have already defined a2 = F 2

x +F 2

z , b
2 = F 2

x +(Fz −µgL0)
2 so that a2/F 2

x =
1 + u2 and b2/F 2

x = 1 + v2. Equation (12) may therefore be written as:

FxH = ub− va (13)
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Note that the left-hand term of this equation is not a function of Fz . We have
already established in section 2.2 the values of a, b as function of zb, L0, Fz while
u, v are functions of Fx, L0, Fz . Hence the right-hand term of (13) is a function
of zb, L0, Fx, Fz . This function is a third order polynomial P3 in Fz . By using
the Sturm sequence [1] and the constraint a > 0 it is possible to show that P3

has a single real root in the range ]−∞, µgL0/2].

zb as a function of zb, Fx, Fz, L0 Equation (2) provides a mean of calculating
zb when Fx, Fz, L0 are known but does not involve xb. We provide here another
form that involves xb. Using the notation and result of section 2.2 we get:

zb =
L0

Fz

(
√

F 2
x + F 2

z − F 2

x

µgL0

sinh(µg(
xb

Fx

− L0

EA0

))) +
L0(Fx − µgL0/2)

EA0

(14)

Note that we may also obtain a bound on the cable tension
√

F 2
x + F 2

z at A as

√

F 2
x + F 2

z =
F 2

x

µgL0

sinh(µg(
xb

Fx

− L0

EA0

)) + Fz(
zb
L0

+
µgL0

2EA0

− Fz

EA0

) (15)

2.3 Using the cable tangents

Sensors may provide measurements of the cable tangents v = (Fz − µgL0)/Fx

at A and u = Fz/Fx at B. Under the assumption that u, v are known we get

Fx =
µgL0

(u− v)
Fz = uFx F 2

x + F 2

z = (
µgL0

(u− v)
)2(1 + u2) (16)

A trivial transformation of (2) leads to:

µ gL0
2(u + v) + 2A0EL0(

√

u2 + 1−
√

v2 + 1) + 2 zbEA0(v − u) = 0 (17)

which is a quadratic polynomial in L0 whose coefficients are functions of u, v, xb.
It is easy to show that this polynomial have a single positive root. Now equa-
tion (1) may be written as

Fx(
L0

EA0

+
(sinh−1(u)− sinh−1(v))

µg
)− xb = 0 (18)

As we have Fx = µgL0/(u − v) this equation may be transformed in a second
order polynomial in L0 whose coefficients are functions of u, v, xb. Here again it
is easy to show that this polynomial has at most one positive root.

As Fz = uFx and L0 = (Fx(u−v))/(µg) equations (11), (18) are polynomials
in Fx with coefficients that are function of u, v. The resultant of these equations
in Fx establishes a polynomial relationship between xb, zb which is a quadric,
more precisely a parabola which is written as

(Axb + Czb)
2 +Dxb + Fzb = 0

with R1 = (sinh−1(u)−sinh−1(v))/(µg), R2 =
√
1 + u2−

√
1 + v2, A =

√
µg(u−

v)(u + v), C = −2
√
µg(u − v), D = 2EA0(u − v)(R1µg(u + v) − 2R2)R2, F =

−2µgEA0(u − v)(R1µg(u+ v)− 2R2)R1. Note that if EA0 ≫ µgL0, then A,C
are small and D,F very large so that the parabola is very close to a line.
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3 Conclusion

We have presented in this paper various results regarding the the Irvine equations
that may be useful both for the analysis and solving of kinematic equations that
rely on this cable model as they establish a more general view of the underlying
structure of this model. We have already implemented some of these results in
our CDPR IK and DK solver with a strong influence on the solving time. Still
open issues on the CDPR with sagging cables such as workspace and singularity
analysis have to be investigated with this new look on the Irvine equations.
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