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Abstract: Tt has been theoretically and experimentally demonstrated in the past that PKS may
reach a very high level of performance in term of accuracy, rigidity, load carrying capabilities etc.
But when designing a PKS with strict requirements we are confronted with two main difficulties:
finding the right topology for the PKS and finding the right geometry for the chosen topology.
Both problems are highly complex: it is difficult to compare different topologies without having
to specify the geometry and performances of PKS are highly dependent of the geometry of the
mechanism. Hence we believe that it is necessary to develop a design methodology for PKS with
two components: topological synthesis and dimensional synthesis. In this paper we will present
the necessary requirements for the dimensional synthesis methodology, analyze their complexity
and outline a possible generic methodology which will be the result of a collaborative work between
mathematicians, researchers in the field of mechanism theory and end-users.

1 Introduction

Historically, closed-chain structures have attracted the interest mostly of mathematicians as they
offer interesting problems. Some theoretical problems linked to this type of structure were
mentioned as early as 1645 by Christopher Wren, then in 1813 by Cauchy [4] and in 1867 by
Lebesgue [6]. Omne of the main theoretical problems in this field, called the spherical motion
problem, related to what is now called singularity analysis, was the central point of a competi-
tion called Le Priz Vaillant, that took place in France in the 1900’s and was organized by the
Académie des Sciences. The prize was won on equal terms by Borel [1] and Bricard [3].

But clearly at this time the technology was not able to deal with any practical applications of
this type of structure. Practical application were then considered in the 70’s for flight simulator (a
very specific area where mostly acceleration are of interest) and in the 80’s for robotics application
(with an interest in a larger panel of performances).

Starting in the 90’s PKS have started either to be put in use in various domains such as fine
positioning devices or to be considered for potential applications such as machine-tool. Among
these applications, some of them were not as successful as expected. The clearest illustration of
this fact is the use of PKS in the machine-tool industry. Although the first presentation of such
PKS dates from 1994 with the Variax of Giddings, we have still to see PKS in current use for
such application. I see three main reasons for this failure:

1. with very few exceptions there is no interaction with the laboratories having worked in this
field for many years and the developers in the industry; hence problems that were familiar
for researchers are completely overlooked by the developers, while researchers may miss
important points for a specific application.

2. the inherent non-linearity of PKS and its consequences on the design and on the control of
such structure is highly unfamiliar to people working in the field of machine-tool, accustomed
to a linear world,

3. developers in the industry focus first on the development of the basic mechanical elements
of a PKS, such as ball-and-socket joints. Although this work was necessary as these compo-
nents in the right size were not commercially available, this type of development is only local,



missing the point that these elements are part of a global system that has to be considered
as such.

I must also be noted that these failures have a negative influence on the development of PKS,
as they comfort a trend that states that these structures are too complex to work in practice (a
trend that completely ignore past success stories in this field).

In the following I will try to emphasize the difficulties with which we are confronted to build
efficient PKS and outline a possible approach to solve these difficulties.

2 Topology synthesis

Although I will focus on the dimensional synthesis problem, it is easy to show that the topology
synthesis problem, i.e. finding the most appropriate mechanical architecture for a given task, is
difficult for PKS.

Assume for a simplicity that for a given task we have to design a mechanism with 6 d.o.f. and
that the comparison between different mechanical architectures has to be done based only on the
volume of the workspace that can be reached by the end-effector. A further assumption is that
actuated joints will only be of the prismatic (P) or revolute (R) type.

For classical serial structure, only the first three joints have an influence on the location of
the end-effector. All the possible architectures will be obtained by considering all the possible set
of three elements, each element being either P or R. For example a Cartesian robot is defined as
the set PPP, while the spherical robot is RRR. Now affect a standard length L to each element
of the robot: revolute joints will connect two bodies of length L, prismatic joint have a retracted
length of L and an extended length of 2L. Under that assumption the workspace volume of a
PPP robot is L? while the RRR workspace volume is roughly 85L3, for any value of L. Hence it
is clear that the RRR structure is more appropriate than the PPP.

Now let us introduce PKS, namely a classical Gough platform and an Hexa robot [12]. A
first problem is that for these type of structure the translation ability is not decoupled from the
orientation. Then according to our hypothesis we will assume that the radii of the base and
platform is identical and equal to L. This is clearly a very restrictive assumption, which will have
a large effect on the workspace volume. Finally even for a given orientation we do not know what
will be the workspace volume of both PKS as a function of L. It seems only that for a given
geometry of Gough platform the workspace volume is kp® where p is the extension of the leg [8],
where k is a factor that depend on the geometry of the robot (hence under our assumption the
workspace volume will be written as k(L)L?). A similar result has never been established for the
Hexa robot but imagine that in that case the workspace may be written as g(L)L?. Comparison
of the two PKS in term of workspace volume based on the previous formula may lead only to the
conclusion that for some ranges on L the Gough platform has a larger workspace than the Hexa,
the opposite being true for other ranges for L.

Hence at this time we are only able to compare the generic workspace volume of 2 serial
structures but not to compare either a serial and a parallel structure or 2 PKS.

Topology synthesis for PKS is a much more complex problem than for serial structure and
probably cannot be completely disconnected from the dimensional synthesis problem.

3 Dimensional synthesis
Finding the dimensions of a given mechanism so that it is optimal with respect to some require-

ments is a very old problem in mechanism theory. Before describing the existing methods let us
examine what are the requirements that may be imposed on PKS and what is their complexity.



3.1 Requirements

The COPRIN project of INRIA has a lot of practical experience in the optimal design of PKS,
which has been gained from the development of our own prototype and from several industrial
contracts. We have been dealing especially with:

e fine positioning devices for heavy loads (with the European Synchrotron Radiation Facility,
the Institut Laue Langevin, Alcatel),

e machine-tools (with Constructions Mécaniques des Vosges),
e medical robots.

Very early we have established an evaluation form for the design of Gough platform type PKS

that both allows the end-user to describe his requirements (either as trends or with numerical

values) and enable the designer to get all the necessary information to perform the design study.
The end-user may provide information and requirements that may be classified as:

e Lkinematics: workspace, accuracy, maximal motion of the passive joints, dexterity,
e statics: load on the platform, stiffness of the robot,

e dynamics: maximal velocity and acceleration of the actuator and of the platform, inertia
and center of mass,

e geometrical: overall size of the robot, of the mechanical components,

e technological: overall information on the actuator, on the sensors and on the passive joints.
Indeed the context of the application may impose the use of restricted classes of such
components.

Note that most of the time the requirements provided by the end-user will only be subset of the
requirements used by the designer. For example the end-user may provide only requirements on
the workspace and on the load carrying ability but the designer will also consider singularities.
Among the list of requirements, workspace and accuracy are almost always provided and that
some of them are strict requirements that cannot be relaxed.

The end-user has also to classify his requirements according to their importance: this is
crucial as in some case we have to relax some requirements in order to be able to satisfy some
other requirements. It must also be mentioned that some requirements may involve a fixed value
(e.g. the accuracy of the positioning of the platform for a unit value of the sensor error must not
greater than a threshold) and will be called fized value requirements. On the other hand, we may
have a mazima requirements (e.g. the accuracy of the positioning of the platform for a unit value
of the sensor error must be as high as possible).

First of all it must be noticed that for PKS most of these performances are pose dependent. For
example, the workspace of the end-effector is dependent upon its orientation, while the accuracy
is dependent both upon the orientation and the location of the end-effector. This dependency is
usually quite complex: for example the accuracy AX of the positioning of the platform is related
to the accuracy Ap of the sensor by:

Ap=JHX)AX

The inverse Jacobian matrix J~! has a relatively simple analytical form, but establishing the
positioning accuracy of the platform as a function of the sensor accuracy will require the use of
J, which is highly complex.



Most of these requirements are of the worst case type with respect to the workspace: as the
performances are pose dependent, the limits imposed on the requirements have to be considered
for the whole workspace. For example an accuracy requirement AX 4 indicates that the positioning
error must not exceed AXy over the whole workspace of the robot.

But the designer may have also to deal with other cases. Imagine for example that two robots
A and B with different geometries have equivalent worst case accuracy. Clearly this does not
imply that they are equivalent. Indeed the average value of the positioning error over the whole
workspace has to be considered or even the best case (when some crucial part of the task requires a
high accuracy). Note that the best and worst case problems are obtained by solving a constrained
optimization problem while the average value problem is somewhat different.

Finally it must be emphasized that all the requirements in the above list are highly sensitive
to the geometry of the robot. Such sensitivity is the first reason for the failure of some prototype
of PKS which have been designed using a local approach instead of a global one, the second one
being that some properties of PKS have been overlooked. For example changing the radius of
the platform of a Gough platform by 10% may modify the worst case stiffness by 700%. Clearly
such ratio imply that a robot with a poor topology but optimally designed will present largely
better performances than a robot with an appropriate topology but poorly designed. Hence
dimensional synthesis is crucial when designing a PKS.

3.2 Workspace requirements

As mentioned previously, the above requirements have to be verified over the workspace of the
robot. This workspace may be defined in various terms:

1. a workspace defined with respect to a global reference frame

2. the whole workspace of the robot. For example, for a Gough platform, this workspace may
be defined as the set of poses that the robot can reach with the leg lengths p satisfying the
inequalities pmin < P < Pmaz Where pmin, Pmaz are given constants. A general definition
will be all the reachable poses such that n inequality constraints F;(X,p) <0 (i =1,...,n)
are satisfied.

3. a workspace, where the z component specification is defined relatively to some unknown
quantity zg4. For example the z motion ability may be specified as + 50 mm relatively to
some unknown zq.

These three different possibilities may co-exist for a given design problem. For example, the
accuracy requirement may be defined for a workspace of type 1, while singularity analysis has
to be performed in the type 2 workspace. For the type 3 workspace we have to include z; as a
design parameter.

3.3 Design methodology and performance verification

The most well known design methodology is the cost-function approach [5]. To each design
requirement j is associated a numerical index I; that is minimal for the best robot. The cost
function C is defined as:

C= Z U)jIj,

where the w; are weight associated to the I;. In some sense, the cost function is an indicator of
the global behavior of the mechanism with respect to the requirements. As C is clearly a function
of the set of design parameters P, a numerical procedure is used to find the value of the design
parameters that minimize C. This approach has several drawbacks:



e the result is heavily dependent upon the weights that are used in the cost-function, and
there is no automatic way to find the right weights,

e defining the index I is not always an easy task, for example if we have constraints on
the shape of the workspace. Furthermore, some of these index are even very difficult to
estimate; for example, some authors have mentioned the use of a global conditioning index
(CGI) defined as the average value of the condition number over the workspace of the
robot. The condition number itself is obtained as the ratio of the smallest root of a n
dimensional polynomial (where n is the number of d.o.f. of the robot) over the largest root
of this polynomial. Hence in general the condition number have not an analytical form and
consequently computing exactly the CGI is a very difficult task.

e introducing strict requirements in the minimization is difficult, and in any case computer
intensive,

e as for any optimization problem, it is difficult to guarantee that the global extremum has
been found.

e some of the requirements are antagonistic; for example, it is well known that dexterity is
antagonistic with the workspace volume [7]; using both criterion in a weighted sum does
not have any physical meaning

But the main difficulty is that the computation of the index for a given geometry must be very
efficient as the minimization procedure will use these calculations extensively. Unfortunately,
verifying that a given PKS satisfies a single requirement is usually a very complex task. As
mentioned previously calculating the index for the worst and best case requirements is equivalent
to solving a difficult constrained optimization problem.

3.4 Performance verification

In my opinion, any optimal design methodology will use a performance verification module that
takes as its input a robot geometry and verify whether this geometry satisfy a list of requirements.
Hence the development of an efficient performance verification module is a key point
for the optimal design of PKS.

Ideally, such module should be able to

1. deal with any type of PKS, although optimized version for the most usual PKS may exist,
2. deal with almost any type of requirements, especially worst and best cases,
3. provide guaranteed results.

A given requirement usually defines an implicit set of constraints Z that is only dependent upon
the topology of the robot. Assume now that we have a generic tool 7 that is able to deal with
any Z as soon as Z is expressed in a standard form (that we will call the standard verification
form (SVF)). A generic performance verification module may reach the first two objectives if

1. we first preprocess all the Z for each requirement to put them in the standard form, probably
using a symbolic computation software,

2. we use then the generic tool 7 to verify all the requirements either in sequence or simulta-
neously.



In my opinion, many mathematical tools offer the possibility of designing 7 (see the Annex for
one possibility). But the key point on this issue is a collaborative work of researchers in
the field of mechanism theory and mathematicians. The first part of this effort is the
development of the SVF: the researchers in mechanism theory will provide the description of
all the requirements that may be of interest for PKS; the mathematicians will analyze them to
obtain a very reduced set of problems to solve. For example, although dealing with very different
quantities, determining the worst case accuracy of a robot and the maximal joint forces are strictly
equivalent mathematical problems.

The second part of the collaborative work is to solve the reduced set of problems that will
lead to 7. A key point on this issue is the problem of the quality of the result:
the result must be guaranteed. This has not the same meaning as obtaining ezact results (or
even approximatively exact in the computer science signification of this term). A guarantee on
the result means that we are able to determine error bounds on the result, so that a decision
based on this result will ensure the satisfaction of the requirements (or in the worst case that
the result cannot be calculated in a standard manner on a computer such that we are sure that
the requirement is satisfied). It is therefore much less stringent that getting the exact result.
Guaranteed results exclude the use of discretization methods that just sample the workspace and
verify the requirement only at the sampling points.

Only guarantee is needed, as for many requirements it will not be necessary to obtain the exact
result. For example, determining the accuracy of the positioning of the platform is necessary to
determine the accuracy of the sensor that must be used. We first determine what will be the
accuracy AX; of the positioning of the platform for a unit value of the sensor error and, as
the relationship between these two quantities is linear, we are able to determine what must be
the sensor error Apg so that the accuracy of the platform reaches a given value AXy. In many
cases only a restricted set of accuracy for the sensor will be available. Hence the accuracy of the
platform need to be determined only to the extent that it will result in a unique solution for the
accuracy of the sensor. For example if the available sensor accuracy are 0.1, 0.2 and 0.5 and if 7
is able to compute a range for AX; such that Apy is in the range [0.3,0.4], we know already that
we have to use the sensor with the accuracy 0.2. Hence, although we have not determined what
will be the worst case accuracy, we can still guarantee that it will satisfy the requirement.

Clearly 7 must be designed so that it only guarantees the result, especially if getting a
guaranteed result is less computer intensive than getting the exact result.

3.5 Alternative optimal design methodologies
3.5.1 Genetic algorithms

Assume now that an efficient performance verification module is available. This open the door
to alternative design methodologies such as the use of genetic algorithms (GA). In this type
of algorithm individuals have genes that represent values for the design parameters. An initial
population of individuals is initially selected as parents and they are crossed-over to generate
children, some of them having genes that are obtained as mutation of the genes of their parents.
Each individual is evaluated with respect to the design requirements, and selection rules allow to
select only the "more promising” children that will constitute the next generation.

GA’s are well known optimization procedures that may be used when the function to be
optimized are complex. They have been already used in the field of planar PKS [2], although the
lack of an efficient performance verification has restricted their use to simple PKS. In my opinion
GA may be interesting only if we have only fixed value requirements and cannot be used for a
maxima requirements as they give guarantee on the result.



3.6 The parameter space approach

Let m be the number of design parameters in P. We define an m dimensional space, the parameter
space S , in which each dimension is associated to one design parameter (hence each point in the
parameter space defines an unique robot geometry). The purpose of the parameter space approach
is to determine the regions of S that include all the possible solutions of the design problem.

To reach this goal, the following approach may be used:

1. select a particular requirement R;, or a relaxed version of this requirement (for example if
the requirement is that the workspace of the PKS includes a specific Cartesian box we may
relax the requirement by verifying only that the workspace includes the 8 corners of the
box).

2. determine the region §; of S which include all the robots satisfying R;.
3. repeat the process for another requirement.

4. after completing the 3 first steps of this process we have obtained m regions S;. If there is
a solution to the optimal design problem, then it will lie in the intersection of the regions.
At this step we compute this intersection S;.

5. at this point we have determined all the robots that satisfy a subset of the requirements.
A local approach is then used to determine the solutions within &; that satisfy all the
requirements.

A key issue in this approach is step 2. We must develop a generic method that is able to deal
with most common requirements. This method will rely on an extended version of the standard
verification form, called the standard design verification form (SDVF), that takes also into account
the design parameters and will have basically the same structure than the performance verification
module:

o transform the requirements into a SDVF,

e apply a generic tool T to determine the region S;. Note that the generic tool 7 is a special
instance of 7 in which all the design parameters have a fixed value.

Although the problem may seem to be quite complex, we have already obtained some result
in this area, especially for the workspace requirement, either by using a geometrical approach [10]
or an interval analysis approach [9].

4 Conclusion

Optimal design can be divided into two main topics: topology synthesis and dimensional synthesis,
although it is unclear if topology synthesis can be separated from dimensional synthesis for PKS.
Performances of PKS are highly sensitive to both type of synthesis; hence optimal design is a
crucial issue for the development of efficient PKS.

We propose to develop a generic method for the optimal design of PKS, based on the trans-
formation of the requirement into a reduced set of generic problems that may be treated by an
universal solver. The development of this generic method is a huge project and can only be
the result of a collaborative work between the researchers working in this field, mathematicians
interested in this type of problems, and end-users.

A further problem that has to be taken into account is control: there is a crucial need for
robot controller that are able to deal efficiently with the inherent non-linearity of PKS and with its



consequence on control, on-line and off-line motion planning, . ... In my opinion current controller
are not very effective for PKS. But this is another story ...
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Annex: Interval analysis

Interval analysis is a powerful method initially proposed by Moore [11]. Let us illustrate this
method on a simple example: let f be the function 22 — 2z and assume that we are looking for
the solutions of f = 0 when z is in the range [3,4]. Intuitively it is easy to see that if x is in
[3,4], then z? is in [9,16]: this means that if  has a particular value in the range [3,4], then
f(z) has a value in the range [9,16] (similarly —2x is in the range [-8,-6]). Now consider the sum
of 2 intervals A = [a,a], B = [b,b]. It may be seen that A + B = [a + b,@ + b] = C, which
means that for any value of x in A and y in B, then = + y lie in C. In our case we will write
f([3,4]) = [9,16] + [-8,—6] = [1,10]. The resulting interval defines therefore lower and upper
bound for the values of f: we may guarantee that for any z is [3,4] 1 < f(x) < 10. As 0 is not
included in the final interval we may state that there is no zero of f for x in the range [3,4]. Note
that the bounds provided by interval analysis are overestimated, the true range of f(x) being
[3,8]. However, this does not affect the validity of the conclusion.

This method works for all the classical mathematical functions such as sin, cos, sinh, . ... Fur-
thermore this method may be implemented to take into account numerical round-off errors and
is therefore safe from a numerical view point.

Let us apply this method for a classical problem for PKS. Assume that we want to verify that
a particular Cartesian box By is included in the workspace of a Gough platform, the orientation
of the platform being constant. If the leg lengths p of the robot are restricted to lie in the
interval [pmin, Pmaz] We have to verify that for any X in By we have ppin < p(X) < praz- As we
know an analytical form for p(X) we may determine by using interval arithmetics a lower and an
upper bound p(X), p(X) for p(X) if X lie in a given Cartesian box. The algorithm uses a list of
Cartesian box £ which is initialized to be £ = {By} at the start and £; will denote the i-th box
in £. The algorithm is then, starting with ¢ = 1:

1. compute {p(ﬁi),p(ﬁi)] using interval arithmetics.

2. 1f p(L;) > pmaz or p(Li) < Pmin, then By is not included in the workspace, as every point
of £;, which is included in By, is outside the workspace. Send the message "BOX IS OUT”.

3. if p(L;) = pmin and p(L;) < pmaz, then L; is included in the workspace, as for any point in
this box the leg lengths are within the limits. Restart at 1 with the ¢ =4 + 1.

4. otherwise bisect £; along one of its dimension (either z,y or z) to create two new Cartesian
boxes that will be stored at the end of £. Restart at 1 with the i =14 + 1.

The algorithm either exits at step 2, in which case part of By is outside the workspace, or it stops
when all the boxes of £ have been processed, in which case By is fully included in the workspace.
Note that the previous algorithm is just an outline of what can be done, and may be improved
in many different aspects.
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