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Abstract. Although workspace is essential for the design and control
of cable-driven parallel robots very few works have been devoted to this
topic when sagging cables are considered, most probably because of the
complexity of the cable model. In this paper we consider a CDPR with 6
sagging cables whose lengths have a limited maximal value. We propose
an algorithm to compute the border of horizontal cross-section of the
workspace for a given altitude and orientation of the platform. We show
that the singularity of the inverse kinematics equations have to be taken
into account for a proper determination of the border.
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1 Introduction

Workspace is an essential element for the design and control of a robot. As far
as parallel robots with rigid legs are concerned efficient algorithms have been
proposed to compute the border of cross-section of the workspace when the
orientation and altitude are fixed, taking into account various limitations such
as constraints on the leg lengths, on the amplitude of the passive joint motion
or interference between the legs [6]. For cable-driven parallel robots (CDPR) the
calculation is somewhat more complex because the signs of the cable tensions
have to be taken account. For CDPR having ideal cables (no deformation due to
the weight of the cable, no elasticity) a cable will have to be taken into account
only if its tension is positive. Workspace calculation is therefore no more only a
geometrical problem but a kineto-static problem. Several papers have addressed
workspace calculation of 6 d.o.f. CDPR with ideal cables but considering only
tension limitation [1–3],[4, 5], [7],[9, 11], [17, 18],[21–23] while CDPR with elastic
cables have been less addressed [10, 13]. The workspace of planar robot with
sagging cables has been presented in [19] while, to the best knowledge of the
author, 6 d.o.f CDPR has been considered only in [12]. However this paper has
only considered as constraint the singularity of the inverse kinematic equations
(IK). Our motivation for this work is to introduce another constraint, namely
an upper limit on the cable lengths, although we will see that the singularity of
the IK has to be taken into account. In this paper we will consider CDPRs with
only six cables, this limitation being explained in the next section.
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2 Inverse and forward kinematics

In this paper we will use the Irvine sagging cable model that is valid for elastic
and deformable cable with mass [8] and that has been shown to be in very good
agreement with experimental result s[20]. This model is established in the cable
plane in which we have Ai = (0, 0) as upper attachment point of the cable and
Bi = (xb ≥ 0, zb < 0) as lower attachment point. Vertical and horizontal forces
Fz, Fx > 0 are exerted on the cable at point Bi. For a cable with length at rest
L0 the coordinates of B are given by [8]:
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where E is the Young modulus, A0 the cable cross-section area, L0 the cable
length at rest and µ the cable linear density. We consider a CDPR with n ≥ 6
cables which is suspended i.e. the winches output point Ai is always higher than
the attachment point Bi of the cable on the platform. If the pose of the platform
is given, then the IK unknowns are the 3n (F ix, F

i
z , L

i
0). We consider the vector

AiBi with components xir, y
i
r, z

i
r and define the angle αi such that

xir sin(αi) + yir cos(αi) = 0 (2)

If (F ix, 0, F
i
z) are the components of the force that is applied by the platform on

the cable in its plane, then the force exerted by the cable on the platform at Bi
may be written in the reference frame as Fi

a = (−F ix cos(αi),−F ix sin(αi),−F iz).
We assume that the platform is submitted only to gravity which exert a ver-
tical force F and no torque around the platform center of mass C. Hence the
mechanical equilibrium imposes

j=n∑
j=1

Fj
a + F = 0

j=n∑
j=1

CBi × Fj
a = 0 (3)

With these 6 constraints and the 2n provided by (1) we have 2n+ 6 constraints
for 3n unknowns. If n = 6 we have a square system that will admit in general
a finite number of solution(s) while if n > 6 there may be an infinite number of
solutions. In this paper we will assume that n = 6 to deal with a finite number
of solution(s). Note that it has been shown that solving the IK for n = 6 is a
difficult task and may have indeed several solutions [15, 14].

For the forward kinematics problem (FK) the length Li0 are known and the
pose of the platform has to be determined. The unknowns are the 6 parameters
X defining the pose of the platform and the 2n (F ix, F

i
z) for a total of 2n + 6

unknowns. As for the constraints we have the 2n constraints (1) and the 6
constraints of the mechanical equilibrium (3). Note that it is useful to add the
nαi as unknowns and the n equations (2) as constraints so that we have 3n +
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6 unknowns/constraints. Therefore the forward kinematics is always a square
system that is very difficult to solve and admit usually several solutions. It is
important to note that both the FK and IK are not algebraic as they involve
inverse hyperbolic functions.

3 Workspace

We are interested in calculating cross-sections of the workspace of a CDPR with 6
cables for given altitude and orientation of the platform under the constraint that
the cable lengths L0 cannot exceed a limit Lm0 . The position of C will be denoted
x, y, z. If we let x, y be free the FK has 26 unknowns and 24 equations which
therefore describe a surface. If we set one of the L0 to Lm0 the FK will describe
a 1-dimensional variety, i.e. a curve in the x− y plane that will be the border of
the workspace. Unfortunately being given the FK equations the elimination of
F ix, F

i
z , αi from the FK in order to get an implicit equation Gi(x, y) = 0 seems to

be very difficult. We will thus use another approach: basically we will determine
poses potentially on the border and we will use a continuation approach to obtain
a polygonal approximation of the Gi curve. Hence the first step of the algorithm
is to find poses that may be on the border, that will be denoted extremal poses.

3.1 Finding possible extremal poses

An extremal poses is characterized by the property that at least one of its IK
solution has at least one L0 being equal to Lm0 . For finding such pose we will con-
sider a pose X0, called an initial pose,that is most probably inside the workspace
and compute its n IK solution(s) using the method proposed in [14]. We con-
sider the pose X1 defined by the coordinates (x0 + ε, y0) where ε is a small
value that is determined with the Kantorovitch theorem so that the IK system
is guaranteed to have a single solution around X0 which is obtained by using
the Newton-Raphson scheme using as initial guess the solution obtained for X0.
We then check if for X1 all the Lj0 satisfies Lj0 ≤ Lm0 . If one of the the Lj0
is close to Lm0 we consider the FK equations with x as unknown and impose
y = y0, L

j
0 = Lm0 . Solving this system with Newton provides an extremal point

for one of the branch of the IK at X0. This extremal point lies on a potential arc
for the border (that will be denoted Skj ), that is associated to Lj0 = Lm0 , where
k denotes the solution number of the IK at X0 that has been used to derive X1.
If the L0 at X1 all satisfies Lj0 ≤ Lm0 , then we repeat a motion along the x+
direction to find a new pose X2 and so on until we find an extremal pose.

This process may be repeated by moving from X0 in the x−, y+, y− direc-
tions. After this step we have a set of extremal poses Xe

j ,X
e
k, . . . that belong to

different arcs Sj , Sk, . . .. We may now present the continuation algorithm that
allow us to obtain a polygonal approximation of the arcs Sj , Sk, . . ..
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3.2 The continuation algorithm

Let Xl = (xl, yl) be an extremal pose, that has been obtained when moving
along the x+ direction, lying on the curve Sl, and such that Ll0 ≈ Lm0 . We then
consider a pose Xk whose y coordinate will be set to yl− γ, where γ > 0 is very
small. We set Ll0 to Lm0 and by using Newton we are able to determine the x
coordinate of Xk so that this pose belongs to Sl. With Xl,Xk on Sl we are able
to get an approximation of the unit tangent vector Tk

l of Sl at Xk. We consider
the largest component u of Tk

l and define x(y)k+1 = x(y)k + εu. The value of
ε is determined using Kantorovitch theorem so that Newton is able to calculate
y(x)k+1 such that Xk+1 = (xk+1, yk+1) belongs to Sl. We check if Xk+1 is such
that Lj0 ≤ Lm0 for all j ∈ [1, 6], j 6= l. If this is the case we have obtained a new
pose on Sl and we repeat the process. The continuation process stops in the
following cases:

– if Lj0, j 6= l is close to Lm0 we consider the IK with Ll0 = Lm0 and Lj0 = Lm0
with free x, y and use Newton with Xk as solution guess to solve this system.
At this pose we have obtained a special extremal pose, called an end-point
of Sl, which has the property of having 2 cable lengths equal to Lm0

– we get a pose Xu that is very close to a previously determined Xv on Sl.
This means that Sl is a closed loop

When the continuation has stopped we will start a new continuation process for
Sl using −Tk

l for fixing the continuation direction. This continuation process is
repeated for all starting points of all branches.

3.3 Finding new starting points

When the continuation has completed we consider the set of end-points that
has been obtained. Each of the end-point Xe

l = (xel , y
e
l ) originates from an

arc Sl that meets another arc Sk. We examine if any arc Sk that has been
previously determined includes Xe

l . If this not the case we consider the 4 IK
problem with x = xel +±ε or y = yel ± ε, x(y) being free and Lk0 set to Lm0 . For
each of this IK we use Newton with as initial guess the Fx, Fz, L0 obtained at Xe

l

and xel (y
e
l ) as guess for the unknown x(y) As soon as we get one solution that

satisfy Lu0 ≤ Lm0 for all u in [1,6], u 6= k, then we have obtained a new starting
point for the branch Sk and we use the continuation algorithm to determine
the arc Sk. This process is repeated until all end-points belongs to one of the
determined Sl. This normally ensure that we have determined a closed-region
that will represent the external border of the workspace. Our algorithm provides
a polygonal approximation of the border whose vertices are guaranteed to belong
to the border. A question arise however: between two successive vertices the
border is assumed to be close to the segment joining the 2 vertices but may
the real border be significantly different from the segment ? The answer to this
question is no as the Kantorovitch theorem is based on the evaluation of the
maximum of the norm of the Hessian matrix all over a ball centered at one
vertex that enclose the next vertex and a drastic change of the border will be
reflected on the maximum of the norm.
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3.4 Example

We consider as example our large scale robot MARIONET-CRANE [16], prob-
ably one of the largest CDPR ever deployed. This robot is a suspended CDPR
with 6 cables, whose Ai, Bi coordinates are given in table 1. We set Lm0 = 25m

x y z x y z

-325.9 -47.5 882.6 942.1 -348.2 1155.5

953.8 379.7 1153.3 557.0 2041.4 870.4

-250.5 1681.0 864.9 -334.2 942.1 878.8

x y z x y z

-10 -93 -3 10 -93 -3

27 50 -7 27 50 -7

-27 50 -7 -27 50 -7

Table 1. Coordinates of the Ai, Bi points on the base and on the platform (in cm)

and use x = 2, y = 8 as initial point for finding starting points. At this point
the IK has a single solution and we use the method described in section 3.1 for
finding extremal points on S5, S6. These points are used to compute these arcs
(figure 1) with the continuation algorithm of section 3.2. Using the end-points of
these arcs we find new starting points for S3, S4 by using the strategy described
in section 3.3 and the continuation algorithm allows us to establish these arcs.
At this stage there is no new starting point and we get the workspace presented
in figure 1. Although it seems that the workspace is a closed-region, details of

Fig. 1. The workspace border for Lm
0 = 25m and a detail of its upper-left corner

the upper-left corner of the workspace (presented in figure 1) show that the
curves S3, S6 intersect at two poses M,N . The pose M is an end-point of theses
curves but the point N is not. Indeed the IK at N has 2 solutions: one with
L3
0 = Lm0 , L

6
0 < Lm0 and another one with L6

0 = Lm0 , L
3
0 < Lm0 . Let us consider

the pose B2 that is very close of S3 so that Newton can be used for finding one
IK solution for B2. Starting from B2 if we move along the x− or y+ direction
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we end up at a pose on S3 while moving along the y− direction we end up on
S5. But if we move along x+ we cross S6 and end up in a singular configuration.
Now consider B1 that is close to S3 but outside the determined workspace. This
pose has 2 valid IK solutions which shows that we have missed reachable poses.
For one of them we reach S3 if we move along the x−, y+ direction, S5 for y−
and a singularity for x+. For the other one when moving along x− we cross S3

and stop at S6 while when moving along y− we stop at S6. When moving along
x+ we reach a singularity while when moving along y+ we cross S3 once and
end up on another part of S3.

From this analysis it appears first that we have to perform a local analysis
if two Sj and Sk curves intersect but not at an end-point. Finding such an
intersection point is not difficult as the polygonal approximation provides an
estimate of its x, y coordinates. Then we consider two IK systems, one having
Lj0 = Lm0 , the other one having Lk0 = Lm0 . This amounts to 42 equations in 42
unknowns with a very good initial guess for all them so that Newton will provide
the solution. Second the analysis shows that we have to consider singularities
that may contribute to part of the border of the workspace.

3.5 Managing singularities

Let us assume that we have found a pose Xs that has an IK solution but is very
close to an IK singularities so that when moving from Xs in a given direction v
we are no more able to use Newton as the IK become singular at X1

s = Xs + εv.
A continuation scheme may be designed to follow the singularity curve. First we
use Newton to determine an IK solution for a pose X′s that is close to Xs but
not on the line that includes Xs with direction v. From X′s we move along v
until we reach a pose X2

s that is singular. An approximation of the tangent unit
vector Ts of the singularity curve may then be obtained from X1

s ,X
2
s . Let Ns

be an unit vector that is perpendicular to Ts and such that XsX
1
s .Ns < 0. We

consider then a new pose X3 = X′s + γTs + δNs where γ has a small value and
δ is a small positive constant. This pose is designed so that X3 lies on the same
side of the line X1

sX
2
s than Xs,X

′
s and sufficiently away from the singularity

curve so that we can compute its IK solution by using Newton with the solution
at X′s as initial guess. From X3 we then moves in the direction −Ns by small
increment until we reach a singular pose X3

s . This process is repeated until we
reach a pose Xn

s that is very close to a Sj curve and is repeated by starting from
Xs but using −Ts as motion direction.

This strategy has been used in our example using the singular pose that has
been found by moving from B1 in the x+ direction. We find a singularity curve
that is displayed in figure 2. The analysis of this new region shows that in the
region U2NU1U3 the IK has two solutions meaning that any motion in this zone
may be executed by following two different kinematic branches. For one of this
branch the motion is restricted to lie in the region U0NU1U3 while for the other
branch it is restricted to U2NMU1U3. Any pose in the region NMU1 is reachable but
a specific motion strategy may have to be designed. For example if the CDPR
has to move from B2 to B3 it will have first to move in the region U0NU1U3 e.g.
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Fig. 2. View of the singularity curve close to N (left) and its connection to S6 (right)

to B1) by following the same kinematic branch than at B2. Then at B1 the
cables lengths will have to be adjusted to get to the other available kinematic
branch and then the CDPR may move toward B3.

The workspace calculation has been implemented in Maple but a rough ap-
proximation of the computation time for an algorithm implemented in C is about
5 minutes for computing a cross-section border if no singularity is encountered
and about 10mn if there are singularities.

4 Conclusion

Calculating workspace for CDPR with sagging cables is a difficult task because of
the complexity of the cable model and because it induces several solutions to the
IK. The algorithm proposed in this paper allows one to calculate the workspace
border in a reasonable amount of time. Still there are numerous issues that
have to be addressed. First of all the algorithm is able to compute the external
border of the workspace but may miss void in the inside of the workspace.
Second as the computation time is still relatively high one may wonder if it will
not be more efficient to start from the workspace border obtained for ideal cable
(that is easy and very fast to determine) and use a continuation method on the
Young modulus and linear density to slowly modify the shape of the border for
getting the result. Finally the case of CDPR with more than 6 cables has to be
investigated: the method is available and will be presented in another paper.
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