
A Local Motion Planner for Closed-loop Robots

J-P. Merlet

Abstract— Global motion planners have been proposed for
closed-loop robot based on the same paradigm than has been
proposed for serial chains: a sparse representation of the
configuration space of the robot is constructed as a set of nodes
and a motion planning query consists simply in connecting
the start and goal points through an appropriate set of nodes
(usually minimizing the length of the trajectory). But such
motion planner should be complemented by a local motion
planner that addresses the following issues:

1) ensure that two successive nodes belong to the same robot
kinematic branch (otherwise connecting these nodes will
require to disassemble the robot)

2) verify that all poses between nodes satisfy the robot con-
straints (if possible taking into account the uncertainties
in the robot modeling)

3) eventually try to shorten the trajectory length

We present such a local motion planner that addresses all three
issues and illustrates its use on a Gough parallel robot.

Index Terms— motion planning, interval analysis, parallel
robots

I. INTRODUCTION

A. Global motion planner

Motion planning is a classical problem in robotics and

has been largely addressed for serial chains [2], [9], [10].

Among the most successful method we may mention the

roadmap approach: a representative, but limited, set of

reachable poses, called the sampling tree, is pre-computed

and a planning query consists in connecting the reachable

poses so that, for example, the length of the trajectory is

minimal. An interest of this approach is that the construction

of the sampling tree may be done once off-line, while

finding a trajectory relies on determining a shortest path

within a graph, a task for which there are efficient and

fast algorithms. For serial chains the sampling is performed

usually in the joint space (a point in this space leads to a

unique configuration of the robot). Unfortunately adapting

this approach to closed-loop chains is not easy as the joint

variables should satisfy the closure equations and cannot be

arbitrary chosen.

B. Closed-loop robots and kinematic constraints

The planning problem for serial chains is usually related to

avoiding obstacles and self-collision, while for closed-chains

kinematic constraints become preponderant.

A specific kinematic constraint for closed-loop structure is

that their operational configuration space may have different

components that are not connected. This may be illustrated

simply on a four-bar mechanism (figure 1).

J-P. Merlet is with INRIA, BP 93, 06902 Sophia-Antipolis Cedex, France
Jean-Pierre.Merlet@sophia.inria.fr

Fig. 1. A 4-bar mechanism with an operational space having two not
connected components. Going from a pose in a component to another in
the second component requires to disassemble the mechanism.

A consequence is that even if a sampling method is able

to determine poses in the operational space that satisfy the

closure equations, they may still belong to different kinematic

branches and therefore cannot be connected by a trajectory.

Other kinematic constraints that must be satisfied are

joint limits, collision avoidance between the robot’s bodies

and the absence of singularity on the trajectory. All these

constraints are functions of the parameters that describe the

geometry of the robot and must be satisfied although there

are uncertainties on these parameters.

The complexity of the kinematic constraints and the

uncertainties leads to complicated configuration space. In

some cases this configuration space can be constructed either

analytically [17] or numerically [12] but manipulating these

representations for motion planning is a complicated task.

The most successful motion planning method for closed-

chains is called the Probabilistic Roadmap [4], [18], [19].

Here the sampling poses are chosen at random although

general geometric algorithms are used to guide the sampling

so that the poses satisfy the closure equations.

C. Local planner

In all cases these global motion planners must be com-

plemented by a local motion planner that addresses the

following issues:

1) ensure that two successive nodes in the trajectory

belong to the same kinematic branch of the robot.

2) find a path that connect two successive nodes of

the trajectory, such that any pose on the path are

guaranteed to satisfy the kinematic constraints

3) eventually improve the trajectory in terms of some op-

timality criteria (e.g. its length) and provide a solution

that is “close” to the global optimum of the criteria

(we will precise this closeness issue later on)

II. BASIC INGREDIENTS

The local planner we have developed relies on the follow-

ing assumptions:

• being given a pose of the end-effector we are able to

state if the kinematic constraints are satisfied

• each of the kinematic constraint may be written as

C(X,Θ) ≤ 0, where X is a n-dimensional parameters

vector that describes the end-effector pose and Θ the

joint variables (active and/or passive)

• the workspace of the robot is bounded

On the other hand we don’t impose any particular form for

C or any choice on the parameters X.

The output of the planner will be a list of way points in the

operational space, the start point S being the first element

of the list while the goal point G will be the last element

(S,G will be typically poses provided by the global planner).

A robot trajectory between two way points Wj,Wj+1 will

be defined by a set F of n continuous, analytical functions

Fk such that any pose Xt on the trajectory may be written

as Xt = F(Wj,Wj+1, t), where t is a parameter (called

time for convenience) that lie in the range [0,1] and such

that F(Wj,Wj+1, 0) = Wj, F(Wj,Wj+1, 1) = Wj+1. At

time t the k-th component of Xt is Fk(Wjk
,Wj+1k

, t). Any

choice of Fk is possible as soon as it is possible to formulate

analytically the optimality criteria for the trajectory (if any

is used). For the sake of simplicity we will use here linear

functions i.e. Xt = Wj + t(Wj+1 − Wj).
The number of way points may not be defined in advance.

If an optimality criteria is used, the final number of way

points of the trajectory will be such that adding a new

way point will not improve significantly the value of the

optimality criteria. Any pose belonging to the trajectory

between two way points will be guaranteed to satisfy the

kinematic constraints. This is a key issue that is addressed

in the next section.

A. Checking a trajectory between two way points

We have already proposed a method to check if a given

trajectory, defined by analytical function of the time, satisfies

the kinematic constraints [11] and we will just outline its

principle. We rely on interval analysis to determine if a

kinematic constraint Ci is satisfied or violated over a given

time range. Being given an analytical function f(x1, . . . , xm)
and ranges [xi, xi] for the unknowns xi, interval analysis

allows to determine simply an interval [a, b], called an

interval evaluation of f , such that for all xi in [xi, xi] we

have a ≤ f(x1, . . . , xm) ≤ b i.e. a, b are lower and upper

bound of the minimum and maximum of f over the ranges.

Usually a, b overestimate the minimum and maximum but the

overestimation decreases with the width xi−xi of the range.

A major interest of interval analysis is its robustness with

respect to round-off errors: even if such errors occurred, the

range [a, b] is still guaranteed to include the real minimum

and maximum of f .

Such method may be used to determine ranges for the pose

parameters being given a time interval [t0, t1] and the set F.

These ranges will be used to determine a range [ai, bi] for

the value of each kinematic constraint Ci. If ai > 0, then the

constraint is violated at any time in [t0, t1], while if bi < 0,

then the constraint is satisfied all over [t0, t1]. It may occur

that due to the overestimation of interval analysis we get

ai < 0, bi > 0, so that we cannot state if the constraint

is violated or satisfied. In that case we will bisect the time

range in two ranges [t0, (t0+t1)/2], [(t0+t1)/2, t1] and start

again the process for each of these ranges, until we determine

either that for some time range a constraint is violated or all

constraints are satisfied for any range obtained through this

bisection process. It may also occur that for a given time

interval analysis failed to determine if a kinematics constraint

is satisfied or violated because round-off errors do not allow

to determine the sign of the constraints.

It must be noted that we have assumed an analytical form

for C but what is strictly necessary is a method to calculate an

interval evaluation of an index that allows one to determine

if the constraint is satisfied or violated. For example to

detect the singularity of closed-chain robot we use the sign

of the determinant without having its analytical form: only

analytical forms of the components of the Jacobian are

required [14].

A first extension of this algorithm was to consider un-

certainties in the geometric modeling of the robot that is

used to formulate the kinematic constraints. In mechanical

engineering they correspond to manufacturing tolerances,

that are bounded. We use a worst case scenario by assuming

that the real value of the geometrical parameters may be

any value within known ranges. If their widths are relatively

small their ranges are used as it for the interval evaluation of

the kinematic constraints. In the worst case it may happen

that for a given fixed time that the interval evaluation of one

(or more) kinematic constraint has a lower negative bound

and positive upper bound, thereby not allowing to determine

if the constraint is satisfied: in that case the parameters

uncertainties are added as new variables and submitted to the

bisection process. Note that the same process may be used

if we assume control errors, i.e. the robot will not follow

exactly the planned trajectory, the differences between the

trajectory and the robot pose being still bounded.

At this point we are thus able to design an algorithm

AP (Wj,Wj+1) that returns 1 if the trajectory between the

way points satisfies the kinematic constraints, -1 if it violate

them or 0 if the trajectory is unsafe (i.e. at some time we

cannot determine if all kinematic constraints are satisfied).

But we may extend this algorithm to deal with set of way

points defined by a box in the operational workspace. This

new algorithm, AP(Wj ,Wj+1), takes as input two boxes of

the operational workspace that define possible poses for the

way point Wj,Wj+1 and returns 1 if the trajectory between

any poses in the boxes Wj ,Wj+1 satisfies the constraint, -

1 if all trajectories violate them. Furthermore the algorithm

returns 0 if it is not able to complete its task after a limited

number of iteration.

B. The optimality criteria

We will assume that we are able to calculate an interval

evaluation of the optimality criteria H (without loss of

generality we will assume that the optimality criteria should

be positive and minimal). Our purpose will then be to

determine a trajectory with a criteria that is at most ǫ away

from the minimal value of H, ǫ being a value defined by the

end-user. Now assume that we have determined a trajectory

for which the value of H is l: using the interval evaluation of

the criteria we are able to design an algorithm O(W1,...,m)
that takes as input a set of boxes for the m way points and

returns 1 if the lower bound of the interval evaluation of H
is lower than l − ǫ (i.e. there may be trajectories having a

value of H that is lower than l − ǫ with way points in the

boxes), -1 if the lower bound of the interval evaluation of

H is greater than l−ǫ (i.e. even if there are valid trajectories

with way points in the boxes, they will have a higher value

of H than the current trajectory). Otherwise the algorithm

will return 0.

III. THE LOCAL PLANNER

The first step of the local planner is to determine if there

is valid trajectory with one way point between S,G. The

eventual way point will be located in the workspace, hence

we have bounds for its coordinates. A way point box is a

box of the operational workspace that may contain the way

point W1. The workspace will be bisected into way point

boxes. For each boxes we will test if the trajectory with as

way point the center of the box is valid by using algorithm

AP on the trajectory components SW1, W1G. If not we

will try to determine if the current way point box does not

contain any valid trajectory by using the algorithm AP . If

this is the case we discard the box, otherwise we bisect it.

If an optimality criteria has been defined and a valid

trajectory has been found with a value of H equal to l, O
will be used to determine if the current way point box may

include trajectories with a value of H lower than l − ǫ. If

this is not the case the box will be discarded.

A. Incremental addition of way points

It may occur that there is no valid trajectory with only one

way point or that the purpose of the planner is to determine

a trajectory whose value of H is almost optimal, i.e. if a

trajectory with m way points with a value of H equal to lo
has been determined, then even by adding an arbitrary large

number of way points we will not find a trajectory with

a value of H lower than lo − ǫ. For that purpose we will

incrementally add way points until either a trajectory (or a

better value of H) is found or we are able to determine that

the current trajectory is optimal. The size of the way point

boxes will increase with the number of way points: when

looking for one way point the size of the box is n, 2n when

looking for two way points and so on.

B. The algorithm

We present here the algorithm when an optimality criteria

has been defined. The number of way points will be denoted

N and the algorithm starts with N = 1. A flag T , initially

set to 0, will be set to 1 if a valid trajectory has been found.

The value of H for this trajectory will be denoted HT . The

algorithm will process a list L of way point boxes B =
{W1, . . .WN}. The i − th element of the list will be Bi

and r will denote the total number of way point boxes in

the list. The mid point of a way point box is obtained by

taking the mid point of all the ranges of the variables in the

box: it correspond to a set of fixed poses and will be written

as Mid(Bi). The value of the optimality criteria obtained

for a trajectory with N way point will be denoted lNo (l0o
will be equal to +∞). When starting the algorithm we have

T = 0 and there is one way point box B1 in L, whose ranges

correspond to the ranges of the workspace E . The Cartesian

product of N box E will be denoted EN .

while true do

r = i = 1, L = {EN}
if T = 1, then lNo = lN−1

o

while i ≤ r do

if T = 1 and O(Bi) = −1, then i = i + 1, next

if AP(Bi) = −1, then i = i + 1, next

if AP (Mid(Bi)) = 1, then

lw = H(Mid(Bi))
if T = 1, lw < lNo , then lNo = lw
if T = 0, then T = 1, lNo = lw

bisect Bi, r = r + 2, i = i + 1, next

end-do

if T = 1, lNo < lN−1
o − ǫ, then N = N + 1, next

if T = 1, lNo = lN−1
o , then break

if T = 0, then N = N + 1, next

end-do

As for any interval-based algorithm the efficiency of the

algorithm will be improved by adding filtering methods, i.e.

methods that reduces the size of a way point box without

using bisection. We use standard interval analysis filtering

methods (see for example [7]) but also adapted methods as

will be shown in the examples.

Note that exiting the algorithm as soon as adding one way

point does not allow to improve significantly lo (i.e. leads to

a decrease larger than ǫ) does not exactly allow to certify that

a close approximation of the best trajectory has been found.

For example we way imagine cases where adding new way

points will improve H by ǫ/2 and hence adding 3 way points

will lead to a better trajectory. In practice however this will

imply that the global planner has performed poorly.

A first drawback of this algorithm is that its complexity

quickly increase with the number of way points. This will

be confirmed by the example: determining a trajectory with

one or two way points is fast but the computation time

drastically increases for 3 way points. But we may reduce

the computation time for 2 (or more) way points with an

incremental use of the local planner, an approach that we

will call the intermediary step method. This will be illustrated

with an example in which a trajectory with one way point has

been found. Let S,W1, G be the current trajectory. We use

the local planner with a threshold equal to, for example ǫ/2
to determine if there is a trajectory with one way point W1

′

between S,W1 that reduces the value of H compared to its

value in the current trajectory. If this is the case we get the

trajectory with 2 way points S,W1
′,W1, G that has already

a better value for H than the one way point trajectory. The

process may be repeated with W1, G and we may select the

two way points trajectory that leads to the best improvement

of H. We get therefore a better initial trajectory for the local

planer when looking for a trajectory with 2 way points.

A second drawback of this algorithm is that it does not

have a memory. Indeed when checking a trajectory with two

or more way points we will examine possible location of

W1,W2 that have already been determined as non valid

when we have looked for a trajectory with one way point.

IV. EXAMPLES

Four our tests we have used a 6 d.o.f. parallel robot that

is presented in the next section.

A. Parallel robot

As example of complex 6-dof closed-loop robot we will

consider a Gough platform (figure 2). The fixed frame

A1

A2

A3

A4

A5

A6

B1

B2

B3
B4

B5

B6

C

O

x

y

z

yr

zr

xr

U joint

S joint

Fig. 2. A Gough-Stewart platform

(O,x,y, z) will be called the base frame while a mobile

frame (C,xr,yr, zr) attached to the platform will be called

the mobile frame. The pose of the platform will be parame-

terized by the location of C in the base frame and 3 angles

will be used to define the orientation of the mobile frame

with respect to the base frame.

Motion of the platform is obtained by changing the length

of the 6 legs, that are attached on the base at Ai and on the

platform at Bi. The coordinates of the vector OAi in the

reference frame and the coordinates of CBir in the mobile

frame are known. The legs are restricted to have a minimal

and maximal length, thereby restricting the workspace of

this robot. Being given the location of the center C of the

platform in the reference and the rotation matrix R between

the mobile and reference frame, the length ρ of a leg is

determined as

ρ2 = ||AO + OC + RCBr||
2 (1)

and we should have

ρ2
min ≤ ρ2 ≤ ρ2

max

The shape of the workspace due to this limitation is quite

complicated [12] and planning a trajectory to fully lie in this

workspace is a complex task. Other kinematic constraints

may be considered as well: limitation of the passive joints

motion at A,B [16], singularity avoidance [1], [5], [6], [8],

[15] or leg interference [3], [13]. We will consider here first

only the limitation on the leg lengths, limits on the motion

of the passive joints.

The optimality criteria that we will use is the length of

the trajectory of the center C of the platform. This allows to

use a dedicated filtering method that is available as soon

as a trajectory of length l with one way point has been

determined. Indeed any potential way point that will lead

to a smaller trajectory length (i.e. smaller than l − ǫ) will

lie within the ellipsoid whose border is defined as the set of

points M such that the sum of the distances from M to S, G
is equal to l − ǫ. The bounding box E of this ellipsoid may

be calculated and then its intersection with the way point

box. Such intersection may lead to multiple way point boxes

but for simplicity we just compute this intersection if it will

lead to a unique box, that will be used as new way point

box.

B. Implementation and tests

To test the motion planning algorithm we have used the

C++ interval arithmetic package BIAS/Profil and some

components of our interval analysis library ALIAS.

We assume first that the geometry of the robot is perfectly

known (i.e. the location of the Ai, Bi are exact as indicated in

table I). The minimal and maximal leg lengths are 52.249605

xA yA zA xB yB zB

1 -9 9 0 -3 7 0

2 9 9 0 3 7 0

3 12 -3 0 7 -1 0

4 3 -13 0 4 -6 0

5 -3 -13 0 -4 -6 0

6 -12 -3 0 -7 -1 0

TABLE I

COORDINATES OF THE A, B POINTS FOR THE TEST ROBOT

and 55.749605.

The various poses are defined by the 3 coordinates of

C followed by the three Euler angles. The start point S
is (0,0,52.1,0,0,0) and the goal G is (11,5,52.1,0,0,0) as

presented in figure 3. Note that point S,G are chosen

with the same orientation and in an horizontal plane just

for allowing an easy representation of the workspace. The

distance between S,G is 12.083. It may seen that the

workspace has voids in its interior. In these first trials we

consider only the limitation on the leg lengths as kinematic

constraints. We first try to determine a trajectory that keeps

the rotation angles to (0,0,0). Note that in this case the

global planner should have provided more sampling points.

The threshold ǫ for the length of the trajectory is fixed to

0.3. Trajectories with 1, 2 and 3 way points are presented

-13 -8 -3 2 7 12

-14

-9

-4

1

6

11

S

G

W1

Fig. 3. A cross-section of the workspace with the starting point S, the
goal point G and one way point W1

in figure 4: their lengths are respectively 19.5373, 17.1118,

16.7887 and these trajectories are established respectively in

1 second, 17 seconds and 11 mn 44 seconds on a DELL D400

laptop. As expected the computation time grows quickly with

the number of way points. But the computation time does not

significantly increase if we add as kinematic constraint that

the determinant of the inverse Jacobian matrix has a value

larger than a given threshold for any pose on the trajectory in

order to ensure that the trajectory lies on a given kinematic

branch. If we now relax the constraint that the trajectory

S

G

W 1

1

W 2

1

W 3

1
W 2

2

W 3

2

W 3

3

Fig. 4. Trajectories with 1, 2 (squared way points) and 3 (circled way
points) way points.

should lie in the plane z = 52.1 by allowing a z value

in the range [50,55] while keeping the same orientation we

found out in 0.26s that the trajectory with one way point

at (5.562,2.5,52.5351,0,0,0) has a length of 12.114. As the

minimal value of H is 12.083, the algorithm stops as adding

new way point cannot make the length decrease by more

than 0.3. Setting the threshold ǫ to 0.01 allows to determine

a trajectory with length 12.091 in 1.2s.

We may also keep the trajectory in the same plane while

allowing to change the platform orientation. For the same

trajectory and allowing the orientation angles to lie in the

range [-5,5] degree, we find a one way point trajectory of

length 12.3967 in 15 seconds and the planner immediately

determine that adding a new way point will not shorten the

trajectory length by more than 0.3.

We may also have to deal with uncertainties in the robot

modeling. We assume a tolerance error of ± 0.01 on each

coordinates of the Ai, Bi meaning for example that the x
coordinate of A1 may have any value in the range [-9.01,-

8.99]. A trajectory with one way point and length 21.2389

is found in 8 seconds, with two way points and length

17.8501 in 5 minutes and 29 seconds. For three way points

a trajectory of length 17.4191 is found in 4h27mn49s. In the

later case by using the intermediary step method we may

reduce this time to 3h41mn and the intermediary path allows

to get an initial three way point trajectory of length 17.6235

in 16mn10s. These trajectories are presented in figure 5. If we

Fig. 5. Trajectories with one to three way points when the coordinates of
Ai, Bi have a tolerance of ± 0.01

allow z to lie in the range [50,55] a minimal length trajectory

is found in 2.65s.

Assume now that we have limits on the passive joint

motion. To model this limits for the joints at Ai we assume

that the angle between the i − th leg and a fixed direction

defined by the unit vector ni should be lower than a threshold

µi. This constraint may be written as

|
AiBi.ni

ρi

| ≤ cos(µi) (2)

We consider the trajectory between S (0,0,52.2) and G
(-8,5,52.2) and assume that the angle between the vertical

direction and the legs should not exceed 17 degrees. Without

considering these constraints we find a trajectory of length

16.3498 with one way point and of length 13.9694 with two

way points (figure 6). But if the passive constraints are taken

S

G

2

2

2

1

1

Fig. 6. Trajectories with one (1) and two (2) way points when the
constraints on the passive joint limits are not considered.

into account the algorithm found out in 3 seconds that there

is no trajectory with only one way point. The trajectory with

two way points is also not satisfactory as part of it violate

the joint limits. But a two way point trajectory that takes

into account the joint limits may be found with a length of

14.1181 with a threshold on H of 0.1.

V. CONCLUSION

Safe motion planning of closed-loop robot requires to

verify complex kinematic constraints apart of the classical

obstacle avoidance problem. Global motion planner have the

advantage to provide a draft trajectory but a local planner

must then be used to provide a certified trajectory (i.e.

such that the kinematic constraints are satisfied all along the

trajectory). The local planner proposed in this paper is based

on interval analysis and allows both to certify the trajectory

and to manage possible uncertainties in the robot modeling.

Acknowledgment: this work has been supported by the

European NEST project N◦ 015653 ARES.

REFERENCES

[1] Bhattacharya S., Hatwal H., and Ghosh A. Comparison of an exact
and an approximate method of singularity avoidance in platform type
parallel manipulators. Mechanism and Machine Theory, 33(7):965–
974, October 1998.

[2] Canny J. The complexity of robot motion planning. MIT Press,
Cambridge, 1988.

[3] Chablat D. and Wenger P. Moveability and collision analysis for fully-
parallel manipulators. In 12th RoManSy, pages 61–68, Paris, July,
6-9, 1998.

[4] Cortés J. and Siméon T. Probabilistic motion planning for parallel
mechanisms. In IEEE Int. Conf. on Robotics and Automation, pages
4354–4359, Taipei, September, 14-19, 2003.

[5] Dasgupta B. and Mruthyunjaya T.S. Singularity-free path planning for
the Stewart platform manipulator. Mechanism and Machine Theory,
33(6):711–725, August 1998.

[6] Dash A.K. and others . Workspace generation and planning
singularity-free path for parallel manipulators. Mechanism and Ma-

chine Theory, 40(7):778–805, July 2005.
[7] Hansen E. Global optimization using interval analysis. Marcel Dekker,

2004.
[8] Jui C.K.K. and Sun Q. Path tracking of parallel manipulators in

the presence of force singularity. ASME J. of Dynamic Systems,

Measurement and Control, 127(4):550–563, December 2005.
[9] Latombe J.C. Robot Motion planning. Kluwer Academic Publishers,

Boston, , 1991.
[10] LaValle S.M. Planning algorithm. Cambridge University Press,

Cambridge, 2006.
[11] Merlet J-P. A parser for the interval evaluation of analytical functions

and its applications to engineering problems. J. Symbolic Computation,
31(4):475–486, 2001.

[12] Merlet J-P. Determination of 6D workspaces of Gough-type parallel
manipulator and comparison between different geometries. Int. J. of

Robotics Research, 18(9):902–916, October 1999.
[13] Merlet J-P. and Daney D. Legs interference checking of parallel robots

over a given workspace or trajectory. In IEEE Int. Conf. on Robotics

and Automation, Orlando, May, 16-18, 2006.
[14] Merlet J-P. and Donelan P. On the regularity of the inverse jacobian of

parallel robot. In ARK, pages 41–48, Ljubljana, June, 26-29, 2006.
[15] Sen S., Dasgupta B., and Mallik A.K. Variational approach for

singularity-path planning of parallel manipulators. Mechanism and

Machine Theory, 38(11):1165–1183, November 2003.
[16] Su H-J., Dietmaier P., and J.M. McCarthy. Trajectory planning for

constrained parallel manipulators. ASME J. of Mechanical Design,
125(4):709–716, December 2003.

[17] Trinkle J.C. and R.J. Milgram. Complete path planning for closed
kinematic chains with spherical joints. Int. J. of Robotics Research,
21(9):773–789, September 2002.

[18] Xie D. and Anamato N.M. A kinematics-based probabilistic roadmap
method for high dof closed chain systems. In IEEE Int. Conf. on

Robotics and Automation, New Orleans, April, 28-30, 2004.
[19] Yakey J.H. and others . Randomized path planning for linkages with

closed kinematic chains. IEEE Trans. on Robotics and Automation,
17(6):951–958, December 2001.

