
Headmesher

Separate Build

October 26, 2006

Contents

1 Head Mesher 1

1.1 Introduction. 1

1.2 Defining the multi surface . 1

1.3 Constructing the multi surface traits. 4

1.4 Setting the criteria for the mesh. 5

1.5 Generating the multi surface mesh. 6

Reference Manual. 9

1.6 Concepts .9

1.7 Classes .9

1.8 Alphabetical List of Reference Pages. 9

Index 27

i

ii

Chapter 1

Head Mesher
Marc Scherfenberg

1.1 Introduction

This package extends CGAL to be capable of meshing objects which consists of more than one surface. Mesh-
ing multi-surface objects can be desired for several reasons. In contrary to a single manifold surface (which
nevertheless could consist of several connected components), several surfaces can contain each other. As the
mesher respects all surfaces, the resulting mesh not only models the outer surface and the enclosed volume of
an object, additionally also its inner structure is maintained. Furthermore it is possible to set different meshing
criteria and parameter for different parts of an object’s volume, depending on which surfaces enclose the con-
cerning part. An example for a mesh consisting of parts with different bounds on the tetrahedra’s size is shown
by figure1.1.

The illustrated mesh is generated by the demo programHead mesherwhich shows how to use the classes which
are contained in this package. It has been developed for an actual medical application and thus has given this
package its name.

Several steps have to be done before the mesher can be applied:

• Defining the multi surface

• Constructing the multi surface traits

• Setting the criteria for the mesh

The following sections discuss these issues more detailed.

1.2 Defining the multi surface

As a multi surface consists of several single surfaces, at first these single surfaces have to be instantiated. Any
model which statisfies the concept Surface3 page?? is fine for that. Given three gray-level-images, one
possibility would be to do it like this:

1

Figure 1.1: There are four surfaces defined: skin, skull, brain and ventricles.

2

Figure 1.2: The tetraheda touching the cutting plane. Cells are allowed to be bigger within the skull.

3

Gray_level_image image_1("ventricules_0.23.inr.gz", 0.23);
Gray_level_image image_2("brain_1.0.inr.gz", 1.0);
Gray_level_image image_2("skull_2.9.inr.gz", 2.9);

const Sphere_3 bounding_sphere(Point_3(122., 102., 117.), 80000);

Implicit_surface_3 single_surface_1(image_1, bounding_sphere, 1e-3));
Implicit_surface_3 single_surface_2(image_2, bounding_sphere, 1e-3));
Implicit_surface_3 single_surface_3(image_3, bounding_sphere, 1e-3));

A multi surface stores its single surfaces in a binary tree. It is necessary to define this tree for thetypeof the
multi surface as well as for the multi surface object itself (seeMulti surface3). The trees could be build like
this:

// definition of the multi surface type
typedef Multi_surface_3<Position_vector,

Implicit_surface_3,
Implicit_surface_3> Sub_multi_surface_1;

typedef Multi_surface_3<Position_vector,
Sub_multi_surface_1,
Implicit_surface_3> Multi_surface;

// definition of the multi surface object
Sub_multi_surface_1 sub_multi_surface(single_surface_1, single_surface_2);
Multi_surface multi_surface(sub_multi_surface, single_surface_3);

1.3 Constructing the multi surface traits

The surface traits for a multi surface consists of the set of traits which correspond to the single surfaces. They
must be chained to a tree in an analogous way as the surfaces and its types. At first the traits for the single
surfaces have to be defined:

// definition of the traits type of a single surface
typedef CGAL::Surface_mesher::Implicit_surface_oracle_3<

Geom_traits,
Implicit_surface_3,
Point_with_surface_index_creator,
Set_indices> Single_trait;

Single_trait single_traits_1(Set_indices(1));
Single_trait single_traits_2(Set_indices(2));
Single_trait single_traits_3(Set_indices(3));

Afterwards an instance of theMulti surfacemeshtraits 3 can be created. Again it is necessary to chain the
types as well as the objects:

// definition of the traits type of the multi surface
typedef Multi_surface_mesh_traits_3<Position_vector,

4

Single_trait,
Single_trait> Sub_traits_1;

typedef Multi_surface_mesh_traits_3<Position_vector,
Sub_traits_1,
Single_trait> Surface_traits;

// definition of the multi surface traits object
Sub_traits_1 sub_traits_1(single_traits_1, single_traits_2);
Surface_traits surface_traits(sub_traits_1, single_traits_3);

1.4 Setting the criteria for the mesh

Except for the exudation of slivers, all parameters which influence the properties of the mesh’s cells are defined
in criteria-classes. It is distinguished between criteria which can be used for the cells in the volume between
two surfaces and criteria usable for facets of the surfaces (which obviously indirectly also influence the cells
containing the surface facets). A criterion contains a predicateIs bad(), which is applied to every cell of the
mesh or facet of the surface, respectively. If it turns out, that a cell or facet does not fullfill a criterion, the cell
is normally refined until it does. Thus the set of the defined criteria determines how long a mesh is generated by
this refinement and how it will look like in the end. After this refinement process optionally slivers of the mesh
can be detected and exuded, which may lead to a slight violation of the defined criteria.

The concept which defines a volume criterion is MeshCriteria3 page??, the one defining a criterion for
surface facets is called SurfaceMeshCriteria3 . page??. Within this package two criteria,
which are capable of considering the additional information of multi surface meshes, are contained. They are
namedEdge length cell criteria andEdge length surfacecriteria and are applicable for cells in the volume
and surface facets, respectively. Both have in common that they upper bound the edges’ lengths according to a
given sizing field. A sizing field is a datastructur which maps the so called position vector of a point to an user
defined bound. A position vector, in turn, contains the information about which surface encloses a point and
wich does not and thus is a vector of bits. The class which implements a sizing field isSizingbounds, a concept
describing the position vector is PositionVector page??. For more detailled information about how they work,
see their documentation.

The whole process operated by theEdge length cell criteria is to calculate the barycenter of a given cell, to
determine the position vector of that barycenter with the help of the classMulti surfacemeshtraits 3, then to
determine the size bound which belongs to that position vector with the help of the classSizeboundsand finally
to check whether one of the tetrahedra’s edges exceeds the size bound.

The steps taken byEdge length surfacecriteria are only slightly different. For determining the propper size
bound, it calculates the two size bounds belonging to the position vectors of the barycenter of the two cells
which are incident to the given facet and applies the smaller one to the facet’s edges. Thus it applies the bound
of the incident volume which is more restrictive.

Two things have to be done by the user for applying these criteria in the refinement process of a mesh: One
is to create an external ASCII-file containing rules which define the map from position vectors to bounds. A
description of the format of this file is contained in the documentation ofSizebounds. The other thing is to
instantiate both criteria-classes. This could be done like follows:

typedef boost::dynamic_bitset<> Position_vector;

typedef Size_bounds<Position_vector, double> Size_bounds;

typedef Edge_length_surface_criteria<Tr,

5

Multi_surface,
Surface_traits,
Size_bounds> Surface_criteria;

typedef Edges_length_cell_criteria<Tr,
Multi_surface,
Surface_traits,
Size_bounds> Cell_criteria;

Size_bounds size_bounds;

// parameter for another volume cell condition
// which is contained in Edges_length_cell_criteria
const double tets_radius_edge_bound = 2.5;

Surface_criteria surface_criteria(tr,
multi_surface,
surface_traits,
size_bounds);

Cell_criteria tets_criteria(tr,
multi_surface,
surface_traits,
size_bounds,
tets_radius_edge_bound);;

size_bounds.read_bounds("mesh_size_bounds");

1.5 Generating the multi surface mesh

Finally the mesh can be generated by having theImplicit surfacemesher3 refining a small initial mesh it:

typedef CGAL::Implicit_surfaces_mesher_3<C2t3,
Multi_surface,
Surface_criteria,
Cell_criteria,
Surface_traits> Mesher;

// the triangulation, for the definition of the type see Head_mesher.cpp
Tr tr;

// the surface-part of the triangulation
typedef CGAL::Complex_2_in_triangulation_3<Tr> C2t3;
C2t3 c2t3;

// construction of initial points on the surfaces
surface_traits.construct_initial_points_object()(multi_surface,

CGAL::inserter(tr));
// refinement
mesher.refine_mesh();

6

// sliver exudation
CGAL::Mesh_3::Slivers_exuder<C2t3> exuder(tr);
exuder.pump_vertices(0.2);

An overall example, which compiles and was used to produce the images which are shown in the introduction,
is the programHead mesher.cpp.

7

8

Head Mesher
Reference Manual
Marc Scherfenberg

1.6 Concepts

PositionVector .page??

1.7 Classes

Cell with volumeindex<GeomTraits, Cb> . page??
Edge length cell criteria<Tr, Multi surface3, Combiningoracle position vector, Sizebounds> page??
Edge length surfacecriteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds> page??
Multi surface3<PositionVector, Surfacea, Surfaceb> . page??
Multi surfacemeshtraits 3<PositionVector, SurfaceMeshTraits3 a, SurfaceMeshTraits3 b> page??
Sizebounds<PositionVector, Bound> . page??
Write maillage<C2t3> . page??

1.8 Alphabetical List of Reference Pages

Head mesher::Cellwith volumeindex<GeomTraits, Cb=CGAL::Triangulationds cell base3<>> . . page10
Head mesher::Edgelength cell criteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds>
page11
Head mesher::Edgelength surfacecriteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds>
page13
Head mesher::Multi surface3<PositionVector, Surfacea, Surfaceb> . page15
Head mesher::Multi surfacemeshtraits 3<PositionVector, SurfaceMeshTraits3 a, SurfaceMeshTraits3 b>
page17
Head mesher::PositionVector. .page20
Head mesher::Sizebounds<PositionVector, Bound> . page21
Head mesher::Writemaillage<C2t3> . page25

9

C
la

ss

CGAL::Head mesher::Cell with volume index<GeomTraits,
Cb=CGAL::Triangulation ds cell base3<>>

Definition

The classHead mesher::Cellwith volumeindex<GeomTraits, Cb=CGAL::Triangulationds cell base3<>>
extends the given cell base typeCbby storing an additional integer as volume index. This includes the overriding
of the stream operators in order to be able to make the additional information persistent.

#include<CGAL/Headmesher/Cellwith volumeindex.h>

Creation

Head mesher::Cellwith volumeindex<GeomTraits, Cb=CGAL::Triangulationds cell base3<>> cell;

Default constructor, the index is set to-1.

Operations

int cell.volumeindex() Returns the volume index.

void cell.setvolumeindex(const int i)

Sets the volume index toi.

See Also

Mesh3 IO.

10

C
la

ss

CGAL::Head mesher::Edge length cell criteria <Tr, Multi surface 3,
Multi surface mesh traits 3, Sizebounds>

Definition

The classEdge length cell criteria defines a criterion for cells which guarantees that

1. the edges of the tetrahedron are not longer than the bound given bySizeboundsaccording to the cell’s
position vector (calculated byMulti surfacemeshtraits 3) for the barycenter of that cell

2. the aspect ratio between the shortest edge of the terahedra and the radius of its circumsphere is not higher
than a given bound

Note: The bounds ofSizeboundsare assumed to be defined as a constant value, not as a function.

#include<Edge length cell criteria.h>

Is Model for the Concepts

MeshCriteria3 . page??

Types

Head mesher::Edgelength cell criteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds>::
Quality

Quality type, see MeshCriteria3 page??

Head mesher::Edgelength cell criteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds>::
Cell handle

Cell handle type, see MeshCriteria3 page??

Creation

Head mesher::Edgelength cell criteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds>
crit(Tr &tr,

Multi
surface3 &surface,

Multi
surfacemeshtraits 3 &traits,

Size

11

bounds&sizebounds,
const

double radiusedgebound = 2.)

The last parameter is the bound for the aspect ratio between
the shortest edge of the terahedra and the radius of its cir-
cumsphere.

Operations

bool crit.is bad(Cell handle ch, Quality& qual)

Function object which can be obtained byis bad object().
Returnstrue, if at least one of the conditions which are con-
tained in this criteria class is not satisfied andfalseotherwise.

See Also

Edge length surfacecriteria,
Multi surface3,
Multi surfacemeshtraits 3,
PositionVector . page??,
Sizebounds,
SurfaceMeshCriteria3 . page??.

12

C
la

ss

CGAL::Head mesher::Edge length surface criteria <Tr, Multi surface
3, Multi surface mesh traits 3, Sizebounds>

Definition

The classEdge length surfacecriteria defines a criterion for facets of surfaces which guarantees that

1. all vertices of the facet must belong to the same surface, which is, their points must have the same surface
index.

2. the edges of the facet are not longer than the minimum of the bounds correlated to the two volumes which
are incident to the surface which the facet belongs to. Both bounds are determined by using the class
Sizeboundsfor the position vector of the barycenter of the incident cells. The needed position vectors
are calculated with the help of the classMulti surfacemeshtraits 3.

Note: The bounds ofSizeboundsare assumed to be defined as a constant value, not as a function.

#include<Edge length surfacecriteria.h>

Is Model for the Concepts

SurfaceMeshCriteria3 . page??

Types

Head mesher::Edgelength surfacecriteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds>
:: Quality

Quality type, see SurfaceMeshCriteria3 page??

Head mesher::Edgelength surfacecriteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds>
:: Facet

Facet type, see SurfaceMeshCriteria3 page??

Creation

Head mesher::Edgelength surfacecriteria<Tr, Multi surface3, Multi surfacemeshtraits 3, Sizebounds>
crit(Tr &tr,

Multi
surface3 &surface,

Multi
surfacemeshtraits 3 &traits,

Size
bounds&sizebounds)

13

Operations

bool crit.is bad(Facet f, Quality& qual)

Function object which can be obtained byis bad object().
Returnstrue, if at least one of the conditions which are con-
tained in this criteria class is not satisfied andfalseotherwise.

See Also

Edge length cell criteria,
Multi surface3,
Multi surfacemeshtraits 3,
PositionVector . page??,
Sizebounds,
SurfaceMeshCriteria3 . page??.

14

C
la

ss

CGAL::Head mesher::Multi surface 3<PositionVector, Surfacea,
Surface b>

Definition

Head mesher::Multi surface3<PositionVector, Surfacea, Surfaceb> is a model for the concept Surface3
page??and can be used for describing a surface which itself consists of several indepedent surfaces.

In particular, the classMulti surface3 is the root of a binary tree which leafs are the single surfaces and which
inner nodes are of typeMulti surface3, as well. Chaining two subtrees together is done by invoking the
constructor of this class.

The order of the single surfaces is based on a depth-first search from left to right within the tree, which yields
into a surface order from left to right according to the position of a single surface among the leafs.

When includingMulti surface3.h theSurfacemeshtraits generator3 is partially specialized for this surface
and can be used for obtaining the type of the corresponsing surface traits.

#include<Multi surface3.h>

Parameters

The first template parameter must be a model of the homonymous concept PositionVector page??. When
not using theSurfacemeshtraits generator3 for getting the type of the corresponding surface traits, it must
be considered that the first template parameter ofMulti surfacemeshtraits 3 must represent the same model
as this parameter.

The second and third template parameters are the types of the subtrees which are to be chained by the construc-
tor. These two template parameters lead to a tree of surface types which must have the same structure as the tree
of the surface instances.

Is Model for the Concepts

Surface3 . page??

Creation

Head mesher::Multi surface3<PositionVector, Surfacea, Surfaceb> multi surface(Surfacea& surfacea,
Surfaceb& surfaceb)

The parameters are the two subtrees which are to be chained.
Each one’s type has to be a model of Surface3. .page??, in
particular it can be of this type, which means that a subtree
is chained, or of a type describing a single surface.

15

Operations

Surfacea& multi surface.surfacea()

Returns the left subtree of surfaces.

Surfaceb& multi surface.surfaceb()

Returns the right subtree of surfaces.

See Also

Multi surfacemeshtraits 3,
PositionVector .page??. Surface3. .page??,
Surfacemeshtraits generator3,
SurfaceMeshTraits3 . page??,

16

C
la

ss

CGAL::Head mesher::Multi surface mesh traits 3<PositionVector,
SurfaceMeshTraits 3 a, SurfaceMeshTraits 3 b>

Definition

The classMulti surfacemeshtraits 3 is a model of SurfaceMeshTraits3 . page??.
It is a model which works for surfaces of the typeMulti surface3 and provides the methodsis in volumeand
position vectoradditionally to the members which are required by the concept.

In particular this surface traits model works by building a binary tree which leafs are the traits for a single
surface each. Its inner nodes are objects of this class, each chaining two subtrees of traits together.

The generated tree of surface traits must have the same structure as the tree of surfaces which corresponds to an
instance of that surface traits class. This means, that each node of the traits tree corresponds to exactly one node
in the tree of surfaces.

This in turn implies that a node of the traits tree of the typeMulti surfacemeshtraits 3 corresponds to a node
in the surface tree of the typeMulti surface3 and all other nodes (in fact leafs) have a type which is another
model of SurfaceMeshTraits3 page??or Surface3 page?? respectively.

The order of the surfaces or surface traits respectively is based on a depth-first search from left to right within
the trees, which yields into a surface traits order from left to right according to the position of a traits object
among the leafs.

#include<Multi surfacemeshtraits 3.h>

Parameters

The template parameterPositionVectormust be a model of the homonymous concept. The same model has to
be passed as first template parameter to the classMulti surface3.

The remaining template parameters determine the type of the two subtrees which this class chains and must be
a model of the concept SurfaceMeshTraits3page??. It must be considered that the tree of the types of surface
traits must have the same structure as the tree of the surface traits instances.

Types

typedef typename SurfaceMeshTraits3 a::Point 3

Point 3;

typedef typename SurfaceMeshTraits3 a::Segment3

Segment3;

typedef typename SurfaceMeshTraits3 a::Ray 3

Ray 3;

17

typedef typename SurfaceMeshTraits3 a::Line 3

Line 3;

typedef typename Multisurface3<PositionVector, SurfaceMeshTraits3 a::Surface3, SurfaceMeshTraits3
b::Surface3>

Multi surface; Multi surfacemust represent a tree of surfaces having the
same structure as the tree of surface traits represented by an
object of this class.

typedef Multisurface

Surface3;

Head mesher::Multi surfacemeshtraits 3<PositionVector, SurfaceMeshTraits3 a, SurfaceMeshTraits3 b>
:: Intersect 3

Type of a function object calculating intersections of the
multi surface with an object of typeType1by providing the
operator
CGAL::object operator()(Multisurface surface, Type1
type1).
Type1may be aSegment3, aRay 3 or aLine 3.

Head mesher::Multi surfacemeshtraits 3<PositionVector, SurfaceMeshTraits3 a, SurfaceMeshTraits3 b>
:: Construct initial points

Type of a function object providing the following operator
to construct initial points on the multi surface
template <class OutputIteratorPoints> opera-
tor()(OutputIteratorPoints pts, int n=20).
Outputs a set of points (n on each surface).

Is Model for the Concepts

SurfaceMeshTraits3 . page??

Creation

Head mesher::Multi surfacemeshtraits 3<PositionVector, SurfaceMeshTraits3 a, SurfaceMeshTraits3 b>
traits(SurfaceMeshTraits3 a& traits a,

SurfaceMeshTraits
3 b& traits b)

The parameters are the two subtrees which are to be
chained. Each parameter’s type has to be a model of
SurfaceMeshTraits3 page??, in particular it can be of
this type, which means that a subtree is chained, or of a type
representing the traits for a single surface.

18

Operations

Intersect3 traits.traits.intersect3 object()

Constructinitial points

traits.traits.constructinitial points object()

PositionVector traits.positionvector(Multi surface&multi surface, Point3 p)

Returns the position vector ofp with respect to the surfaces
contained inmulti surface.

See Also

Multi surface3,
PositionVector .page??
Surface3 . page??
Surfacemeshtraits generator3,
SurfaceMeshTraits3 . page??

19

C
on

ce
pt

Head mesher::PositionVector

Definition

A Position vector is a type which describes the location of a point with respect to its relative location according
to different surfaces within the meshing domain. More precisely it is a bitset in which theith bit corresponds to
the result of the methodintersect3 of a model for the conceptSurfaceMeshTraits3. In other words, theith bit
of a position vector is 1 if the cell is located within theith surface and 0 otherwise.

Types

The type of the bits isbool.

Head mesher::PositionVector:: sizetype The unsigned integer type for representing the size of the
position vector, which is the number of surfaces used for de-
scribing a cell’s location.

Creation

Head mesher::PositionVector pv(sizetype numsurfaces, unsigned long value = 0);

The valueparameter is the interpretation of the bitset as an
integer, or rather anunsigned longfrom the technical point
of view.

Operations

A model of this concept must implement the standard container methods asempty, sizeandpushback, the
assignment operatoroperator&= , the comparision operatorsoperator== andoperator!=, the subscript operator
operator[] and the following functions

void pv.append(bool value)

extend the position vector for the given bit.

unsigned long pv.toulong() returns the interpretation of the bitset as a number.

Has Models

A model which fullfills the concept Headmesher::PositionVector is the bitset implemented in the boost-library
boost::dynamicbitset<>. In order to use it,boost/dynamicbitset.hppmust be included.

See Also

A class which defines position vectors for given cells is:
Multi surfacemeshtraits 3<PositionVector, SurfaceMeshTraits3 a, SurfaceMeshTraits3 b>.

20

C
la

ss

CGAL::Head mesher::Sizebounds<PositionVector, Bound>

Definition

The main functionality of the classHead mesher::Sizebounds<PositionVector, Bound> is to map a given po-
sition vector to a (size) bound. A position-vector is some data determining the location of a triangulation’s cell
and must be a model of the concept PositionVector . . . page??. The template parameter Bound can be choosen
almost arbitrarily, e.g. it can represent a constant or a function.

The first step when using this class is to read the definitions for the mapping from an input-stream, e.g. an
external textfile. This can be done by calling the member functionread bounds. Afterwards two possibilities
for determining bounds are offered. The member functionget boundreturns a single bound for a given position
vector by applying the definition-rules which are read before. If fast access to the bounds is important, the
member functionread all boundsshould be used instead. It returns a sequential container which contains the
bounds for all possible values of the position vector type by precalculating them and storing a bound at the
index according to the interpretation of the position vector’s bitset as an integer. Note that the space needed for
container growths exponentially with the length of the position vector.

#include<Sizebounds.h>

Parameters

The first template argument must be a model of the PositionVector . page??concept.

The second template argument determins the type of the returned bounds. The only restriction is that it has to
implement the input operator>>.

Types

The classHead mesher::Sizebounds<PositionVector, Bound> defines the following types:

Head mesher::Sizebounds<PositionVector, Bound>:: PositionVector

Members of this type represent the location of a cell. Corre-
sponds to the first template parameter.

Head mesher::Sizebounds<PositionVector, Bound>:: Bound

Type of the bounds. Corresponds to the second template pa-
rameter.

Head mesher::Sizebounds<PositionVector, Bound>:: All bounds

Fast type that holds all theoretically possible bounds. It is a
sequential container implementing the subscript-operator.

typedef pair<string, Bound>

Definition; Rule for mapping a certain pattern for position vectors to a
certain bound.

21

Head mesher::Sizebounds<PositionVector, Bound>:: Defined bounds

Container for all defined pattern-bound-rules.

Creation

Head mesher::Sizebounds<PositionVector, Bound> sizebounds;

Default constructor.

Operations

bool sizebounds.readbounds(std::istream& in, std::ostream& out = std::cout)

Reads rules that define the bounds from the inputstreamin
and outputs user-information on the optional parameterout.
A rule consists of a pattern for describing when a bound
should be applied, and the value of the bound itself. A sim-
ple pattern would be a concrete instance of a position vector.
In order to avoid the need of defining bounds for all theoret-
ically possible position vectors or to avoid undefined bounds
respectively, it is possible to use so called jokers in a pattern.
A joker is symbolized by an underscore’ ’ and means that
the bit of a position vector at the position of the joker does not
restrict the application of the bound. A rule containing less
jokers in comparison to another one is considered as more
specialized. If there are more bounds applicable to a postion
vector, the rule which is more specialized is given the higher
priority. If two applicable rules are equal specialized, the rule
which is first mentioned in the inputstream is considered.
Each pattern which is used in the inputstream must have
the same length. If the inputsream is well formatted,read
boundsreads the definitions and returnstrue, otherwise it
stops and returnsfalse.
It follows a simple example for a textfile defining the rules
for 16 different position vectors:

5
01 3
0110 2
10 4

First it defines a default bound of 5 which is applied if no
other pattern matches a position vector, since a pattern only
consisting of jokers is least specialized. A position vector
0101 would be mapped to a size bound of 3, because the
according rule is defined before the rule mapping to 4.

Bound sizebounds.getbound(const PositionVector pv)

Returns the bound for the given position vector.

22

All bounds sizebounds.getall bounds()

If not done since reading new bounds byread bounds,
bounds for all possible position vectors are determined and
stored in a sequential container which implements the sub-
script operator and is returned by this function. A bound
according to a position vector can then be determined by in-
terpreting the bitset of the position vector as integer and using
it as an index for the container.
This method gives much faster access to bounds thanget
bound, but needsO(2n) space withn as the length of a posi-
tion vector.

Definedbounds sizebounds.getdefinedbounds()

Returns a container consisting of all rules defining the map-
ping.

unsigned int sizebounds.numberof surfaces()

Returns the number of surfaces which is equal to the length
of the used position vectors.

void sizebounds.printall bounds(std::ostream& out = std::cout)

Prints a table of all possible position vectors and their corre-
sponding bounds toout.

See Also

Concept PositionVector . page??.

#include <fstream>
#include <boost/dynamic_bitset.hpp>

#include <CGAL/Head_mesher/Size_bounds.h>

using namespace std;

int main()
{

// boost::dynamic_bitset<> is a model for the concept Position_vector
typedef boost::dynamic_bitset<> Position_vector;

// double-values as bound
typedef CGAL::Head_mesher::Size_bounds<Position_vector, double> Size_bounds;

ifstream file("test_size_bounds.txt");

Size_bounds size_bounds;

23

if (!size_bounds.read_bounds(file)) {
cout << "could not read file or file is in wrong format" << endl;

return EXIT_FAILURE;
}

size_bounds.print_all_bounds();

// translates the integers of the std::cin into a position vector and prints
// the corresponding bound
while (true)
{

unsigned int l;

cin >> l;

Position_vector pv(3, l);

cout << pv << ": " << size_bounds.get_bound(pv) << endl;
}

}

24

C
la

ss
F

un
ct

or

CGAL::Head mesher::Write maillage<C2t3>

Definition

The function object classHead mesher::Writemaillage<C2t3> writes a mesh in a format called ’Maillage’,
which is a format for storing meshes including surfaces. A.maillage-file consists of a header and three
consecutive parts: points-part, tetrahedra-part and surface-facet-part.

The schema looks like follows:

npntn f

x1y1z1

...

xnpynpznp

it1 jt1kt1lt1vi1
...

itnt jtntktntltntvint

i f1 j f1k f1l f1si1
...

i fn f j fn fk fn fsin f

where

np−numbero f points

nt−numbero f tetrahedra

n f−numbero f f acetsonsur f aces

it i jt ikti lt i − indiceso f pointso f ithtetrahedra

vii −volumeindexo f ithtetrahedra

i f i j f ik fi − indiceso f f acetso f ithtetrahedra

sii −sur f aceindexo f ith f acet

Furthermore a single file for every surface is created, which containes the same header and points-part, no
tetrahedra-part and finally the facets on that surface.

Parameters

The template parameter must be a model of the concept SurfaceMeshComplex2InTriangulation3 . . . page??.

#include<Maillage format.h>

25

Creation

Head mesher::Writemaillage<C2t3> write maillage;

Default constructor.

Operations

bool write maillage(std::string fileprefix, C2t3 c2t3)

Writes the mesh c2t3 in a file named
<fileprefix>.maillage and additionally generates
the<fileprefix>.surface*-files.
Returnsfalseif the writing fails due to an invalid mesh, oth-
erwisetrue is returned.

See Also

SurfaceMeshComplex2InTriangulation3 . page??.

26

Index

Pages on which definitions are given are presented
in boldface.

()
Head mesher::Writemaillage, 26

append
Headmesher::PositionVector,20

Definition, 21

get all bounds
Head mesher::Sizebounds, 22

get bound
Head mesher::Sizebounds, 22

get definedbounds
Head mesher::Sizebounds, 23

Head mesher::Cellwith volumeindex, 10
Head mesher::Edgelength cell criteria, 11–12
Head mesher::Edgelength surfacecriteria, 13–

14
Head mesher::Multi surface3, 15–16
Head mesher::Multi surfacemeshtraits 3,

17–19
Headmesher::PositionVector,20
Head mesher::Sizebounds, 21–24
Head mesher::Writemaillage, 25–26

is bad
Head mesher::Edgelength cell criteria, 12
Head mesher::Edgelength surfacecriteria,

14

Line 3, 17

Multi surface, 18

numberof surfaces
Head mesher::Sizebounds, 23

Point 3, 17
position vector

Head mesher::Multi surfacemeshtraits 3,
19

print all bounds
Head mesher::Sizebounds, 23

Ray 3, 17
read bounds

Head mesher::Sizebounds, 22

Segment3, 17
set volumeindex

Head mesher::Cellwith volumeindex, 10
Surface3, 18
surfacea

Head mesher::Multi surface3, 16
surfaceb

Head mesher::Multi surface3, 16

to ulong
Headmesher::PositionVector,20

traits.constructinitial points object
Head mesher::Multi surfacemeshtraits 3,

19
traits.intersect3 object

Head mesher::Multi surfacemeshtraits 3,
19

volumeindex
Head mesher::Cellwith volumeindex, 10

27

	1 Head Mesher
	1.1 Introduction
	1.2 Defining the multi surface
	1.3 Constructing the multi surface traits
	1.4 Setting the criteria for the mesh
	1.5 Generating the multi surface mesh
	 Reference Manual
	1.6 Concepts
	1.7 Classes
	1.8 Alphabetical List of Reference Pages

	Index

