Headmesher

Separate Build

October 26, 2006

Contents

1 Head Mesher 1
1.1 Introduction. 1
1.2 Definingthe multisurface. e 1
1.3 Constructing the multi surface traits Lo L 4
1.4 Setting the criteriaforthemesh 5
1.5 Generating the multisurfacemesh. o oo 6

Reference Manual e 9

1.6 CONCEPLS o o e 9
17 Classes. o o i 9
1.8 Alphabetical List of Reference Pages 0. 9
Index 27

Chapter 1

Head Mesher

Marc Scherfenberg

1.1 Introduction

This package extends CGAL to be capable of meshing objects which consists of more than one surface. Mesh-
ing multi-surface objects can be desired for several reasons. In contrary to a single manifold surface (which
nevertheless could consist of several connected components), several surfaces can contain each other. As the
mesher respects all surfaces, the resulting mesh not only models the outer surface and the enclosed volume of
an object, additionally also its inner structure is maintained. Furthermore it is possible to set different meshing
criteria and parameter for different parts of an object’s volume, depending on which surfaces enclose the con-
cerning part. An example for a mesh consisting of parts with different bounds on the tetrahedra’s size is shown
by figurel.l

The illustrated mesh is generated by the demo prodtaad meshemwhich shows how to use the classes which
are contained in this package. It has been developed for an actual medical application and thus has given this
package its name.

Several steps have to be done before the mesher can be applied:

e Defining the multi surface
e Constructing the multi surface traits

e Setting the criteria for the mesh

The following sections discuss these issues more detailed.

1.2 Defining the multi surface

As a multi surface consists of several single surfaces, at first these single surfaces have to be instantiated. Any
model which statisfies the concept Surfee. page?is fine for that. Given three gray-level-images, one
possibility would be to do it like this:

Figure 1.1: There are four surfaces defined: skin, skull, brain and ventricles.

""--"'h._";'l:!'._'_

BT 7 {50 WA T | T L
. fééﬁ LT 5

5

‘%,5_
Sarsh 7

; 3 “&Ef.‘ ‘ T
ﬂ'l ' hrprg?;., '-g;h' g
ﬁ"; SR !

AT o
s =
Brmie

LT o
e

L] -k
S T P

Figure 1.2: The tetraheda touching the cutting plane. Cells are allowed to be bigger within the skull.

Gray_level_image image_1("ventricules_0.23.inr.gz", 0.23);
Gray_level_image image_2 ("brain_1.0.inr.gz", 1.0);
Gray_level_image image_2 ("skull 2.9.inr.gz", 2.9);

const Sphere_3 bounding_sphere (Point_3(122., 102., 117.), 80000);

Implicit_surface_3 single_surface_l(image_1, bounding_sphere, le-3));
Implicit_surface_3 single_surface_2 (image_2, bounding_sphere, 1le-3));
Implicit_surface_3 single_surface_3(image_3, bounding_sphere, le-3));

A multi surface stores its single surfaces in a binary tree. It is necessary to define this treetypetbicthe
multi surface as well as for the multi surface object itself (Skati_surface3). The trees could be build like
this:

// definition of the multi surface type
typedef Multi_surface_3<Position_vector,
Implicit_surface_3,
Implicit_surface_3> Sub_multi_surface_1;

typedef Multi_surface_3<Position_vector,
Sub_multi_surface_1,
Implicit_surface_3> Multi_surface;

// definition of the multi surface object
Sub_multi_surface_l sub_multi_surface(single_surface_1, single_surface_2);
Multi_surface multi_surface(sub_multi_surface, single_surface_3);

1.3 Constructing the multi surface traits

The surface traits for a multi surface consists of the set of traits which correspond to the single surfaces. They
must be chained to a tree in an analogous way as the surfaces and its types. At first the traits for the single
surfaces have to be defined:

// definition of the traits type of a single surface
typedef CGAL::Surface_mesher::Implicit_surface_oracle_3<
Geom_traits,
Implicit_surface_3,
Point_with_surface_index_creator,
Set_indices> Single_trait;

Single_trait single_traits_1(Set_indices(1l));

Single_trait single_traits_2(Set_indices(2));
Single_trait single_traits_3(Set_indices(3));

Afterwards an instance of thdulti_surfacemeshtraits_3 can be created. Again it is necessary to chain the
types as well as the objects:

// definition of the traits type of the multi surface
typedef Multi_surface_mesh_traits_3<Position_vector,

4

Single_trait,

Single_trait> Sub_traits_1;
typedef Multi_surface_mesh_traits_3<Position_vector,

Sub_traits_1,

Single_trait> Surface_traits;

// definition of the multi surface traits object
Sub_traits_1 sub_traits_1(single_traits_1, single_traits_2);
Surface_traits surface_traits(sub_traits_1, single_traits_3);

1.4 Setting the criteria for the mesh

Except for the exudation of slivers, all parameters which influence the properties of the mesh’s cells are defined
in criteria-classes. It is distinguished between criteria which can be used for the cells in the volume between
two surfaces and criteria usable for facets of the surfaces (which obviously indirectly also influence the cells
containing the surface facets). A criterion contains a predisabad(), which is applied to every cell of the

mesh or facet of the surface, respectively. If it turns out, that a cell or facet does not fullfill a criterion, the cell
is normally refined until it does. Thus the set of the defined criteria determines how long a mesh is generated by
this refinement and how it will look like in the end. After this refinement process optionally slivers of the mesh
can be detected and exuded, which may lead to a slight violation of the defined criteria.

The concept which defines a volume criterion is MeshCirit8ria. . . . page?, the one defining a criterion for

surface facets is called SurfaceMeshCrite8ia. page?. Within this package two criteria,

which are capable of considering the additional information of multi surface meshes, are contained. They are
namedEdgelength cell_criteria and Edge length surfacecriteria and are applicable for cells in the volume

and surface facets, respectively. Both have in common that they upper bound the edges’ lengths according to a
given sizing field. A sizing field is a datastructur which maps the so called position vector of a point to an user
defined bound. A position vector, in turn, contains the information about which surface encloses a point and
wich does not and thus is a vector of bits. The class which implements a sizing fgkiig bounds a concept
describing the position vector is PositionVector p&GeFor more detailled information about how they work,

see their documentation.

The whole process operated by thdge length.cell_criteria is to calculate the barycenter of a given cell, to
determine the position vector of that barycenter with the help of the Ma#s_surfacemeshtraits_3, then to
determine the size bound which belongs to that position vector with the help of th&das®undsand finally

to check whether one of the tetrahedra’s edges exceeds the size bound.

The steps taken bidgelength surfacecriteria are only slightly different. For determining the propper size
bound, it calculates the two size bounds belonging to the position vectors of the barycenter of the two cells
which are incident to the given facet and applies the smaller one to the facet’s edges. Thus it applies the bound
of the incident volume which is more restrictive.

Two things have to be done by the user for applying these criteria in the refinement process of a mesh: One
is to create an external ASCII-file containing rules which define the map from position vectors to bounds. A

description of the format of this file is contained in the documentatio8ipébounds The other thing is to
instantiate both criteria-classes. This could be done like follows:

typedef boost::dynamic_bitset<> Position_vector;
typedef Size_bounds<Position_vector, double> Size_bounds;

typedef Edge_length_surface_criteria<Tr,

Multi_surface,
Surface_traits,
Size_bounds> Surface_criteria;

typedef Edges_length_cell_criteria<Tr,
Multi_surface,
Surface_traits,
Size_bounds> Cell_criteria;

Size_bounds size_bounds;

// parameter for another volume cell condition
// which is contained in Edges_length_cell_criteria
const double tets_radius_edge_bound = 2.5;

Surface_criteria surface_criteria(tr,
multi_surface,
surface_traits,
size_bounds);

Cell_criteria tets_criteria(tr,
multi_surface,
surface_traits,
size_bounds,
tets_radius_edge_bound);;

size_bounds.read_bounds ("mesh_size_bounds");

1.5 Generating the multi surface mesh
Finally the mesh can be generated by havinglthglicit_surfacemesher3 refining a small initial mesh it:

typedef CGAL::Implicit_surfaces_mesher_3<C2t3,
Multi_surface,
Surface_criteria,
Cell_criteria,
Surface_traits> Mesher;

// the triangulation, for the definition of the type see Head_mesher.cpp
Tr tr;

// the surface-part of the triangulation
typedef CGAL::Complex_2_in_triangulation_3<Tr> C2t3;
C2t3 c2t3;

// construction of initial points on the surfaces
surface_traits.construct_initial_points_object () (multi_surface,

CGAL: :inserter(tr));
// refinement
mesher.refine_mesh();

// sliver exudation
CGAL: :Mesh_3::Slivers_exuder<C2t3> exuder (tr);

exuder.pump_vertices (0.2);

An overall example, which compiles and was used to produce the images which are shown in the introduction,
is the progranHead mesher.cpp

Head

Mesher

Reference Manual

Marc Scherfenberg

1.6 Concepts

POSIIONY B CIONo e ?Bage
1.7 Classes

Cell_with_volumeindexGeomTraits, CBt e e e page
Edgelength cell_criteria<Tr, Multi_surface 3, Combiningoracle_position vector, Sizebounds page??
Edgelength surfacecriteria<Tr, Multi_surface 3, Multi_surfacemeshtraits_3, Sizebounds page’?
Multi_surface 3<PositionVector, Surface@, Surfaceb> i page
Multi_surfacemeshtraits_3<PositionVector, SurfaceMeshTrai&a, SurfaceMeshTrait8_b> page??
SizeboundsPositionVector, BOUME.ttt e page
Write maillagecC 2t . . e P&ge

1.8 Alphabetical List of Reference Pages

Head mesher::
Head mesher::

pagell

Head mesher::

pagel3

Head mesher::
Head mesher::

pagel7

Head mesher::
Head mesher:
Head mesher::

Cellwith_volumeindexGeomTraits, Cb=CGAL.:: Triangulatiams_cell_base3<>> .. pagel0
Edgdength cell_criteria<Tr, Multi_surface3, Multi_surfacemeshtraits_3, Sizebounds

Edgdength surfacecriteria<Tr, Multi_surface3, Multi_surfacemeshtraits_3, Sizebounds

Multisurface 3<PositionVector, Surfaca, Surfaceb> padiés
Multisurface meshtraits_3<PositionVector, SurfaceMeshTrai&a, SurfaceMeshTrait8_b>

POSIIONVECIOL . . .o e pAye
:SizéboundsPositionVector, Boune. pate
WritemaillagecC 2t o page

Class

CGAL::Head _mesher::Cell.with _volume_indexxGeomTraits,
Cb=CGAL::Triangulation _ds_cell_base 3<>>

Definition

The classHead mesher::Cellwith_volumeindexGeomTraits, Cb=CGAL::Triangulatiorls_cell_base 3<>>
extends the given cell base typé by storing an additional integer as volume index. This includes the overriding
of the stream operators in order to be able to make the additional information persistent.

#include<CGAL/Headmesher/Cellwith_volumeindex.hb

Creation

Head mesher::Cellwith_volumeindexGeomTraits, Cb=CGAL.:: Triangulatiars_cell_base3<>> cell

Default constructor, the index is set-th

Operations
int cell.volumeindex() Returns the volume index.
void cell.setvolumeindex(const int i)

Sets the volume index fo
See Also
Mesh3_10.

10

CGAL::Head _mesher::Edgelength_cell_criteria <Tr, Multi _surface 3,
Multi _surface_mesh traits _3, Sizebounds>

Definition

The clas€dgelength cell_criteria defines a criterion for cells which guarantees that

1. the edges of the tetrahedron are not longer than the bound givBizeipoundsaccording to the cell’s
position vector (calculated Bylulti_surfacemeshtraits_3) for the barycenter of that cell

2. the aspect ratio between the shortest edge of the terahedra and the radius of its circumsphere is not higher
than a given bound

Note: The bounds dbizeboundsare assumed to be defined as a constant value, not as a function.

#include<Edgelength.cell_criteria.h>

Is Model for the Concepts

Y 1=2S] O] (=7 - PP Page

Types

Head mesher::Edgdength cell_criteria<Tr, Multi_surface3, Multi_surfacemeshtraits_3, Sizebounds::
Quiality

Quality type, see MeshCriterid................. page?

Head mesher::Edgdength.cell_criteria<Tr, Multi_surface3, Multi_surfacemeshtraits_3, Sizebounds::
Cell_handle

Cell handle type, see MeshCriterga pag@?

Creation

Head mesher::Edgdength cell_criteria<Tr, Multi_surface3, Multi_surfacemeshtraits_3, Sizebounds
crit(Tr &tr,

Multi_
surface3 ssurface,

Multi_
surfacemeshtraits_3 «traits,

Size

11

boundsssize bounds,

const
double radiusedgebound = 2.)

The last parameter is the bound for the aspect ratio between
the shortest edge of the terahedra and the radius of its cir-

cumsphere.
Operations
bool crit.is.bad(CelLhandle ch, Quality qual)
Function object which can be obtained tsybad object()
Returnstrue, if at least one of the conditions which are con-
tained in this criteria class is not satisfied daldeotherwise.
See Also

Edgelength surfacecriteria,
Multi_surface3,
Multi_surfacemeshtraits_3,

POSIIONY ECION . . .o e ?Page
Sizebounds
SUIMACEMESNCIIIEIIE oo e e e e p&ge

12

CGAL::Head _mesher::Edgelength_surface criteria <Tr, Multi _surface.
3, Multi _surface mesh traits _3, Sizebounds>

Definition

The clas€dge length surfacecriteria defines a criterion for facets of surfaces which guarantees that

1. all vertices of the facet must belong to the same surface, which is, their points must have the same surfz
index.

2. the edges of the facet are not longer than the minimum of the bounds correlated to the two volumes which
are incident to the surface which the facet belongs to. Both bounds are determined by using the class
Sizeboundsfor the position vector of the barycenter of the incident cells. The needed position vectors
are calculated with the help of the cladsilti_surfacemeshtraits_3.

Note: The bounds dbizeboundsare assumed to be defined as a constant value, not as a function.

#include<Edge length surfacecriteria.h>

Is Model for the Concepts

SUIACEMESNCIITEIIE e e e e e e page

Types

Head mesher::Edgdength surfacecriteria<Tr, Multi_surface3, Multi_surfacemeshtraits_3, Sizebounds
.2 Quality

Quality type, see SurfaceMeshCriteBa. pagé€?

Head mesher::Edgdength surfacecriteria<Tr, Multi_surface3, Multi_surfacemeshtraits_3, Sizebounds
.. Facet

Facet type, see SurfaceMeshCrite8ia........... page?

Creation

Head mesher::Edgdength surfacecriteria<Tr, Multi_surface3, Multi_surfacemeshtraits_3, Sizebounds
crit(Tr &tr,

Multi_
surface3 ssurface,

Multi_
surfacemeshtraits_3 «traits,

Size

boundsssize bounds)

13

Operations

bool crit.is_bad(Facet f, Quality qual)

Function object which can be obtained tsybad object()
Returnstrue, if at least one of the conditions which are con-
tained in this criteria class is not satisfied daldeotherwise.

See Also

Edgelength cell_criteria,
Multi_surface3,
Multi_surfacemeshtraits_3,

POSIIONY B O . . . oot e ?Page
Sizebounds
SUMACEMESNCIIIEII oo e e e e e e page

14

CGAL::Head _mesher::Multi _surface 3<PositionVector, Surfacea,
Surface b>

Definition

Head mesher::Multisurface 3<PositionVector, Surfaca, Surfaceb> is a model for the concept Surfade
page??and can be used for describing a surface which itself consists of several indepedent surfaces.

In particular, the clasMlulti_surface 3 is the root of a binary tree which leafs are the single surfaces and which
inner nodes are of typMulti_surface3, as well. Chaining two subtrees together is done by invoking the
constructor of this class.

The order of the single surfaces is based on a depth-first search from left to right within the tree, which yields
into a surface order from left to right according to the position of a single surface among the leafs.

When includingMulti_surface 3.hthe Surfacemeshtraits_generator 3 is partially specialized for this surface
and can be used for obtaining the type of the corresponsing surface traits.

#include<Multi _surface3.h>

Parameters

The first template parameter must be a model of the homonymous concept PositionVector . . ?2. pdgen

not using theSurfacemeshtraits_generator3 for getting the type of the corresponding surface traits, it must
be considered that the first template parametévuolti_surface meshtraits_3 must represent the same model
as this parameter.

The second and third template parameters are the types of the subtrees which are to be chained by the construc-

tor. These two template parameters lead to a tree of surface types which must have the same structure as the tree
of the surface instances.

Is Model for the Concepts

SUM AR . . oo Tage

Creation

Head mesher::Multisurface 3<PositionVector, Surfaca, Surfaceb> multi_surface(Surfaceas surfacea,
Surfacebs surfaceb)

The parameters are the two subtrees which are to be chained.
Each one’s type has to be a model of Surf&epage??, in
particular it can be of this type, which means that a subtree
is chained, or of a type describing a single surface.

15

Operations

Surfaceas multi_surface.surfacea()

Returns the left subtree of surfaces.

Surfacebs multi_surface.surfacé()

Returns the right subtree of surfaces.

See Also

Multi_surfacemeshtraits_3,

PositionVector.o pafeSurface3. ... page,

Surfacemeshtraits_generator3,
SUMACEMES T TAILSttt e

16

CGAL::Head _mesher::Multi _surface mesh traits _3<PositionVector,
SurfaceMeshTraits 3_a, SurfaceMeshTraits 3_b>

Definition

The clasgMulti_surfacemeshtraits_3 is a model of SurfaceMeshTrai®......................... page.
It is a model which works for surfaces of the typhulti_surface3 and provides the methods in_volumeand
position vectoradditionally to the members which are required by the concept.

In particular this surface traits model works by building a binary tree which leafs are the traits for a single
surface each. Its inner nodes are objects of this class, each chaining two subtrees of traits together.

The generated tree of surface traits must have the same structure as the tree of surfaces which corresponds to an
instance of that surface traits class. This means, that each node of the traits tree corresponds to exactly one node
in the tree of surfaces.

This in turn implies that a node of the traits tree of the tiyhdti_surfacemeshtraits_3 corresponds to a node

in the surface tree of the typdulti_surface3 and all other nodes (in fact leafs) have a type which is another
model of SurfaceMeshTrait3................. page?or Surface3................. page? respectively.

The order of the surfaces or surface traits respectively is based on a depth-first search from left to right within
the trees, which yields into a surface traits order from left to right according to the position of a traits object
among the leafs.

#include<Multi _surface meshtraits_3.h>

Parameters

The template paramet@ositionVectormust be a model of the homonymous concept. The same model has to
be passed as first template parameter to the Madis_surface3.

The remaining template parameters determine the type of the two subtrees which this class chains and must be
a model of the concept SurfaceMeshTreBigage??. It must be considered that the tree of the types of surface
traits must have the same structure as the tree of the surface traits instances.

Types

typedef typename SurfaceMeshTra&ts::Point_3

Point 3;

typedef typename SurfaceMeshTradts::Segment3

SegmengB;

typedef typename SurfaceMeshTrata::Ray.3

Ray.3;

17

typedef typename SurfaceMeshTrata::Line_3

Line_3;

typedef typename Mulsurface3<PositionVector, SurfaceMeshTrai&a::Surface3, SurfaceMeshTrait8._
b::Surface3>

Multi_surface; Multisurfacemust represent a tree of surfaces having the
same structure as the tree of surface traits represented by an
object of this class.

typedef Multisurface

Surface3;

Head mesher::Multisurface meshtraits_3<PositionVector, SurfaceMeshTrai&a, SurfaceMeshTrait8_b>
- Intersect3

Type of a function object calculating intersections of the
multi surface with an object of typ&ypelby providing the
operator

CGAL:object operator()(Multisurface surface, Typel
typel)

Typelmay be &SegmenB, aRay.3 or aLine_3.

Head mesher::Multisurfacemeshtraits_3<PositionVector, SurfaceMeshTrai&a, SurfaceMeshTrait8_b>
:: Constructinitial _points

Type of a function object providing the following operator
to construct initial points on the multi surface

template <class OutputlteratorPoints opera-
tor()(OutputlteratorPoints pts, int n=20)

Outputs a set of pointsi(on each surface).

Is Model for the Concepts

SUMACEMES N T ALttt page

Creation

Head mesher::Multisurfacemeshtraits_3<PositionVector, SurfaceMeshTrai&a, SurfaceMeshTrait8_b>
traits(SurfaceMeshTrait8_as traits_a,

SurfaceMest
3_bs traits_b)

The parameters are the two subtrees which are to be
chained. Each parameter's type has to be a model of
SurfaceMeshTrait8 page??, in particular it can be of
this type, which means that a subtree is chained, or of a type
representing the traits for a single surface.

18

Operations
Intersect3 traits.traits.intersect3_object()

Constructinitial _points

traits.traits.constructinitial _points object()

PositionVector traits.positiavector(MultiLsurfacesmulti_surface, Point3 p)

Returns the position vector gfwith respect to the surfaces
contained irmulti_surface

See Also

Multi_surface3,

POSIIONY B C 0Not ?Bage
SUM AR . . oo e TPage
Surfacemeshtraits_generator 3,

SUMfaCEMESN T AL e Bage

19

Concept

Head_mesher::PositionVector

Definition

A Position vector is a type which describes the location of a point with respect to its relative location according

to different surfaces within the meshing domain. More precisely it is a bitset in whidthtbé corresponds to
the result of the methoitersect3 of a model for the conce@urfaceMeshTrait8. In other words, théth bit
of a position vector is 1 if the cell is located within thta surface and 0 otherwise.

Types

The type of the bits iool.

Head mesher::PositionVector:: sizgype The unsigned integer type for representing the size of the
position vector, which is the number of surfaces used for de-
scribing a cell’'s location.

Creation

Head mesher::PositionVector pv(sizgpe numsurfaces, unsigned long value = 0);
The value parameter is the interpretation of the bitset as an

integer, or rather annsigned londgrom the technical point
of view.

Operations
A model of this concept must implement the standard container methoelspty sizeand pushback the

assignment operatoperator.=, the comparision operatooperator== andoperator!=, the subscript operator
operator[] and the following functions

void pv.append(bool value)

extend the position vector for the given bit.

unsigned long pv.talong() returns the interpretation of the bitset as a number.

Has Models

A model which fullfills the concept Heathesher::PositionVector is the bitset implemented in the boost-library
boost::dynamichitsek>. In order to use itboost/dynamidcitset.hppmust be included.

See Also

A class which defines position vectors for given cells is:
Multi_surfacemeshtraits_3<PositionVector, SurfaceMeshTrai&a, SurfaceMeshTrait8_b>.

20

CGAL::Head _mesher::Sizebounds<PositionVector, Bound-

Definition

The main functionality of the clagdead mesher::SizéboundsPositionVector, Bouneis to map a given po-
sition vector to a (size) bound. A position-vector is some data determining the location of a triangulation’s ce
and must be a model of the concept PositionVector . . . f&g&he template parameter Bound can be choosen
almost arbitrarily, e.g. it can represent a constant or a function.

The first step when using this class is to read the definitions for the mapping from an input-stream, e.g.
external textfile. This can be done by calling the member functiai bounds Afterwards two possibilities
for determining bounds are offered. The member funagietboundreturns a single bound for a given position
vector by applying the definition-rules which are read before. If fast access to the bounds is important, the
member functiomead.all_boundsshould be used instead. It returns a sequential container which contains the
bounds for all possible values of the position vector type by precalculating them and storing a bound at the
index according to the interpretation of the position vector’s bitset as an integer. Note that the space needed for
container growths exponentially with the length of the position vector.

#include<Sizebounds.h

Parameters

The first template argument must be a model of the PositionVector 27&geept.

The second template argument determins the type of the returned bounds. The only restriction is that it has to
implement the input operator.

Types

The clasfHead mesher::SizeboundsPositionVector, Bounddefines the following types:

Head mesher::SizéboundsPositionVector, Boune: PositionVector
Members of this type represent the location of a cell. Corre-
sponds to the first template parameter.

Head mesher::SizéboundsPositionVector, Boune: Bound

Type of the bounds. Corresponds to the second template pa-
rameter.

Head mesher::SizéboundsPositionVector, Boune: All _bounds
Fast type that holds all theoretically possible bounds. Itis a
sequential container implementing the subscript-operator.
typedef pairstring, Bound

Definition; Rule for mapping a certain pattern for position vectors to a
certain bound.

21

Head mesher::SizéboundsPositionVector, Boune: Defined bounds

Container for all defined pattern-bound-rules.

Creation

Head mesher::SizéboundsPositionVector, Bound size bounds

Default constructor.

Operations

bool sizebounds.reacbounds(std::istreamin, std::ostream out = std::cout)

Reads rules that define the bounds from the inputstri@am
and outputs user-information on the optional parametr
A rule consists of a pattern for describing when a bound
should be applied, and the value of the bound itself. A sim-
ple pattern would be a concrete instance of a position vector.
In order to avoid the need of defining bounds for all theoret-
ically possible position vectors or to avoid undefined bounds
respectively, it is possible to use so called jokers in a pattern.
A joker is symbolized by an underscoré and means that
the bit of a position vector at the position of the joker does not
restrict the application of the bound. A rule containing less
jokers in comparison to another one is considered as more
specialized. If there are more bounds applicable to a postion
vector, the rule which is more specialized is given the higher
priority. If two applicable rules are equal specialized, the rule
which is first mentioned in the inputstream is considered.
Each pattern which is used in the inputstream must have
the same length. If the inputsream is well formatteshd.
boundsreads the definitions and returtrsie, otherwise it
stops and returnfalse
It follows a simple example for a textfile defining the rules
for 16 different position vectors:

-5
01__ 3
0110 2
10 4
First it defines a default bound of 5 which is applied if no
other pattern matches a position vector, since a pattern only
consisting of jokers is least specialized. A position vector
0101 would be mapped to a size bound of 3, because the
according rule is defined before the rule mapping to 4.

Bound sizebounds.gebound(const PositionVector pv)

Returns the bound for the given position vector.

22

All_bounds sizébounds.getll_bounds()

If not done since reading new bounds bgad bounds
bounds for all possible position vectors are determined and
stored in a sequential container which implements the sub-
script operator and is returned by this function. A bound
according to a position vector can then be determined by in-
terpreting the bitset of the position vector as integer and using
it as an index for the container.

This method gives much faster access to bounds ¢jedn
bound but need©(2") space witm as the length of a posi-

tion vector.

Definedbounds sizebounds.gedefinedbounds()
Returns a container consisting of all rules defining the map-
ping.

unsigned int sizédbounds.numbeof_surfaces()

Returns the number of surfaces which is equal to the length
of the used position vectors.
void sizebounds.printall_bounds(std::ostreamout = std::cout)

Prints a table of all possible position vectors and their corre-
sponding bounds tout

See Also

CoNCEPL POSIIONVECION o oottt e e e e e e e e e e e e ?page

#include <fstream>
#include <boost/dynamic_bitset.hpp>

#include <CGAL/Head _mesher/Size_bounds.h>
using namespace std;
int main()
{
// boost::dynamic_bitset<> is a model for the concept Position_vector

typedef boost::dynamic_bitset<> Position_vector;

// double-values as bound
typedef CGAL::Head mesher::Size_bounds<Position_vector, double> Size_bounds;

ifstream file("test_size_ bounds.txt");
Size_bounds size_bounds;

23

if (!size_bounds.read_bounds(file)) {
cout << "could not read file or file is in wrong format" << endl;

return EXIT_FAILURE;

size_bounds.print_all_bounds();
// translates the integers of the std::cin into a position vector and prints
// the corresponding bound
while (true)
{
unsigned int 1;
cin >> 1;

Position_vector pv(3, 1);

cout << pv << ": " << size_bounds.get_bound(pv) << endl;

24

CGAL::Head _mesher::Write_maillage<C2t3>

Definition

The function object classlead mesher::Writemaillage<C2t3> writes a mesh in a format called 'Maillage’,
which is a format for storing meshes including surfaces..rAillage-file consists of a header and three
consecutive parts: points-part, tetrahedra-part and surface-facet-part.

The schema looks like follows:

npntnf
X1y121

XnpYnpZnp
ity jtaktyltyvig

itnt jtntKtntltneVing
i flj f1k f1| f1$i1

ifnfjfnikfneSing

where

np—numberof points
nt — numbero ftetrahedra
nf —numberof facetsonsurfaces
it; jtikg It; — indiceso f pointsofithtetrahedra
vii — volumeindexofithtetrahedra
ifijfikfi —indicesof facetsofithtetrahedra
sij — sur faceindexo fithfacet

Furthermore a single file for every surface is created, which containes the same header and points-part, no
tetrahedra-part and finally the facets on that surface.

Parameters

The template parameter must be a model of the concept SurfaceMeshCdzhplesangulation3. . . page??.

#include <Maillage_format.h>

25

Creation

Head mesher::Writemaillage<C2t3> write_maillage

Default constructor.

Operations

bool write_maillage(std::string fileprefix, C2t3 c2t3)
Writes the mesh c2t3 in a file named
<fileprefix>.maillage and additionally generates
the<fileprefix>.surface*-files.
Returnsfalseif the writing fails due to an invalid mesh, oth-
erwisetrueis returned.

See Also

SurfaceMeshComplegInTriangulation3

26

Index

Pages on which definitions are given are presented

in boldface

()

Head mesher::Writemaillage 26

append
Head mesher::PositionVectop0

Definition, 21

getall_bounds

Head mesher::Sizébounds 22
getbound

Head mesher::Sizébounds 22
getdefinedbounds

Head mesher::Sizébounds 23

Head mesher::Cellwith_volumeindex 10
Head mesher::Edgdength cell_criteria, 11-12

Head mesher::Edgdength surfacecriteria, 13-

14
Head mesher::Multisurface3, 15-16
Head mesher::Multisurfacemeshtraits_3,
17-19
Head mesher::PositionVecto20
Head mesher::Sizébounds 21-24
Head mesher::Writemaillage 25-26

is_bad
Head mesher::Edgdength cell_criteria, 12
Head mesher::Edgdength surfacecriteria,
14

Line_3, 17
Multi_surface 18

numberof_surfaces
Head mesher::Sizébounds 23

Point_3, 17
position.vector
Head mesher::Multisurfacemeshtraits_3,
19
print_all_bounds
Head mesher::Sizébounds 23

27

Ray.3, 17
read_bounds
Head mesher::Sizébounds 22

SegmenB, 17
setvolumeindex

Head mesher::Cellwith_volumeindex 10
Surface3, 18
surfacea

Head mesher::Multisurface3, 16
surfaceb

Head mesher::Multisurface3, 16

to_ulong
Head mesher::PositionVecto20
traits.constructinitial _points object
Head mesher::Multisurfacemeshtraits_3,
19
traits.intersect3_object
Head mesher::Multisurfacemeshtraits_3,
19

volumeindex
Head mesher::Cellwith_volumeindex 10

	1 Head Mesher
	1.1 Introduction
	1.2 Defining the multi surface
	1.3 Constructing the multi surface traits
	1.4 Setting the criteria for the mesh
	1.5 Generating the multi surface mesh
	 Reference Manual
	1.6 Concepts
	1.7 Classes
	1.8 Alphabetical List of Reference Pages

	Index

