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Periodic frameworks
• A periodic framework (G, ℓ, Γ) is an infinite framework 

with 

•   Γ < Aut(G) 

• ℓ(γ(ij)) = ℓ(ij) 

• A realization G(p,L) is a realization periodic with 
respect to a lattice of translations L, which realizes Γ 

• Motions preserve the Γ-symmetry (not L); rigid iff no 
non-trivial motion

Γ free abelian, 
rank d

[Borcea-Streinu ’10]
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Background
• Symmetry-forcing allows for finite algebraic treatment of 

configuration spaces [B-S ’10] 

• Naive setup gives very wild conf. spaces [Owen-Power] 

• Lots of “Laman-type” combinatorial characterizations [B-S 
’11], [Malestein-T …], [Tanigawa], [Jordán-Kazinitzki-
Tanigawa],… 

• Many variants: fixed-lattice [Whiteley ’88], [Ross ’12] …; 
fixed-area/volume [Malestein-T ’13], [Treacy, et al.] …; 
body-bar [Borcea-Streinu-Tanigawa ’12], fixed-lattice 
body-bar…





Not allowed



Symmetry-forcing
• Symmetry-forcing excludes some “obvious” 

motions 

• Rigidity does not imply connectivity 

• Old “conjecture”: periodic rigidity implies periodic 
rigidity with respect to sub-lattices 

• (See above…, earliest examples [B-S ’10]) 

• Not exactly what’s wanted/used in applications



“Sublattice problem”
• Suppose that (G,γ) is a generically rigid colored 

graph, and 

• for any sublattice Λ < Γ the associated colored 
graph (G,γ’) is also generically rigid 

• Is it true that for a generic rigid realization (G, p, L) 
of the original colored graph all the rest of the 
relaxed frameworks are infinitesimally rigid? 

• Very likely (already?) not true.

[T ’11,Malestein-T ‘13]



Ultrarigidity
• Let (G, p, L) be a realization of (G, ℓ, Γ) 

• (G, p, L) is (periodically) ultrarigid if 

• it is rigid 

• for any (finite-index) sub-lattice Λ < Γ, (G, p, L) is 
a rigid realization of (G, ℓ, Λ) 

• Related concept: “ultra 1-d.o.f.” (in 2d)

[Borcea ’12]







Ultrarigidity
• In between “infinite frameworks” and periodic 

frameworks 

• Hope for effective, combinatorial characterizations 

• Interesting applications 

• Techniques could be applicable to “incidental 
symmetry” in finite frameworks





The Maxwell argument is a global one; it does not provide infor-
mation about the nature of the floppy modes and does not dis-
tinguish between bulk or surface modes.

Kagome Zero Modes and Elasticity
The kagome lattice of central-force springs shown in Fig. 1A is one
of many locally isostatic lattices, including the familiar square lat-
tice in two dimensions (Fig. 1B) and the cubic and pyrochlore lat-
tices in three dimensions, with exactly z ¼ 2d nearest-neighbor
(NN) bonds connected to each site not at a boundary. Under
PBCs, there are no boundaries, and every site has exactly 2d neigh-
bors. Finite,N-site sections of these lattices have surface sites with
fewer than 2d neighbors and of order

ffiffiffiffiffi
N

p
zero modes. The free

kagome lattice with Nx and Ny unit cells along its sides (Fig. 1A)
has N ¼ 3NxNy sites, NB ¼ 6NxNy − 2ðNx þNyÞ þ 1 bonds,
and N0 ¼ 2ðNx þNyÞ − 1 zero modes, all but three of which
are floppy modes. These modes, depicted in Fig. 1A, consist of
coordinated counterrotations of pairs of triangles along the sym-
metry axes e1, e2, and e3 of the lattice. There are Nx modes asso-
ciated with lines parallel to e1, Ny associated with lines parallel to
e3, and Nx þNy − 1 modes associated with lines parallel to e2.

In spite of the large number of floppy modes in the kagome
lattice, its longitudinal and shear Lamé coefficients, λ and μ,
and its bulk modulus B ¼ λþ μ are nonzero and proportional
to the NN spring constant k: λ ¼ μ ¼

ffiffiffi
3

p
k∕8 and B ¼ λþ μ ¼ffiffiffi

3
p

k∕4. The zero modes of this lattice can be used to generate

an infinite number of distorted lattices with unstretched springs
and thus zero energy (30). We consider only periodic lattices, the
simplest of which are the twisted kagome lattices obtained by ro-
tating triangles of the kagome unit cell through an angle α as
shown in Fig. 1 C and D (30, 34). These lattices have C3v rather
thanC6v symmetry and, like the undistorted kagome lattice, three
sites per unit cell. As Fig. 1D shows, the lattice constant of these
lattices is aL ¼ 2a cos α, and their areaAα decreases as cos2 α as α
increases. The maximum value that α can achieve without bond
crossings is π∕3, so that the maximum relative area change is
Aπ∕3∕A0 ¼ 1∕4. Because all springs maintain their rest length,
there is no energy cost for changing α and, as a result, B is zero
for every α ≠ 0, whereas the shear modulus μ ¼

ffiffiffi
3

p
k∕8 remains

nonzero and unchanged. Thus, the Poisson ratio σ ¼ ðB − μÞ∕
ðBþ μÞ attains its smallest possible value of −1. For any
α ≠ 0, the addition of next-nearest-neighbor (NNN) springs, with
spring constant k 0 (or of bending forces between springs) stabi-
lizes zero-frequency modes and increases B and σ. Nevertheless,
for sufficiently small k 0, σ remains negative. Fig. 2 shows the re-
gion in the k 0 − α plane with negative σ.

Kagome Phonon Spectrum
We now turn to the linearized phonon spectrum of the kagome
and twisted kagome lattices subjected to PBCs. These conditions
require displacements at opposite ends of the sample to be iden-
tical and thus prohibit distortions of the shape and size of the unit
cell and rotations but not uniform translations, leaving two rather
than three trivial zero modes. The spectrum (35) of the three low-
est frequency modes along symmetry directions of the undis-
torted kagome lattice with and without NNN springs is shown
in Fig. 3A. When k 0 ¼ 0, there is a floppy mode for each wave-
number q ≠ 0 running along the entire length of the three sym-
metry-equivalent straight lines running from M to Γ to M in the
Brillouin zone (see Fig. 3, Inset). When Nx ¼ Ny, there are ex-
actlyNx − 1 wavenumbers with q ≠ 0 along each of these lines for
a total of 3ðNx − 1Þ floppy modes. In addition, there are three
zero modes at q ¼ 0 corresponding to two rigid translations
and one floppy mode that changes unit cell area at second but
not first order in displacements, yielding a total of 3Nx zero
modes rather than the 4Nx − 1modes expected from theMaxwell
count under FBCs. This discrepancy is our first indication of the
importance of boundary conditions. The addition of NNN springs
endows the floppy modes at k 0 ¼ 0 with a characteristic fre-
quency ω% ∼

ffiffiffiffiffi
k 0

p
and causes them to hybridize with the acoustic

phonon modes (Fig. 3A) (35). The result is an isotropic phonon
spectrum up to wavenumber q% ¼ 1∕l% ∼

ffiffiffiffiffi
k 0

p
and gaps at Γ and

M of order ω%. Remarkably, at nonzero α and k 0 ¼ 0, the mode
structure is almost identical to that at α ¼ 0 and k 0 > 0 with char-
acteristic frequency ωα ∼

ffiffiffi
k

p
j sin αj and length lα ∼ 1∕ωα. In other

words, twisting the kagome lattice through an angle α has essen-
tially the same effect on the spectrum as adding NNN springs with
spring constant j sin αj2k. Thus, under PBCs, the twisted kagome

A 

C 

D 

B 

Fig. 1. (A) Section of a kagome lattice with Nx ¼ Ny ¼ 4 and Nc ¼ NxNy

three-site unit cells. Nearest-neighbor bonds, occupied by harmonic springs,
are of length a. The rotated row (second row from the top) represents a flop-
py mode. Next-nearest-neighbor bonds are shown as dotted lines in the low-
er left hexagon. The vectors e1, e2, and e3 indicate symmetry directions of the
lattice. The numbers in the triangles indicate those that twist together under
PBCs in zero modes along the three symmetry direction. Note that there are
only four of these modes. (B) Section of a square lattice depicting a floppy
mode in which all sites along a line are displaced uniformly. (C) Twisted ka-
gome lattice, with lattice constant aL ¼ 2a cos α, derived from the undis-
torted lattice by rigidly rotating triangles through an angle α. A unit cell,
bounded by dashed lines, is shown in violet. Arrows depict site displacements
for the zone-center (i.e., zero wavenumber) ϕ mode which has zero (non-
zero) frequency under free (periodic) boundary conditions. Sites 1, 2, and
3 undergo no collective rotation about their center of mass, whereas sites
1, 2%, and 3% do. (D) Superposed snapshots of the twisted lattice showing
decreasing areas with increasing α.

Fig. 2. Phase diagram in the α − k 0 plane showing region with negative
Poisson ratio σ.
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[Sun et al. PNAS ’12 ]



Questions
• Characterize generic ultrarigidity by a framework’s 

colored graph 

• Find algorithms for recognizing ultrarigid graphs 

• When ultrarigidity fails, describe the motions



Challenges
• Periodic rigidity, like all finite rigidity theories is 

characterized by the rank of one matrix (“rigidity 
matrix”) 

• Can’t just build the rigidity matrix of (G, p, L) for 
every Λ 

• The algebraic tools underlying finite/periodic 
rigidity imply rigidity is a “generic property” 

• Can’t apply them the same way here



Algebraic characterization
• A realization (G, p, L) is infinitesimally ultrarigid if and 

only if: 

• It is infinitesimally periodically rigid 

• The matrix with ijth row, ij ∈ E(G,φ) 

!

!

      has rank dn for all ω ≠ 1

(….. – dij …….. dij ⨂{γij-1,ω} ….)
i jedge direction  

vector

comp. wise 
mult

{δ,ω} := (ζ1δ1, …,ζd
δd), ζi root of unity 



Ideas
• The matrices in the second part are projections of 

group ring rigidity matrices 

• Re-parameterize the length map for (all) 
placements of (G,Γ) by

(Func(Γ,Rd))n × Hom(Γ,Rd) ⟶ (Func(Γ,Rd))n
ℓ



Connections/corollaries
• The ω where the rank is deficient are equivalent to 

the rational points of the Rigid Unit Mode Spectrum 
(RUM) [Power ’13] 

• derivation different, gets back/generalizes the 
periodic rigidity matrix 

• Infinitesimal motions certifying failures of 
ultrarigidity are either Γ-periodic or lattice-fixing 

• finite motion totally different



Algorithmic characterization
• We can check the algebraic characterization with a very 

simple algorithm based on: 

• Theorem: For any set of polynomials p1, …, pk ∈ 
C[x,x-1], there is an effectively computable constant C 
such that if V(p1, …, pk) contains torsion points ≠ 1, there 
is one of order at most C 

• C depends on the degrees of the pi and the 
coefficient field 

• Ultrarigidity is decidable



Combinatorial char.
• For d = 2 and |E (G,γ)| = 2n + 1, the colored graph 

(G,γ) is generically infinitesimally ultrarigid if and 
only if 

•   (G,γ) is generically periodically rigid 

• For all finite cycle groups Δ and epimorphisms Ψ 
: Γ → Δ, (G, Ψ(γ)) is Δ-(2,2) spanning 

• Can be checked in time polynomial in n and |γ|



Variants
• Let d = 2, |E (G,γ)| = 2n.  Then the following are 

equivalent: 

• (G,γ) is fixed-lattice ultrarigid 

• (G,γ) is fixed-area ultrarigid 

• (G,γ) is “unit-area-Laman” and for all finite cyclic 
groups Δ and epimorphisms Ψ : Γ → Δ, (G, Ψ(γ)) is 
“Δ-(2,2) spanning” 

• Have polynomial time algorithms



Questions
• What is the generic set for ultrarigidity like? 

• In particular, does it contain open sets? 

• Combinatorial characterization of ultrarigid 
frameworks in dimension 2 

• Relationship between ultrarigidity and “incidental 
rigidity” for infinite frameworks? 

• Theory of stresses for ultrarigidity?



Thanks!

[ arXiv: 1404.2319 ]


