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Molecular Biology 101 



Covalent structure of Proteins 



1915 WH Bragg and WL Bragg 
Use of X-rays to determine crystal structure 

1914 M von Laue 
Diffraction of X-rays by crystals 

1901 WC Röntgen 
Discovery of X-rays 

Our Nobel Prize-Winning  
Founders 
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Scattering by several electrons 

James Holton 



Periodicity and Symmetry 

M.C. Escher 



Convolution Theorum 
FT (ρmolecule ⊗ Linf ) = FT (ρmolecule )×FT (Linf )



Kinematic Level Theory 

General diffraction expression 

By application of periodicity and with isotropic displacements of the atoms 



A nasty inverse problem 

Requires experimental or other estimation of the real versus 
complex parts of thousands of measured structure factor 
amplitudes.  



Electron density equation 

x is a vector with x,y,z fractional components in real space 
h is a vector with h,k,l components in reciprocal  space 
F(h) is the complex structure factor 
V is the unit cell volume 



Electron density map 



Representations of protein 
molecules 



Adenylate kinase motions 

Schulz et al. and Berry and Phillips Proteins 1998  
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Crystal’s effect on Structure? 

Troponin C!
!

Soman, Tao, Phillips Proteins 1999 



The protein is variable in structure 

•  Crystallography (usually) confuses the 
space and time averages. 

•  Dynamic behavior remains--There IS 
temperature dependence, both kT-ish and 
landscapes more shallow  

•  The crystal lattice constrains the 
‘dynamics’ to varying degrees 



Experimental B-factors of myoglobin 
in five crystal forms 

P6  AmSulfate pH 9 !

P21  AmSulphate pH 7!

P212121!
 2.5 M AS pH 8!

P6122 citrate!

P212121 - PEG !
Imd pH 7!

Phillips Biophys J. 1990 
Kondrashov, Zhang, Aranda, Stec, Phillips Proteins 2007  



NMR and Crystallography: 
comparison of backbone 

dynamics 

Main chain variations from NMR ensemble and various crystal!
forms of myoglobin.!
!
 Kondrashov, Zhang, Aranda, Stec, and Phillips Proteins 2008!



Ensemble Refinement 

•  Refine several copies 
of the entire protein 
simultaneously.  

•  Each copy has a 
fractional occupancy 
and does not interact 
with the other copies. 

Levin, Kondrashov, Wesenberg, Phillips, Structure, 2007 
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Entire Dimeric Protein 



Protein Cartoon with Larger Scale Variations 
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Schotte, Lim, Jackson, Smirnov, Soman, Olson, Phillips, Wulff, Anfinrud, Science 2003 



Guide to the �actors� 



Myoglobin:  The movie 



Molecular Dynamics 
Simulations 

F =  m a = - grad V, where V is the potential 

All atoms are moving 
 
Forces between atoms are 
complicated functions of time 

ANALYTICAL solution of x(t) and v(t) is impossible!   
This is an N-body problem. 
 
NUMERICAL solution is possible but expensive. 
(use short time steps and assume independence) 



Force field 

http://cmm.info.nih.gov/modeling/guide_documents/
molecular_mechanics_document.html 



Bonds 



Dihedrals 



Non-bonded interactions 



Time component 

Leap frog algorithm 



HIV protease in motion 



Gaussian Network Model 
•  Model assumes harmonic �springs� between segments 

(represented by Cα locations)  within a certain cutoff distance (~7 
Å), forming an elastic network 

 

•  Each Cα atom forms a node in the network and represent a single 
residue.  Edges correspond to the springs. 

•  (After M.M. Tirion and I. Bahar et al, who popularized the method) 



Formulation of GNM 

•  Build a matrix (Kirchhoff, from graph theory, or Laplacian matrix)  
•  Mobility of Cα atom depends on the inverse of the matrix, which 

is related to the number of neighboring Cα atoms i.e, their 
connectivity and contact map 

•  Being an �elastic network� of springs, the model provides 
dynamic information from static crystal structures 

 
 



Relating GNM to atomic displacements 
 
•  Eigen analysis or SVD to get psuedo-inverse 

•  Mean square fluctuation (variance and co-variance) 

•  Calculation of crystallographers� B-factors   
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Visual description of different 
model systems 

Libration 

Contact 
atoms 

Neighbor 
molecules 

Isolated 
molecule 



Normal mode analysis with elastic 
network models 

Adenylate Kinase 

 
•  One of adenylate 

kinase’s major 
motions can be seen 
in its lowest mode 
–  Orange = α-carbon 

backbone 
–  Blue = Movement vector  



Other Coarse-grained  
Gō-like models 

•  Can simulate large-scale structural transitions 
without constraints 

•  One bead (Cα) per residue 
•  Harmonic bond potential 
•  Dihedrals 

–  statistical based on sequence of residues i-1,i , no 
structural info 

•  Bond angles (some implicit φ,ψ) 
–  generic:  allow both α-helix and β-sheet  

•  Contacts 
–  native: Lennard-Jones 12-10 potential (increase 

curvature) 
–  non-native:  LJ repulsion only 

refs:  Karanicolas & Brooks (2002), Best et al. (2005) 
Daily, Phillips, Cui, J.  Mol. Biol. (2010) 



AKmeso O and C native 
contacts 

O"
C"

Common%contacts%
Unique%to%O%%
Unique%to%C%%

LID%
NMP%

Substrate%
Ligand;mediated%

contacts%



AKmeso and AKthermo simulations 
in rmsd space 

AKmeso%

Very%similar%PMFs,%thermo%slightly%more%stable%in%rmsC%

AKthermo%



Summary 
•  Crystals allow average structures of large 

molecules to be determined 
•  The crystal symmetry is only an approximation, 

however 
•  Motions of proteins are critical parts of their 

fitness for their functions 
•  While we can start to make ‘movies’ of proteins, 

to understand the motions, they are primitive 
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