

Dynamics of proteins in crystals or "Please hold still so we can take your picture!"

George N. Phillips Jr.

Department of Biochemistry and Cell Biology Rice University

Molecular Biology 101

Covalent structure of Proteins

Our Nobel Prize-Winning Founders

1915 WH Bragg and WL Bragg Use of X-rays to determine crystal structure **1914** M von Laue Diffraction of X-rays by crystals **1901** WC Röntgen Discovery of X-rays

Intro to Crystallography

Scattering by several electrons

James Holton

Periodicity and Symmetry

M.C. Escher

Convolution Theorum

 $FT(\rho_{molecule} \otimes L_{inf}) = FT(\rho_{molecule}) \times FT(L_{inf})$

Kinematic Level Theory

General diffraction expression

$$I(\mathbf{Q}) = \sum_{lk} \sum_{l'k'} f_{kQ} e^{-(\mathbf{Q}^T \langle \mathbf{u}_{lk} \mathbf{u}_{lk}^T \rangle \mathbf{Q})/2} f_{kQ}^* e^{-(\mathbf{Q}^T \langle \mathbf{u}_{l'k'} \mathbf{u}_{l'k'}^T \rangle \mathbf{Q})/2} e^{i\mathbf{Q} \cdot (\mathbf{r}_{lk} - \mathbf{r}_{l'k'})} e^{\mathbf{Q}^T \langle \mathbf{u}_{lk} \mathbf{u}_{l'k'}^T \rangle \mathbf{Q}}$$

By application of periodicity and with isotropic displacements of the atoms

$$I(\mathbf{H}) = \sum_{k} \sum_{k'} f_{kH} e^{-(2\pi H)^{2} < u_{k}^{2} > /2} f_{k'H}^{*} e^{-(2\pi H)^{2} < u_{k'}^{2} > /2} e^{i2\pi \mathbf{H} \cdot (\mathbf{r}_{k} - \mathbf{r}_{k'})} e^{(2\pi H)^{2} < u_{k} u_{k'} > /2} e^{i2\pi \mathbf{H} \cdot (\mathbf{r}_{k} - \mathbf{r}_{k'})} e^{i(2\pi H)^{2} < u_{k} u_{k'} > /2} e^{i(2\pi H)^{2} < u_{k'} u_{k'} < u_{k'} u_{k'} > /2} e^{i(2\pi H)^{2} < u_{k'} u_{k'} < u_{k'} u_{k'} > /2} e^{i(2\pi H)^{2} < u_{k'} u_{k'} u_{k'} u_{k'} < u_{k'} u_{k'} < u_{k'} u$$

A nasty inverse problem

Requires experimental or other estimation of the real versus complex parts of thousands of measured structure factor amplitudes.

Electron density equation

$$\rho(\mathbf{x}) = \frac{1}{V} \sum_{\mathbf{h}} \mathbf{F}(\mathbf{h}) \exp(-2\pi i \mathbf{h} \cdot \mathbf{x})$$

x is a vector with x,y,z fractional components in real space
h is a vector with h,k,l components in reciprocal space
F(h) is the complex structure factor
V is the unit cell volume

Electron density map

Representations of protein molecules

Adenylate kinase motions

Schulz et al. and Berry and Phillips Proteins 1998

Ensembles at Multiple Levels

Folding Coordinate

Energy

Crystal's effect on Structure?

Troponin C

Soman, Tao, Phillips Proteins 1999

The protein is variable in structure

- Crystallography (usually) confuses the space and time averages.
- Dynamic behavior remains--There IS temperature dependence, both kT-ish and landscapes more shallow
- The crystal lattice constrains the 'dynamics' to varying degrees

Experimental B-factors of myoglobin in five crystal forms

Phillips Biophys J. 1990 Kondrashov, Zhang, Aranda, Stec, Phillips *Proteins* 2007

NMR and Crystallography: comparison of backbone dynamics

Main chain variations from NMR ensemble and various crystal forms of myoglobin.

Kondrashov, Zhang, Aranda, Stec, and Phillips Proteins 2008

Ensemble Refinement

- Refine several copies of the entire protein simultaneously.
- Each copy has a fractional occupancy and does not interact with the other copies.

Levin, Kondrashov, Wesenberg, Phillips, Structure, 2007

Entire Dimeric Protein

Protein Cartoon with Larger Scale Variations

Schotte, Lim, Jackson, Smirnov, Soman, Olson, Phillips, Wulff, Anfinrud, Science 2003

Guide to the "actors"

Myoglobin: The movie

Molecular Dynamics Simulations

F = m a = - grad V, where V is the potential

All atoms are moving

Forces between atoms are complicated functions of time

ANALYTICAL solution of x(t) and v(t) is impossible! This is an N-body problem.

NUMERICAL solution is possible but expensive. (use short time steps and assume independence)

Force field

http://cmm.info.nih.gov/modeling/guide_documents/ molecular_mechanics_document.html

Bonds

Dihedrals

Non-bonded interactions

Time component

Leap frog algorithm

Gaussian Network Model

 Model assumes harmonic "springs" between segments (represented by Cα locations) within a certain cutoff distance (~7 Å), forming an elastic network

- Each $C\alpha$ atom forms a node in the network and represent a single residue. Edges correspond to the springs.
- (After M.M. Tirion and I. Bahar et al, who popularized the method)

Formulation of GNM

- Build a matrix (Kirchhoff, from graph theory, or Laplacian matrix)
- Mobility of Cα atom depends on the inverse of the matrix, which is related to the number of neighboring Cα atoms i.e, their connectivity and contact map
- Being an "elastic network" of springs, the model provides dynamic information from static crystal structures

Relating GNM to atomic displacements

• Eigen analysis or SVD to get psuedo-inverse

$$\Gamma^{-1} = \sum_{k=1}^{n-1} \lambda^{-1} q_k q_k^T \qquad \Gamma^{-1} = V^T M_D^{-1} S$$

• Mean square fluctuation (variance and co-variance)

$$< u_i u_j >= (3k_B T / \gamma) [\Gamma^{-1}]_{ij}$$

• Calculation of crystallographers' B-factors

$$B_i = 8\pi^2 \langle u_i^2 \rangle$$

Visual description of different model systems

Libration

Isolated molecule

Neighbor molecules

Contact atoms

Normal mode analysis with elastic network models

- One of adenylate kinase's major motions can be seen in its lowest mode
 - Orange = α-carbon
 backbone
 - Blue = Movement vector

Adenylate Kinase

Other Coarse-grained Gō-like models

- Can simulate large-scale structural transitions without constraints
- One bead (C_{α}) per residue
- Harmonic bond potential
- Dihedrals
 - statistical based on sequence of residues *i*-1,*i*, no structural info
- Bond angles (some implicit φ,ψ)
 generic: allow both α-helix and β-sheet
- Contacts
 - native: Lennard-Jones 12-10 potential (increase curvature)
 - non-native: LJ repulsion only

refs: Karanicolas & Brooks (2002), Best et al. (2005) Daily, Phillips, Cui, J. Mol. Biol. (2010)

AKmeso O and C native contacts

LID NMP Common contacts Unique to O Unique to C Substrate Ligand-mediated contacts

С

AKmeso and AKthermo simulations in rmsd space

AKmeso

AKthermo

Very similar PMFs, thermo slightly more stable in rms_c

Summary

- Crystals allow average structures of large molecules to be determined
- The crystal symmetry is only an approximation, however
- Motions of proteins are critical parts of their fitness for their functions
- While we can start to make 'movies' of proteins, to understand the motions, they are primitive

Acknowledgements

Contributors

- Elena Levin
- Dmitri Kondrashov
- Jason McCoy
- Ryan Bannen
- Roman Aranda
- Andre Francis
- Friedrich Schotte
- Philip Anfinrud
- Anand Kolatkar
- Mitch Miller

- Gary Wesenberg
- Craig Bingman
- Ed Bitto
- Michael Wall
- Wei Zhang
- Bog Stec
- Sibsankar Kundu
- Euiyoung Bae
- Demian Riccardi
- Ragothaman Yennamalli

NSF

- All other members