
1

C++0x:
An overview

(Sophia Antipolis)Bjarne Stroustrup
Texas A&M University

http://www.research.att.com

2

Overview
• C++0x

– C++
– Standardization
– Rules of thumb (with examples)

• Language features
– Concepts
– Initializer lists

• Q&A

3

Why is the evolution of C++ of interest?
• http://www.research.att.com/~bs/applications.html

C++ is used just
about everywhere
Mars rovers, animation,
graphics, Photoshop,
GUI, OS, SDE,
compilers, chip design,
chip manufacturing,
semiconductor tools,
finance,
telecommunication, ...

20-years old and
apparently still growing

4

ISO Standard C++

• C++ is a general-purpose programming language with a
bias towards systems programming that
– is a better C
– supports data abstraction
– supports object-oriented programming
– supports generic programming

• A multi-paradigm programming language
(if you must use long words)

– The most effective styles use a combination of techniques

5

Overall Goals

• Make C++ a better language for systems programming
and library building
– Rather than providing specialized facilities for a particular sub-community (e.g.

numeric computation or Windows-style application development)

• Make C++ easier to teach and learn
– Through increased uniformity, stronger guarantees, and facilities supportive of

novices (there will always be more novices than experts)

6

C++ ISO Standardization
• Current status

– ISO standard 1998, TC 2003
– Library TR 2005, Performance TR 2005
– C++0x in the works – ‘x’ is scheduled to be ‘9’ (but …)
– Documents on committee website (search for “WG21” on the web)

• Membership
– About 22 nations (5 to 10 represented at each meeting)

• ISO/ANSI technical meetings plus further technical meetings
– About 160 active members (~60 at each meeting)

• Process
– formal, slow, bureaucratic, and democratic

• No professional or commercial qualifications required
• Each organization has (at most) one vote

– “the worst way, except for all the rest” (apologies to W. Churchill)
– Most work done in “Working Groups”

7

Rules of thumb / Ideals
• Maintain stability and compatibility

– “Don’t break my code!”
– There are billions of lines of code “out there”
– There are millions of C++ programmers “out there”
– “Absolutely no incompatibilities” leads to ugliness

• So we introduce new keywords: concept, auto (recycled), decltype,
constexpr, thread_local, nullptr, axiom

• Example of incompatibility:
static_assert(4<=sizeof(int),"error: small ints");

– “Absolutely no incompatibilities” leads to absurdities
_Bool // C99 boolean type
typedef _Bool bool; // C99 standard library typedef

8

Rules of thumb / Ideals

• Support both experts and novices
– Example: minor syntax cleanup

vector<list<int>> vl; // note the “missing space”

– Example: simplified iteration
for (auto p = v.begin(); p!=v.end(); ++p) cout << *p << '\n';
for (auto x : v) cout << x <<'\n';

– Note: Experts don’t easily appreciate the needs of novices
• Example of what we couldn’t get just now

string s = "12.3";
double x = lexical_cast<double>(s); // extract value from string

9

Rules of thumb / Ideals

• Prefer libraries to language extensions
– Example: New library components

• Threads ABI
– Not thread type

• unordered_map

– Example: Mixed language/library extension
• The new for works for every type defining a [b:e) range

int a[100];
for (int x : a) cout << x <<'\n';
for (auto& x : {x,y,z,ae,ao,aa}) cout << x <<'\n';

– Note: Enthusiasts prefer language features (see library as 2nd best)

10

Rules of thumb / Ideals
• Prefer generality to specialization

– Prefer improvements to classes and templates over separate new
features

– Example: inherited constructor
template<class T> class Vector : std::vector<T> {

using vector::vector<T>;
// …

};
– Example: Rvalue references

template<class T> class vector {
// …
void push_back(const T&& x); // move x into vector

// avoid copy if possible
};

– Note: people love to argue about small isolated features

11

Rules of thumb / Ideals
• Increase type safety

– Approximate the unachievable ideal
– Example: smart pointers for lifetime management of shared

resources that doesn’t have scoped lifetimes
– Example: Strongly-typed enums

enum class Color { red, blue, green };
int x = Color::red; // error: no Color->int conversion
Color y = 7; // error: no int->Color conversion

– Example: control of defaults
struct Handle {

X* p;
Y* q;
Handle(const Handle&) = delete; // don’t allow copying
Handle& operator=(const handle&) = delete;

};

12

Rules of thumb / Ideals

• Improve performance and the ability to work directly
with hardware
– Embedded systems programming is increasingly important
– Example: Generalized constant expressions

struct Point {
int x, y;
constexpr Point(int xx, int yy) : x(xx), y(yy) { }

};

constexpr int abs(int i) { return (0<=i) ? i : -i; }
constexpr Point p1(1,2); // ok
constexpr Point p2(1,abs(x)); // error unless x is a constant expression

13

Rules of thumb / Ideals
• Make only changes that change the way people think

– Most people prefer to fiddle with details
– Most people just loves a small easily understandable new

language feature
– Example: A null pointer keyword

void f(int);
void f(char*);
f(0); // call f(int);
f(nullptr); // call f(char*);

– Example: Scoped enumerators:
enum class Color { red, blur, green };
int red = 7; // ok: doesn’t clash with Color::red
Color x = Color::red; // ok

14

Rules of thumb / Ideals
• Fit into the real world

– Example: Existing compilers and tools must evolve
• Simple complete replacement is impossible
• Tool chains are huge and expensive
• There are more tools than you can imagine
• C++ exists on many platforms

– So the tool chain problems occur N times
» (for each of M tools)

– Example: Education
• Teachers, courses, and textbooks
• “We” haven’t completely caught up with C++98!

15

Rules of thumb / Ideals
• Maintain stability and compatibility
• Prefer libraries to language extensions
• Prefer generality to specialization
• Support both experts and novices
• Increase type safety
• Improve performance and ability to work directly with hardware
• Make only changes that change the way people think
• Fit into the real world

• Note: integrating features to work in combination is the key
– And the most work
– The whole is much more than the simple sum of its part

16

Summary (as of last week)

• A torrent of language proposals
– 38 proposals approved
– 11 “approved in principle”
– 0 proposal “active in evolution group” (Hurrah!)
– 43 proposals rejected plus many “mere suggestions”

• Too few library proposals
– 11 Components from LibraryTR1

• Regular expressions, hashed containers, smart pointers, fixed sized array,
tuples, …

– Use of C++0x language features
• Move semantics, variadic templates, general constant expressions, sequence

constructors
– 2 New component (Threads and asynchronous message buffer)

• I’m still an optimist
– C++0x will be a better tool than C++98 – much better

17

Areas of language change
• Machine model and concurrency (attend Lawrence Crowl’s talk!)

– Model
– Threads library
– Atomic ABI
– Thread-local storage
– Asynchronous message buffer (“future”)

• Support for generic programming
– concepts
– uniform initialization
– auto, decltype, template aliases, move semantics, variadic templates, …

• Etc.
– static_assert
– improved enums
– long long, C99 character types, etc.
– …

18

Will this happen?
• Probably

– Spring 2005: adopted schedule aimed at ratified standard in 2009
• implies “feature freeze” mid-2007

– Fall 2006: voted out an official registration document
• The set of features is now fixed

– With a few lingering debates
– Ambitious, but

• We (WG21) will work harder
• We (WG21) have done it before

• Latest!
– Fall 2007: The ‘09 schedule has become “very tight”

• Thread problems
• Garbage collection controversy

• Very latest!!
– This week: We plan to be feature complete this Saturday

• That’s causing some anxiety

19

Near future post-C++0x plans

• Library TR2
– Thread pools, File system manipulation, Date and time,

Networking (sockets, TCP, UDP, iostreams across the net,
etc.), Numeric_cast, …

• Language TRs
– Modules (incl. dynamic linking)
– Garbage collection (programmer controlled)

20

Two examples of C++0x features
• Concepts

– A type system for types, combinations of types, etc. for
easier and safer use of templates

– computer science
• Initialization

– A mechanism for more general and uniform initialization
– “computer mechanics”

Note:
most of the work on language extension is engineering in that

it focuses on tradeoffs, usability and (compile-, link-, and
run-time) performance

21

Generic programming:
The language is straining

• Fundamental cause
– The compiler doesn’t know what template argument types are supposed

to do and not do
• We don’t tell it
• Much interface specification is in the documentation/comments

• Use requires too many clever tricks and workarounds
– Works beautifully for correct code

• Uncompromising performance is usually achieved
– After much effort

– Users are often totally baffled by simple errors
• Poor error messages

– Amazingly so!
• Late checking

– At template instantiation time

• The notation can be very verbose
– Pages of definitions for things that’s logically simple

22

Example of a problem
// standard library algorithm fill():
// assign value to every element of a sequence
template<class For, class V>
void fill(For first, For last, const V& v)
{

while (first!=last) {
*first = v;
first=first+1;

}
}

fill(a,a+N,7); // works for an array
fill(v.being(), v.end(),8); // works for a vector

fill(0,10,8); // fails spectacularly for a pair of ints
fill(lst.begin(),lst.end(),9); // fails spectacularly for a list!

23

What’s right in C++98?

• Parameterization doesn’t require hierarchy
– Less foresight required

• Handles separately developed code
– Handles built-in types beautifully

• Parameterization with non-types
– Notably integers

• Uncompromised efficiency
– Near-perfect inlining

• Compile-time evaluation
– Template instantiation is Turing complete

We try to strengthen and enhance what works well

24

C++0x: Concepts
• “a type system for C++ types”

– and for relationships among types
– and for integers, operations, etc.

• Based on
– Search for solutions from 1985 onwards

• Stroustrup (see D&E)
– Lobbying and ideas for language support by Alex Stepanov
– Analysis of design alternatives

• 2003 papers (Stroustrup, Dos Reis)
– Designs by Dos Reis, Gregor, Siek, Stroustrup, …

• Many WG21 documents
– Academic papers:

• POPL 2006 paper, OOPSLA 2006 papers
– Experimental implementations (Gregor, Dos Reis)
– Experimental versions of libraries (Gregor, Siek, …)

25

Concept aims
• Direct expression of intent

– Separate checking of template definitions and template uses
• Implying radically better error messages
• We can almost achieve perfection

– Increase expressiveness overloading
– Simple tasks are expressed simply

• close to a logical minimum
– Simplify all major current template programming techniques

• No performance degradation compared to current code
– Non-trivial
– Important

• Relatively easy implementation within current compilers
– For some definition of “relatively easy”

• Current template code remains valid

26

Checking of uses
• The checking of use happens immediately at the call

site and uses only the declaration

template<Forward_iterator For, class V>
requires Assignable<For::value_type,V>

void fill(For first, For last, const V& v); // <<< just a declaration, not definition

int i = 0;
int j = 9;
fill(i, j, 99); // error: int is not a Forward_iterator (int has no prefix *)

int* p= &v[0];
int* q = &v[9];
fill(p, q, 99); // ok: int* is a Forward_iterator

27

Checking of definitions
• Checking at the point of definition happens

immediately at the definition site and involves only
the definition

template<Forward_iterator For, class V>
requires Assignable<For::value_type,V>

void fill(For first, For last, const V& v)
{

while (first!=last) {
*first = v;
first=first+1; // error: + not defined for Forward_iterator

// (instead: use ++first)
}

}

28

Concept maps
// Q: Is int* a forward iterator?
// A: of course!

// Q: But we just said that every forward iterator had a member type value_type?
// A: So, we must give it one:

template<Value_type T>
concept_map Forward_iterator<T*> { // T*’s value_type is T

typedef T value_type;
};

// “when we consider T* a Forward_Iterator, the value_type of T* is T
// value type is an associated type of Forward_iterator

• “Concept maps” is a general mechanism for non-intrusive
mapping of types to requirements

29

Expressiveness
• Simplify notation through overloading:

void f(vector<int>& vi, list<int>& lst, Fct f)
{

sort(vi); // sort container (vector)
sort(vi, f); // sort container (vector) using f
sort(lst); // sort container (list)
sort(lst, f); //sort container (list) using f
sort(vi.begin(), vi.end()); // sort sequence
sort(vi.begin(), vi.end(), f); // sort sequence using f

}

• Currently, this requires a mess of helper functions and traits
– For this example, some of the traits must be explicit (user visible)

30

Concepts as predicates
• A concept can be seen as a predicate:

– Forward_iterator<T>: Is type T a Forward_iterator?
– Assignable<T::value_type,V>: can we assign a V to T’s value_type?

• So we can do overload resolution based on simple sets of
concepts:

Intersection: ambiguous
Disjoint: independent (ok)

subset: specialization (ok, pick the most specialized)

31

Expressiveness
// iterator-based standard sort (with concepts):

template<Random_access_iterator Iter>
requires Comparable<Iter::value_type>

void sort(Iter first, Iter last); // the usual implementation

template<Random_access_iterator Iter, Compare Comp>
requires Callable<Comp, Iter::value_type>

void sort(Iter first, Iter last, Comp comp); // the usual implementation

32

Expressiveness
// container-based sort:

template<Container Cont>
requires Comparable<Cont::value_type>

void sort(Cont& c)
{

sort(c.begin(),c.end());
}

template<Container Cont, Compare Comp>
requires Callable<Comp, Cont::value_type>

void sort(Cont& c, Comp comp)
{

sort(c.begin(),c.end(),comp);
}

33

Defining concepts

concept Forward_iterator<typename Iter> // Iter is a Forward_iterator
: Input_iterator<Iter> // a Forward_iterator is an Input_iterator

&& Output_iterator<Iter> // a Forward_iterator is an Output_iterator
requires Default_constructible<Iter>

&& Assignable<Iter>
{

// Input_iterator defines the associated type value_type

// associated functions:
Iter& operator=(const Iter&); // assignment yields lvalue;
Iter& operator++(Iter&); // pre-increment yields lvalue
const Iter& operator++(Iter&, int); // post-increment yields rvalue
Iter::value_type operator*(Iter); // the result of * can be

//assigned to Iter’s value_type
};

// Note: each operator can be member or non-member or built-in
// and take its argument by reference or by value

34

Initialization
• Used by everyone “everywhere”

– Highly visible
– Often performance critical

• Complicated
– By years of history

• C features from 1974 onwards
• “functional style” vs. “assignment style”

– By diverse constraints
– By desire for flexibility/expressiveness

• Homogeneous vs. heterogeneous
• Fixed length vs. variable length
• Variables/objects, functions, types, aliases

– The initializer-list proposal addresses variables/objects

35

Problem #1: irregularity
• We can’t use initializer lists except in a few cases

string a[] = { "foo", " bar" }; // ok
void f(string a[]);
f({ "foo", " bar" }); // error

• There are four notations and none can be used everywhere
int a = 2; // “assignment style”
complex z(1,2); // “functional style”
x = Ptr(y); // “functional style” for conversion/cast/construction

• Sometimes, the syntax is inconsistent/confusing
int a(1); // variable definition
int b(); // function declaration
int b(foo); // variable definition or function declaration

36

Problem #2: list workarounds
• Initialize a vector (using push_back)

– Clumsy and indirect

template<class T> class vector {
// …
void push_back(const T&) { /* … */ }
// …

};

vector<double> v;
v.push_back(1.2);
v.push_back(2.3);
v.push_back(3.4);

37

Problem #2: list workarounds
• Initialize vector (using general iterator constructor)

– Awkward, error-prone, and indirect
– Spurious use of (unsafe) array
template<class T> class vector {

// …
template <class Iter>

vector(Iter first, Iter last) { /* … */ }
// …

};

int a[] = { 1.2, 2.3, 3.4 };
vector<double> v(a, a+sizeof(a)/sizeof(int));

• Important principle (currently violated):
– Support user-defined and built-in types equally well

38

C++0x: initializer lists

• An initializer-list constructor
– defines the meaning of an initializer list for a type

template<class T> class vector {
// …
vector(std::initializer_list<T>); // sequence constructor
// …

};

vector<double> v = { 1, 2, 3.4 };

vector<string> geek_heros = {
"Dahl", "Kernighan", "McIlroy", "Nygaard ", "Ritchie", "Stepanov"

};

39

C++0x: initializer lists
• Not just for templates and constructors

– but std::initializer list is simple – does just one thing well

void f(int, std::initializer_list<int>, int);

f(1, {2,3,4}, 5);
f(42, {1,a,3,b,c,d,x+y,0,g(x+a),0,0,3}, 1066);

40

Uniform initialization syntax
• Every form of initialization can accept the { … } syntax

X x1 = X{1,2};
X x2 = {1,2}; // the = is optional and not significant
X x3{1,2};
X* p2 = new X{1,2};

struct D : X {
D(int x, int y) :X{x,y} { /* … */ };

};

struct S {
int a[3];
S(int x, int y, int z) :a{x,y,z} { /* … */ }; // solution to old problem

};

41

Uniform initialization semantics

• X { a } constructs the same value in every context
– for all definitions of X and of a’s type

X x1 = X{a};
X x3{a};
X* p2 = new X{a};
z = X{a}; // use as cast

• X { … } is always an initialization
– X var{} // no operand; default initialization

• Not a function definition like X var();
– X var{a} // one operand

• Never a function definition like X var(a); (if a is a type name)

42

C++0x examples
// template aliasing (“Currying”):
template<class T> using Vec= std::vector<T,My_alloc<T>>;

// General initializer lists (integrated with containers):
Vec<double> v = { 2.3, 1, 6.7, 4.5 };

// early checking and overloading based on concepts:
sort(v); // sort the vector based on <
sort({"C", "C++", "Simula", "BCPL"}); // error: the initializer list is immutable

// type deduction based on initializer and new for loop:
for (auto p = v.begin(); p!=v.end(); ++p) cout<< *p << endl;
for (const auto& x : v) cout<< x << endl;
for (const auto& x : { 1, 2.3 , 4.5, 6.7 }) cout<< x << endl;

43

References
• WG21 site:

– All proposals
– All reports

• My site:
– Gregor, et al: Linguistic support for generic programming. OOPSLA06.
– Gabriel Dos Reis and Bjarne Stroustrup: Specifying C++ Concepts. POPL06.
– Bjarne Stroustrup: A brief look at C++0x. "Modern C++ design and programming"

conference. November 2005.
– B. Stroustrup: The design of C++0x. C/C++ Users Journal. May 2005.
– B. Stroustrup: C++ in 2005. Extended foreword to Japanese translation of "The

Design and Evolution of C++". January 2005.

– The standard committee's technical report on library extensions that will become
part of C++0x (after some revision).

– An evolution working group issue list; that is, the list of suggested additions to the
C++ core language - note that only a fraction of these will be accepted into C++0x.

– A standard library wish list maintained by Matt Austern.
– A call for proposals for further standard libraries.

44

Core language features
(“approved in principle”)

• Memory model (incl. thread-local storage)
• Concepts (a type system for types and values)
• General and unified initialization syntax based on { … } lists
• decltype and auto
• More general constant expressions
• Forwarding and delegating constructors
• “strong” enums (class enum)
• Some (not all) C99 stuff: long long, etc.
• nullptr - Null pointer constant
• Variable-length template parameter lists
• static_assert
• Rvalue references
• New for statement
• Basic unicode support
• Explicit conversion operators
• …

45

Core language features

• Raw string literals
• Defaulting and inhibiting common operations
• User-defined literals
• Allow local classes as template parameters
• Lambda expressions
• Annotation syntax

46

Library TR

• Hash Tables
• Regular Expressions
• General Purpose Smart Pointers
• Extensible Random Number Facility
• Mathematical Special Functions

• Polymorphic Function Object Wrapper
• Tuple Types
• Type Traits
• Enhanced Member Pointer Adaptor
• Reference Wrapper
• Uniform Method for Computing Function Object Return Types
• Enhanced Binder

47

Library
• C++0x

– TR1 (minus mathematical special functions – separate IS)
– Threads
– Atomic operations
– Asynchronous message buffer (“futures”)

• TR2
– Thread pools
– File system
– Networking
– Futures
– Date and time
– Extended unicode support
– …

48

Performance TR

• The aim of this report is:
– to give the reader a model of time and space overheads implied by

use of various C++ language and library features,
– to debunk widespread myths about performance problems,
– to present techniques for use of C++ in applications where

performance matters, and
– to present techniques for implementing C++ language and standard

library facilities to yield efficient code.
• Contents

– Language features: overheads and strategies
– Creating efficient libraries
– Using C++ in embedded systems
– Hardware addressing interface

	C++0x:�An overview�� (Sophia Antipolis)
	Overview
	Why is the evolution of C++ of interest?
	ISO Standard C++
	Overall Goals
	C++ ISO Standardization
	Rules of thumb / Ideals
	Rules of thumb / Ideals
	Rules of thumb / Ideals
	Rules of thumb / Ideals
	Rules of thumb / Ideals
	Rules of thumb / Ideals
	Rules of thumb / Ideals
	Rules of thumb / Ideals
	Rules of thumb / Ideals
	Summary (as of last week)
	Areas of language change
	Will this happen?
	Near future post-C++0x plans
	Two examples of C++0x features
	Generic programming:�The language is straining
	Example of a problem
	What’s right in C++98?
	C++0x: Concepts
	Concept aims
	Checking of uses
	Checking of definitions
	Concept maps
	Expressiveness
	Concepts as predicates
	Expressiveness
	Expressiveness
	Defining concepts
	Initialization
	Problem #1: irregularity
	Problem #2: list workarounds
	Problem #2: list workarounds
	C++0x: initializer lists
	C++0x: initializer lists
	Uniform initialization syntax
	Uniform initialization semantics
	C++0x examples
	References
	Core language features�(“approved in principle”)
	Core language features
	Library TR
	Library
	Performance TR

