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introduction



  

goals for the standard

 extend the language into concurrency
 enable expressive libraries for 

concurrency
 interact with the computational 

environment



  

standardize on the environment

 C++ threads = OS threads
 heavyweight, pre-emptive, independent

 shared memory
 loosely based on POSIX and Windows
 not a replacement for other standards

 MPI, OpenMP, automatic parallelization, etc.



  

core versus library

 core language changes
 how do two threads share memory?
 what operations are atomic?
 how does this affect variables?

 standard library changes
 how do programs create and schedule 

threads?
 how do threads synchronize and terminate?
 is that all there is?



  

memory



  

instant shared memory

 traditional notion of shared memory
 all writes are instantly available to all threads 

 but there are problems
 it implies faster-than-light communication
 it does not match current hardware
 it inhibits most serial optimizations

 therefore it is not viable



  

message shared memory

 writes are explicitly communicated
 between pairs of threads
 through a lock or an atomic variable 

 the mechanism is acquire and release
 one thread releases its memory writes

 v = 32; a.store( 3, release );

 another thread acquires those writes 
 i = a.load( acquire ); i + v;



  

memory fences

 most shared memory processors have 
them

 they imply global action
 may inhibit more loosely coupled machines
 may inhibit distributed shared memory

 a limited form already in the standard
 a more general form possible 



  

dependency ordering

 load-dependent synchronization
 good for data structures rarely written
 in development



  

sequencing

 sequenced-before relation
 provides intra-thread ordering

 acquire and release operations
 provide inter-thread ordering

 together define the happens-before 
relation
 between memory operations in one thread or 

in different threads



  

data race condition

 a non-atomic write to a memory location 
in one thread

 a non-atomic read from or write to that 
same location in another thread

 with no happens-before relation between 
them

 is undefined behavior 



  

memory location

 a non-bitfield primitive data object
 a sequence of adjacent bitfields

 not separated by a structure boundary
 not interrupted by the null bitfield

 avoids expensive atomic read-modify-
write operations on bitfields



  

effect on optimization

 relatively rare optimizations are restricted
 fewer speculative writes
 fewer speculative reads

 relatively common optimization have 
special help
 they may assume that loops terminate
 nearly always true



  

atomics



  

requirements on atomics

 static initialization
 reasonable implementation on current 

and near-future hardware
 semi-experts can write working code
 experts can write very efficient code 
 provide a foundation for lock-free data 

structures



  

atomic types

 volatile does not mean atomic!
 it still means 'device register'

 new standard atomic types
 functions for C compatibility
 methods and operators for ease of use



  

basic atomics

 atomic bool
  load, store, swap, compare-and-swap

 atomic integers
  load, store, swap, compare-and-swap,
  fetch-and-{ add, sub, and, ior, xor } 

 atomic void pointer
 load, store, swap, compare-and-swap,
 fetch-and-{ add, sub } 



  

atomic template

 makes an atomic type from a non-atomic 
type
 must be bitwise copyable and comparable 
 specialized for basic types and pointers
 (specialized) for alignment and size

atomic< int * > aip = { 0 };
aip = ip;  aip += 4;
atomic< gnat > ag = { ... };
while ( ! ag.compare_swap( g, g+4 ) );
atomic< circus > ac; // not recommended



  

atomic assignment

 default assignment operator is wrong
 non-atomic load and store

 even atomic load and store is wrong
 users would expect the whole assignment to 

be atomic

 new technology lets us make assignment 
illegal



  

compare and swap

 may fail spuriously!
 designed for use in a loop

expected = variable.load();
do desired = function( expected );
while ( ! variable.compare_swap(
            expected, desired ) );



  

consistency problem

 x and y are atomic and initially 0

 thread 1: x = 1;

 thread 2: y = 1;

 thread 3: if ( x == 1 && y == 0 )

 thread 4: if ( x == 0 && y == 1 )

 are both conditions exclusive? 
 that is, is there a total store order? 

 the system may not provide it
 programming is harder without it



  

consistency options

 sequential consistency
 observed values consistent with a sequential 

ordering of all events in the system

 weaker models
 difficult to understand
 potentially much higher performance

 approach
 sequentially consistent by default
 weaker semantics explicitly



  

atomics and memory

 operations specify a memory ordering
 acquire, release, acq_rel (both), relaxed 

(neither)

 seq_cst – extra sequential consistency 
semantics

 too little ordering will break programs
 too much ordering will slow them down
 be conservative

 experts argue about the ordering
 usually the performance is adequate



  

atomic freedom

 lock-free
 robust to crashes
 someone will make progress

 wait-free
 operations complete in a bounded time

 address-free
 atomicity does not depend on using the same 

address



  

lock-free atomics

 large atomics have no hardware support
 necessarily implemented with locks

 locks do not mix with signals
 must be able to test for lock free

 compile-time macros for basic types
 always lock-free and address-free
 never lock-free

 run-time function for each type



  

variables



  

adopt thread-local storage

 adopt existing practice
 6 vendors with few syntactic variations

 define new storage duration and class
 thread_local int var;

 variable is unique to each thread
 variable is accessible from every thread
 variable address is not constant



  

extend thread-local storage

 existing practice supports only static 
initialization and trivial destructors

 extend practice to support dynamic 
initializers and destructors
 thread_local vector<int> var;

 carefully define initialization to permit 
lazy allocation for dynamic libraries



  

initialization of static-duration 
variables

 dynamic initialization is tricky
 no syntax to order most initializations

 without synchronization, potential data 
races

 with synchronization, potential deadlock



  

function-local static storage

 initialization implicitly synchronized
 while not holding any locks

 made possible by a new algorithm
 developed by Mike Burrows
 contributed to the community by Google



  

non-local static storage

 initialization implicitly synchronized
 concurrent initialization enabled
 the initialization may not use a 

dynamically-initialized object defined 
outside the translation unit

extern vector<int> e;
vector<int> u; // okay, no uses
vector<int> v(u); // okay, within unit
vector<int> w(e); // error, out of unit



  

destruction

 first terminate all threads
 more later

 execute destructors in a concurrent 
reverse of initialization

 taking care to interleave namespace-
scope variables with function-scope static 
variables

 same restrictions on use of variables 
outside current translation unit



  

threads



  

fork and join

 very basic thread class
 fork a function execution
 void join operation

void f();

void bar() {
    std::thread t1(f);
    // f() executes in separate thread
    . . . . .
    t1.join();
    // wait for thread t1 to end
}



  

functors

 may also use function-like objects

struct c {
    void operator()() const;
};

void bar() {
    std::thread t2((c()));
    // c() executes in separate thread
    . . . . .
    t2.join();
    // wait for thread t2 to end
}



  

detached threads

 executing the destructor of a live thread 
“detaches” the thread

 may cause dangling references and race 
conditions

 a minority of the committee thinks 
“mistake”

 a majority of the committee thinks 
“existing practice”



  

exception example

 suppose g() throws an exception

extern int f(int), g(int);
int f(int a) {
    int b;
    std::thread t(
             [&]{ b = f(a); } );
    int c = g(a);
    t.join();
    return b+c;
}



  

scheduling

 limited thread scheduling
 yield
 sleep

 standard access to non-standard 
underlying OS thread handles
 for detailed control

 query for the hardware concurrency



  

synchronize



  

mutexes

 exclusive (single reader/writer)
 recursive or not
 timed or not
 probably more a year or two later



  

locks

 hold a mutex within a given scope
 does mutex lock() in constructor
 does mutex unlock() in destructor

std::mutex m;

{
    std::unique_lock< std::mutex >
        l( m ); // m.lock()
    . . . . .
    // m.unlock()
}



  

condition variables

 threads may wait on a condition variable
 giving up their lock on the mutex. 

 threads may notify a condition variable
 notified threads re-lock the mutex and 
 must reevaluate any condition

 benefits
 easier to use than events
 enables the monitor pattern



  

buffer example

 conditions represent extreme states
class buffer { int head, tail, store[10];
  std::mutex mx;
  std::condition_variable not_full,
                          not_empty;
public:
  void insert( int arg ) {
    std::unique_lock< std::mutex > lk(mx);
    while ( (head+1)%10 == tail )
      not_full.wait(lk);
    store[head] = arg; head = (head+1)%10;
    not_empty.notify();
  } 



  

termination



  

voluntary

 return from outermost function
 unable to standardize a mechanism for 

cancellation
 the new quick_exit facility enables 

terminating the process without 
cooperation



  

exceptions

 when the thread function exits via throw
 call std::terminate?
 propagate exception to joiner?
 ignore the exception?

 provide a means to manually propagate
 std::exception_ptr saved( 
std::current_exception() );

 std::exception_ptr copied( 
std::copy_exception( saved ) );

 std::rethrow_exception( copied );



  

input and output

 none of these points include I/O
 no mechanism to shut down a thread 

waiting on I/O
 partially due to weaknesses in operating 

system interfaces
 no resolution yet



  

and beyond



  

high-level later

 some work is being deferred to TR2
 thread pools, groups, ...
 value-based joins, futures, ...
 parallel iterators, ...

 reasons for deferral add up
 lack of pre-existing implementations
 lack of solid definitions
 lack of time to provide them



  

success?

 we can build the high-level TR2 facilities 
in a pure library

 which means you can build even higher-
level facilities as well



  

futures as an example

 a future executes a function
 making return value available later
 propagating exceptions to joiners

 technology is
 return values via N2096
 exception propagation via N2179



  

conclusions



  

the basics are on track

 memory model
 atomic operations
 non-automatic variables 
 threads and synchronization



  

some features need care

 thread termination
 exception propagation



  

the real value comes later

 the standard provide the means to 
abstract over the basics

 the users will write some really great 
high-level facilities

 most programming should be done at this 
level



  

more information

 C++ standard website
 http://www.open-std.org
 WG21 - C++
 WG papers
 2008
 N2597

 questions?


