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introduction



  

goals for the standard

 extend the language into concurrency
 enable expressive libraries for 

concurrency
 interact with the computational 

environment



  

standardize on the environment

 C++ threads = OS threads
 heavyweight, pre-emptive, independent

 shared memory
 loosely based on POSIX and Windows
 not a replacement for other standards

 MPI, OpenMP, automatic parallelization, etc.



  

core versus library

 core language changes
 how do two threads share memory?
 what operations are atomic?
 how does this affect variables?

 standard library changes
 how do programs create and schedule 

threads?
 how do threads synchronize and terminate?
 is that all there is?



  

memory



  

instant shared memory

 traditional notion of shared memory
 all writes are instantly available to all threads 

 but there are problems
 it implies faster-than-light communication
 it does not match current hardware
 it inhibits most serial optimizations

 therefore it is not viable



  

message shared memory

 writes are explicitly communicated
 between pairs of threads
 through a lock or an atomic variable 

 the mechanism is acquire and release
 one thread releases its memory writes

 v = 32; a.store( 3, release );

 another thread acquires those writes 
 i = a.load( acquire ); i + v;



  

memory fences

 most shared memory processors have 
them

 they imply global action
 may inhibit more loosely coupled machines
 may inhibit distributed shared memory

 a limited form already in the standard
 a more general form possible 



  

dependency ordering

 load-dependent synchronization
 good for data structures rarely written
 in development



  

sequencing

 sequenced-before relation
 provides intra-thread ordering

 acquire and release operations
 provide inter-thread ordering

 together define the happens-before 
relation
 between memory operations in one thread or 

in different threads



  

data race condition

 a non-atomic write to a memory location 
in one thread

 a non-atomic read from or write to that 
same location in another thread

 with no happens-before relation between 
them

 is undefined behavior 



  

memory location

 a non-bitfield primitive data object
 a sequence of adjacent bitfields

 not separated by a structure boundary
 not interrupted by the null bitfield

 avoids expensive atomic read-modify-
write operations on bitfields



  

effect on optimization

 relatively rare optimizations are restricted
 fewer speculative writes
 fewer speculative reads

 relatively common optimization have 
special help
 they may assume that loops terminate
 nearly always true



  

atomics



  

requirements on atomics

 static initialization
 reasonable implementation on current 

and near-future hardware
 semi-experts can write working code
 experts can write very efficient code 
 provide a foundation for lock-free data 

structures



  

atomic types

 volatile does not mean atomic!
 it still means 'device register'

 new standard atomic types
 functions for C compatibility
 methods and operators for ease of use



  

basic atomics

 atomic bool
  load, store, swap, compare-and-swap

 atomic integers
  load, store, swap, compare-and-swap,
  fetch-and-{ add, sub, and, ior, xor } 

 atomic void pointer
 load, store, swap, compare-and-swap,
 fetch-and-{ add, sub } 



  

atomic template

 makes an atomic type from a non-atomic 
type
 must be bitwise copyable and comparable 
 specialized for basic types and pointers
 (specialized) for alignment and size

atomic< int * > aip = { 0 };
aip = ip;  aip += 4;
atomic< gnat > ag = { ... };
while ( ! ag.compare_swap( g, g+4 ) );
atomic< circus > ac; // not recommended



  

atomic assignment

 default assignment operator is wrong
 non-atomic load and store

 even atomic load and store is wrong
 users would expect the whole assignment to 

be atomic

 new technology lets us make assignment 
illegal



  

compare and swap

 may fail spuriously!
 designed for use in a loop

expected = variable.load();
do desired = function( expected );
while ( ! variable.compare_swap(
            expected, desired ) );



  

consistency problem

 x and y are atomic and initially 0

 thread 1: x = 1;

 thread 2: y = 1;

 thread 3: if ( x == 1 && y == 0 )

 thread 4: if ( x == 0 && y == 1 )

 are both conditions exclusive? 
 that is, is there a total store order? 

 the system may not provide it
 programming is harder without it



  

consistency options

 sequential consistency
 observed values consistent with a sequential 

ordering of all events in the system

 weaker models
 difficult to understand
 potentially much higher performance

 approach
 sequentially consistent by default
 weaker semantics explicitly



  

atomics and memory

 operations specify a memory ordering
 acquire, release, acq_rel (both), relaxed 

(neither)

 seq_cst – extra sequential consistency 
semantics

 too little ordering will break programs
 too much ordering will slow them down
 be conservative

 experts argue about the ordering
 usually the performance is adequate



  

atomic freedom

 lock-free
 robust to crashes
 someone will make progress

 wait-free
 operations complete in a bounded time

 address-free
 atomicity does not depend on using the same 

address



  

lock-free atomics

 large atomics have no hardware support
 necessarily implemented with locks

 locks do not mix with signals
 must be able to test for lock free

 compile-time macros for basic types
 always lock-free and address-free
 never lock-free

 run-time function for each type



  

variables



  

adopt thread-local storage

 adopt existing practice
 6 vendors with few syntactic variations

 define new storage duration and class
 thread_local int var;

 variable is unique to each thread
 variable is accessible from every thread
 variable address is not constant



  

extend thread-local storage

 existing practice supports only static 
initialization and trivial destructors

 extend practice to support dynamic 
initializers and destructors
 thread_local vector<int> var;

 carefully define initialization to permit 
lazy allocation for dynamic libraries



  

initialization of static-duration 
variables

 dynamic initialization is tricky
 no syntax to order most initializations

 without synchronization, potential data 
races

 with synchronization, potential deadlock



  

function-local static storage

 initialization implicitly synchronized
 while not holding any locks

 made possible by a new algorithm
 developed by Mike Burrows
 contributed to the community by Google



  

non-local static storage

 initialization implicitly synchronized
 concurrent initialization enabled
 the initialization may not use a 

dynamically-initialized object defined 
outside the translation unit

extern vector<int> e;
vector<int> u; // okay, no uses
vector<int> v(u); // okay, within unit
vector<int> w(e); // error, out of unit



  

destruction

 first terminate all threads
 more later

 execute destructors in a concurrent 
reverse of initialization

 taking care to interleave namespace-
scope variables with function-scope static 
variables

 same restrictions on use of variables 
outside current translation unit



  

threads



  

fork and join

 very basic thread class
 fork a function execution
 void join operation

void f();

void bar() {
    std::thread t1(f);
    // f() executes in separate thread
    . . . . .
    t1.join();
    // wait for thread t1 to end
}



  

functors

 may also use function-like objects

struct c {
    void operator()() const;
};

void bar() {
    std::thread t2((c()));
    // c() executes in separate thread
    . . . . .
    t2.join();
    // wait for thread t2 to end
}



  

detached threads

 executing the destructor of a live thread 
“detaches” the thread

 may cause dangling references and race 
conditions

 a minority of the committee thinks 
“mistake”

 a majority of the committee thinks 
“existing practice”



  

exception example

 suppose g() throws an exception

extern int f(int), g(int);
int f(int a) {
    int b;
    std::thread t(
             [&]{ b = f(a); } );
    int c = g(a);
    t.join();
    return b+c;
}



  

scheduling

 limited thread scheduling
 yield
 sleep

 standard access to non-standard 
underlying OS thread handles
 for detailed control

 query for the hardware concurrency



  

synchronize



  

mutexes

 exclusive (single reader/writer)
 recursive or not
 timed or not
 probably more a year or two later



  

locks

 hold a mutex within a given scope
 does mutex lock() in constructor
 does mutex unlock() in destructor

std::mutex m;

{
    std::unique_lock< std::mutex >
        l( m ); // m.lock()
    . . . . .
    // m.unlock()
}



  

condition variables

 threads may wait on a condition variable
 giving up their lock on the mutex. 

 threads may notify a condition variable
 notified threads re-lock the mutex and 
 must reevaluate any condition

 benefits
 easier to use than events
 enables the monitor pattern



  

buffer example

 conditions represent extreme states
class buffer { int head, tail, store[10];
  std::mutex mx;
  std::condition_variable not_full,
                          not_empty;
public:
  void insert( int arg ) {
    std::unique_lock< std::mutex > lk(mx);
    while ( (head+1)%10 == tail )
      not_full.wait(lk);
    store[head] = arg; head = (head+1)%10;
    not_empty.notify();
  } 



  

termination



  

voluntary

 return from outermost function
 unable to standardize a mechanism for 

cancellation
 the new quick_exit facility enables 

terminating the process without 
cooperation



  

exceptions

 when the thread function exits via throw
 call std::terminate?
 propagate exception to joiner?
 ignore the exception?

 provide a means to manually propagate
 std::exception_ptr saved( 
std::current_exception() );

 std::exception_ptr copied( 
std::copy_exception( saved ) );

 std::rethrow_exception( copied );



  

input and output

 none of these points include I/O
 no mechanism to shut down a thread 

waiting on I/O
 partially due to weaknesses in operating 

system interfaces
 no resolution yet



  

and beyond



  

high-level later

 some work is being deferred to TR2
 thread pools, groups, ...
 value-based joins, futures, ...
 parallel iterators, ...

 reasons for deferral add up
 lack of pre-existing implementations
 lack of solid definitions
 lack of time to provide them



  

success?

 we can build the high-level TR2 facilities 
in a pure library

 which means you can build even higher-
level facilities as well



  

futures as an example

 a future executes a function
 making return value available later
 propagating exceptions to joiners

 technology is
 return values via N2096
 exception propagation via N2179



  

conclusions



  

the basics are on track

 memory model
 atomic operations
 non-automatic variables 
 threads and synchronization



  

some features need care

 thread termination
 exception propagation



  

the real value comes later

 the standard provide the means to 
abstract over the basics

 the users will write some really great 
high-level facilities

 most programming should be done at this 
level



  

more information

 C++ standard website
 http://www.open-std.org
 WG21 - C++
 WG papers
 2008
 N2597

 questions?


