The circular SiZer, inferred persistence of shape
parameters and application to stem cell stress
fibre structures

Stephan Huckemann?, Kwang-Rae Kim, Axel Munk?!, Florian
Rehfeldt?, Max Sommerfeld!, Joachim Weickert*, Carina
Wollnik?2

LUniversity of Gdttingen - Institute for Mathematical Stochastics
2University of Gottingen - Third Institute of Physics - Biophysics
3University of Nottingham

4Saarland University

October 20, 2015



Human Mesenchymal Stem Cells (hMSC)




How does Differentiation work?

~é° Mesenchymal stem cells

Long known answer: Chemistry!
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Mechano-Chemical Environment
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(A.J. Engler et al., Cell (2006))

» substrate stiffness influences
differentiation

> actin-myosin stress fibers are
the key players
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Filament tracing

a) fluorescence image b) binarization c) filaments traced in yellow

Software FilPicker: Gottschlich et al., IEEE TIFS (2009), Eltzner
et al., Plos One (2015)

Soft - Fat or Neuron  Medium - Muscle Hard - Bone



Orientations of Stress Fibers

Hypothesis (Zemel, Rehfeldt et al., Nat. Phys. (2010)): The
distribution of filament orientations distinguishes tissue types
(neuron, muscle, bone)

Soft 1 kPa - Fat, Medium 11 kPa -
Neuron Muscle
No mode One mode

Hard 34 kPa - Bone
Two (or more) modes



Filament orientgtions
Z1,2s,...,2Z, "~ Z with values in

Sl={zeC:|z|=1}
Kernel Density Estimator

fu(2) = L300 Kn(z- Z71)
With a circular kernel K.

Fat, bone or muscle?
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Circular SiZer - Inference on the smoothed density K,  f

Linear SiZer (Significant Zero Crossings): Chaudhuri and Marron,
AoS (2000)
» Distributional Limit:

sup /n|0:f(2) — 8.(F * Kp)(2)| = Y

z,h>hg

Y = supremum of Gaussian process on S*.
» Test simultaneously for all z and h > hg the hypotheses

Héz’h) 10(f x Kp)(2) =0 vs. H£Z7h) L 0-(f + Kp)(2) # 0
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Scale space persistence

Critcal bandwidth A(K) := largest Data analysis
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Causality

Definition of critical bandwidths A(K) only makes sense if we have
Causality: No new modes appear as h increases.

Von-Mises LYM o I,(h)~! exp(hcos(x)) does not have this
property.

= S(Df) =4

Artifact!




Causality

Definition of critical bandwidths A(K) only makes sense if we have
Causality: No new modes appear as h increases.

» for linear data (€ R): scale space theory - causality +

semi-group property (essentially) uniquely characterizes the
Gaussian kernel

> in higher dimensions (> 2) the Gaussian kernel does not
satisfy causality

» if causality is replaced by non-enhancement of local extrema it
is again unique



Uniqueness of the wrapped Gaussian
We say that a family of kernels {K}, : h > 0}
» has the causality property if

h +— #Sign Changes(Kj, * f)

is decreasing for all smooth f
> semi-group if Ky x Ky = Kpip
» symmetric if Kp(z) = Kp(—2)
> regular if for some r > 0: limp)0 [SUpkez\0 % =0

Theorem

The only symmetric and regular semi-group on the circle that has
the causality property is (up to rescaling of h) the family of
wrapped Gaussians
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Another approach to circular data - work in progress

» kernel methods (such as WiZer) do not satisfy multisclae
optimality bounds (see Axel Munk's talk)

> we can not handle contamination by random error
(deconvolution)

Circular deconvolution problem:
Y,'ZZ,'-E,', izl,...,n

If Zi~fandeg;~f thenY ~g=Ffxf
Multiscale inference for qualitative features of f?



Idea: Do not reconstruct f but instead consider [(Af)p; p for a
family of test functions ¢¢ p

Test function ¢y

PLt.h 2 Ow Pt.h — 1 e N e

t t+ h

2 < / (Af)pen<b = Graph(Af) N {[t, £+ A] x [a, b} # 0



Question: How can we access [(Af)p?

[ane= [ ran) =S Fuefo)

ez

=Y £ O AU 8O = [ (ople )4

137/
= E[(op(£"1)A"0)(Y)]

This is accessible through samples of Y'!
Roadmap:

» use local-global equivalence of the periodic pseudo-differential
operator op(£."1).A* to link to classical pseudo-differential
operator

> use linear theory to obtain simultaneous multiscale confidence
sets for [(Af)gen (Schmidt-Hieber et al., AoS (2013),
Dimbgen and Walther, AoS (2008))

» obtain confidence rectangles



Modehunting with confidence rectangles

h=n 1/22Op -1 .A QOth(Y)

Tp,= sup Wr,h| Teh— ETen| —cn
talnShSUn

Theorem (Schmidt-Hieber et al., AoS (2013) 7, — T in
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