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Human Mesenchymal Stem Cells (hMSC)



How does Differentiation work?

Long known answer: Chemistry!

... only chemistry?
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Mechano-Chemical Environment

(A.J. Engler et al., Cell (2006))

I substrate stiffness influences
differentiation

I actin-myosin stress fibers are
the key players
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Filament tracing

Software FilPicker : Gottschlich et al., IEEE TIFS (2009), Eltzner
et al., Plos One (2015)

Soft - Fat or Neuron Medium - Muscle Hard - Bone



Orientations of Stress Fibers

Hypothesis (Zemel, Rehfeldt et al., Nat. Phys. (2010)): The
distribution of filament orientations distinguishes tissue types

(neuron, muscle, bone)

Soft 1 kPa - Fat,
Neuron
No mode

Medium 11 kPa -
Muscle
One mode

Hard 34 kPa - Bone
Two (or more) modes



Fat, bone or muscle?

Filament orientations
Z1,Z2, . . . ,Zn

i .i .d .∼ Z with values in

S1 = {z ∈ C : |z | = 1}

Kernel Density Estimator
f̂h(z) = 1

n

∑n
j=1 Kh(z · Z−1j )

With a circular kernel Kh.

Bandwidth h = 0.02 Bandwidth h = 0.1 Bandwidth h = 0.33



Circular SiZer - Inference on the smoothed density Kh ∗ f
Linear SiZer (Significant Zero Crossings): Chaudhuri and Marron,
AoS (2000)

I Distributional Limit:

sup
z,h≥h0

√
n
∣∣∣∂z f̂h(z)− ∂z(f ∗ Kh)(z)

∣∣∣→ Y

Y = supremum of Gaussian process on S1.

I Test simultaneously for all z and h ≥ h0 the hypotheses

H
(z,h)
0 : ∂z(f ∗ Kh)(z) = 0 vs. H

(z,h)
1 : ∂z(f ∗ Kh)(z) 6= 0

significant decrease
/ increase, no
significance



Scale space persistence

Critcal bandwidth h(k) := largest
bandwidth for which ≥ k modes
are significant

Data analysis



Causality

Definition of critical bandwidths h(k) only makes sense if we have
Causality: No new modes appear as h increases.

Von-Mises LvMh ∝ Io(h)−1 exp(h cos(x)) does not have this
property.



Causality

Definition of critical bandwidths h(k) only makes sense if we have
Causality: No new modes appear as h increases.

I for linear data (∈ R): scale space theory - causality +
semi-group property (essentially) uniquely characterizes the
Gaussian kernel

I in higher dimensions (≥ 2) the Gaussian kernel does not
satisfy causality

I if causality is replaced by non-enhancement of local extrema it
is again unique



Uniqueness of the wrapped Gaussian
We say that a family of kernels {Kh : h > 0}

I has the causality property if

h 7→ #Sign Changes(Kh ∗ f )

is decreasing for all smooth f

I semi-group if Kh ∗ Kh′ = Kh+h′

I symmetric if Kh(z) = Kh(−z)

I regular if for some r > 0: limh↓0

[
supk∈Z\0

|K̂h,k−1|
h|k|r

]
= 0

Theorem
The only symmetric and regular semi-group on the circle that has
the causality property is (up to rescaling of h) the family of
wrapped Gaussians

Kh(e it) =
1√
2πh

∑
k∈Z

exp

(
−(t + 2πk)2

2h

)



Another approach to circular data - work in progress

I kernel methods (such as WiZer) do not satisfy multisclae
optimality bounds (see Axel Munk’s talk)

I we can not handle contamination by random error
(deconvolution)

Circular deconvolution problem:

Yi = Zi · εi , i = 1, . . . , n

If Zi ∼ f and εi ∼ fε then Y ∼ g = f ∗ fε
Multiscale inference for qualitative features of f ?



Idea: Do not reconstruct f but instead consider
∫

(Af )ϕt,h for a
family of test functions ϕt,h

a ≤
∫

(Af )ϕt,h ≤ b ⇒ Graph(Af ) ∩ {[t, t + h]× [a, b]} 6= ∅



Question: How can we access
∫

(Af )ϕ?

∫
(Af )ϕ =

∫
f (A∗ϕ) =

∑
ξ∈Z
Â∗ϕ(ξ)f̂ (ξ)

=
∑
ξ∈Z

f −1ε (ξ) Â∗ϕ(ξ) ĝ(ξ) =

∫
(op(f −1ε )A∗ϕ)g

= E [(op(f −1ε )A∗ϕ)(Y )]

This is accessible through samples of Y !
Roadmap:

I use local-global equivalence of the periodic pseudo-differential
operator op(f −1ε )A∗ to link to classical pseudo-differential
operator

I use linear theory to obtain simultaneous multiscale confidence
sets for

∫
(Af )ϕt,h (Schmidt-Hieber et al., AoS (2013),

Dümbgen and Walther, AoS (2008))

I obtain confidence rectangles



Modehunting with confidence rectangles

Tt,h = n−1/2
n∑

j=1

op(f −1ε )A∗ϕt,h(Yj)

Tn = sup
t,ln≤h≤un

wt,h|Tt,h − ETt,h| − ch

Theorem (Schmidt-Hieber et al., AoS (2013) Tn → T∞ in
distribution; T∞ distribution free


