GUDHI
Geometric Understanding in Higher Dimensions

V. Rouvreau
GUDHI is a five years project supported by a Grant of the European Research Council and hosted by INRIA

- develop and understand geometrical data structures
- develop associated statistical, geometric and topological functions
C++11 “header only” open source library:

- data structures
- associated functions
- toolbox
Simplicial complexes data structures
- Skeleton blockers

- Simplex tree
Other simplicial complexes data structures
- Simplex array list
- Cubical complex
- Tangential complex

Particular simplicial complexes
- Witness complex
- Rips complex
- Alpha complex
- Weighted alpha complex
Simplicial complexes functions

- iteration
- size
- insert, remove
- faces, cofaces
- link, star
- collapse
- edge contraction
- find simplex
- is_pseudo_manifold
- info (optional)
Toolbox

- Persistence co-homology
- Contraction
 (in progress)
- Clustering (hard / soft)
- Bottleneck distance
- Distance to a measure
Interfaces

Gudhi

Library
TDA

Cython

Boost CGAL GMP MPFR
Persistent homology from an alpha complex
Simplex tree
- Simplicial complexes can be represented by a trie data structure that represents all the simplices.

A simplicial complex on 10 vertices and its simplex tree.
Alpha complex
- fills a simplex tree data structure with a Delaunay Triangulation.
Algorithm 1 Filtration value computation algorithm

for i : dimension $\rightarrow 1$ do
 for all σ of dimension i do
 if filtration(σ) is NaN then
 filtration(σ) = $\alpha_i^2(\sigma)$
 end if
 for all τ face of σ do
 if filtration(τ) is not NaN then
 filtration(τ) = min (filtration(τ), filtration(σ))
 else
 if τ is not Gabriel for σ then
 filtration(τ) = filtration(σ)
 end if
 end if
 end for
 end for
end for

[0,4] is not Gabriel $\rightarrow \alpha_{40} = \alpha_{420}$

[2,0] is Gabriel $\rightarrow \alpha_{20}$ is not modified (NaN)

[2,4] is Gabriel $\rightarrow \alpha_{42}$ is not modified (NaN)

N.B.: Gabriel on a single point has no sense.
Persistent homology
- algebraic method for measuring the topological features (holes, cavities, ...)
- stable regard to noise
Examples
- random points on a 3D sphere:

<table>
<thead>
<tr>
<th>Ambient dimension</th>
<th>Birth</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>inf</td>
</tr>
<tr>
<td>2</td>
<td>0.13947</td>
<td>0.999999</td>
</tr>
</tbody>
</table>
Thank you !