Discover differences between networks with functional map.

Ruqi HUANG

**INRIA-Geometrica** 

Ongoing work with Frédéric Chazal and Maks Ovsjanikov

Oct 20, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Problem

#### • Def:

G = (V, E) is a graph, V is its node set and E is the edge set. In general, we consider the weighted graph, i. e., map  $w : E \to R^+$  indicates the similarity between the pair of nodes connected by  $e \in E$ 

#### Problem

#### • Def:

G = (V, E) is a graph, V is its node set and E is the edge set. In general, we consider the weighted graph, i. e., map  $w : E \to R^+$  indicates the similarity between the pair of nodes connected by  $e \in E$ 

• Problem:

Given two graphs  $G_1$  and  $G_2$  and a bijection between their vertices set. Can we explore the differences between them?



#### Functional Maps: A Flexible Representation of Maps Between Shapes

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



#### Functional Maps: A Flexible Representation of Maps Between Shapes

#### Analysis and Visualization of Maps Between Shapes

Maks Ovsjanikov<sup>1</sup> Mirela Ben-Chen<sup>2</sup> Frederic Chazal<sup>3</sup> Leonidas Guibas<sup>4</sup>

<sup>1</sup>LIX, Ecole Polytechnique <sup>2</sup>Technion–Israel Institute of Technology <sup>3</sup>Geometrica, INRIA <sup>4</sup>Stanford University



#### Functional Maps: A Flexible Representation of Maps Between Shapes

#### Analysis and Visualization of Maps Between Shapes

Maks Ovsjanikov<sup>1</sup> Mirela Ben-Chen<sup>2</sup> Frederic Chazal<sup>3</sup> Leonidas Guibas<sup>4</sup>
<sup>1</sup>LIX, Ecole Polytechnique <sup>2</sup>Technion–Israel Institute of Technology <sup>3</sup>Geometrica, INRIA <sup>4</sup>Stanford University

#### Map-Based Exploration of Intrinsic Shape Differences and Variability

 Raif M. Rustamov<sup>1</sup>
 Maks Ovsjanikov<sup>2</sup>
 Omri Azencot<sup>1</sup>
 Mirela Ben-Chen<sup>3</sup>
 Frédéric Chazal<sup>4</sup>
 Leonidas Guibas<sup>1</sup>

 <sup>1</sup>Stanford University
 <sup>2</sup>LIX, École Polytechnique
 <sup>3</sup>Technion
 <sup>4</sup>Geometrica, INRIA



◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

#### 

Laplacian-Beltrami — Graph Laplacian

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given a bijection  $T : G_1 \to G_2$ , then one can naturally induce the bijection in the function space  $T_F : \mathcal{F}(G_2) \to \mathcal{F}(G_1)$ .

Given a bijection  $T : G_1 \to G_2$ , then one can naturally induce the bijection in the function space  $T_F : \mathcal{F}(G_2) \to \mathcal{F}(G_1)$ .

For example, let  $g: G_2 \to \mathcal{R}$ , then  $T_F(g) = g \circ T \in \mathcal{F}(G_1)$ .

Property:  $T_F$  is a linear map.

Assume the  $\{\phi_i\}, \{\psi_j\}$  are respectively the basis of  $G_1$  and  $G_2$ , since  $T_F$  is a linear map from  $\mathcal{F}(G_1)$  to  $\mathcal{F}(G_2)$ , it's determined by the basis and the bijection.

Assume the  $\{\phi_i\}, \{\psi_j\}$  are respectively the basis of  $G_1$  and  $G_2$ , since  $T_F$  is a linear map from  $\mathcal{F}(G_1)$  to  $\mathcal{F}(G_2)$ , it's determined by the basis and the bijection.

In fact, let  $f = \sum_{i} a_i \phi_i$ , one have  $g = T_F(f)$  and  $g = \sum_{j} b_j \psi_j$ . Thus in the finite case,  $T_F$  can be completely encoded by a matrix C, which exists uniquely satisfying Ca = b.

Assume the  $\{\phi_i\}, \{\psi_j\}$  are respectively the basis of  $G_1$  and  $G_2$ , since  $T_F$  is a linear map from  $\mathcal{F}(G_1)$  to  $\mathcal{F}(G_2)$ , it's determined by the basis and the bijection.

In fact, let  $f = \sum_{i} a_i \phi_i$ , one have  $g = T_F(f)$  and  $g = \sum_{j} b_j \psi_j$ . Thus in the finite case,  $T_F$  can be completely encoded by a matrix C, which exists uniquely satisfying Ca = b.

With the reduced basis, one can approximate C.

It's well-known that the eigenfunctions of laplacian operator are ordered from low-frequency (low eigenvalue) to high-frequency (high eigenvalue).

(日)、

э

It's well-known that the eigenfunctions of laplacian operator are ordered from low-frequency (low eigenvalue) to high-frequency (high eigenvalue).



It's well-known that the eigenfunctions of laplacian operator are ordered from low-frequency (low eigenvalue) to high-frequency (high eigenvalue).



It provides a multi-scale description of the function space on the graphs.

It's well-known that the eigenfunctions of laplacian operator are ordered from low-frequency (low eigenvalue) to high-frequency (high eigenvalue).



It provides a multi-scale description of the function space on the graphs. More importantly, we can approximate the  $T_F$  with limited basis!

## Highlight Distortion

We adapt the formulation in "Analysis and Visualization of Maps Between Shapes". Given some measure  $\mu_1, \mu_2$  on the nodes in  $G_1, G_2$  and  $T : G_2 \to G_1$ , our goal is to find function f such that the following admits maximal:

### Highlight Distortion

We adapt the formulation in "Analysis and Visualization of Maps Between Shapes". Given some measure  $\mu_1, \mu_2$  on the nodes in  $G_1, G_2$  and  $T : G_2 \to G_1$ , our goal is to find function f such that the following admits maximal:

$$distortion = \frac{\int_{u \in G_2} f(T(u))^2 d\mu_2}{\int_{vinG_1} f(v)^2 d\mu_1}$$

### Highlight Distortion

We adapt the formulation in "Analysis and Visualization of Maps Between Shapes". Given some measure  $\mu_1, \mu_2$  on the nodes in  $G_1, G_2$  and  $T : G_2 \to G_1$ , our goal is to find function f such that the following admits maximal:

distortion = 
$$rac{\int_{u \in G_2} f(T(u))^2 d\mu_2}{\int_{vinG_1} f(v)^2 d\mu_1}$$

With some mild conditions, one will conclude that the coefficient of f is nothing more than the right singular vector corresponding to the largest singular value of C, the matrix representation of  $T_F$ .

# Experiments: Bone

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @



## Experiments: Bone



# Experiments: Bone



#### Experiments: Food Pairing

| $NA\toEA$ | EA | $\rightarrow NA$ |
|-----------|----|------------------|
|           |    |                  |

gruyere cheese milk fat parmesan cheese sour cherry raspberry nutmeg oatmeal pecan fennel sauerkraut orange peel grape lima bean

. . .

#### Experiments: Food Pairing

. . .

| $NA\toEA$       | $EA\toNA$       |  |
|-----------------|-----------------|--|
| gruyere cheese  | katsuobushi     |  |
| milk fat        | chinese cabbage |  |
| parmesan cheese | seaweed         |  |
| sour cherry     | sesame oil      |  |
| raspberry       | sake            |  |
| nutmeg          | mandarin peel   |  |
| oatmeal         | peanut oil      |  |
| pecan           | thai pepper     |  |
| fennel          | sesame seed     |  |
| sauerkraut      | litchi          |  |
| orange peel     | wasabi          |  |
| grape           | soybean         |  |
| lima bean       | soy sauce       |  |

. . .

#### Experiments: Food Pairing



### Discussion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The practical network data are complicated, need to be studied case by case. And we usually don't have the GROUND-TRUTH.
- We hope this method can cooperate with other methods, say, Graph Drawing.
- More open problems, the formulation is not limited at all...

### The End

Thanks for your attention. Questions?

