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Conjecture and thematics.

Let X be a random vector uniformly distributed on an
isotropic (choice of the Euclidean structure) convex body
in R

Conjecture

All the volume is concentrated in a thin Euclidean shell.

P (|IX]2 — | > Vi) < € exp(—c1 i)

Holder or reverse Holder inequalities.



Pictures - Intuition in high dimension.

Convex body in "isotropic position”.



Pictures - Intuition in high dimension.

Intersection with a Euclidean ball of radius +/n.



Pictures - Intuition in high dimension.

volume in a shell of radius /n and width 1



Brunn-Minkowski inequality.

Let A and B be two compacts in R" such that |A| - |[B| > 0
then
’A—l—B’l/n > ’A|1/n + ’B‘l/n

Geometry of convex bodies :
Let K be a convex body with non empty interior, A € [0, 1]

(1 = A (KNA)+ MK NB)["" > (1-N)|KnA|"/"+\|KNB|'/

whenever |[KNA|-|[KNB| >0
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Let A and B be two compacts in R" such that |A| - |[B| > 0
then
’A—l—B’l/n > ’A|1/n + ’B‘l/n

Geometry of convex bodies :
Let K be a convex body with non empty interior, A € [0, 1]

(1 = A (KNA)+ MK NB)["" > (1-N)|KnA|"/"+\|KNB|'/

whenever |[KNA|-|[KNB| >0
Consequence. Let i be the uniform measure on K then

(1= M)A+ AB)" > (1= A\)u(A)/" 4+ Au(B) /"

when p(A)u(B) > 0.
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Let A and B be two compacts in R" such that |A| - |[B| > 0
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Brunn-Minkowski inequality.

Let A and B be two compacts in R" such that |A| - |[B| > 0
then
’A+B|l/n > ’A|1/n + ’B‘l/n

Geometry of convex bodies :
Let K be a convex body with non empty interior, A € [0, 1]

(1 = A (KNA)+ XK NB)["" > (1-N)|KNA|' "+ A|KNB|"/"

whenever [KNA|-|[KNB| >0

w1 uniforme measure on K, for every compact A, B
i (1= XA+ AB) > u(A)' ™ p(B)*

We say that . is log-concave.



Log-concave measures.
Letf : R" — R+ such that Vx,y € R", V0 € [0, 1],
F((1=0)x+0y) > f(x)'f (y)’

A measure with density f € L' is said to be log-concave
and satisfies VA, B C R", V0 € [0, 1],

(1= 0)A +0B) > 1u(A)' = u(B)’

60’s and 70’s : Henstock-Mc Beath, Borell,
Prékopa-Leindler...
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Letf : R" — R+ such that Vx,y € R", V0 € [0, 1],
F((1=0)x+0y) > f(x)'f (y)’

A measure with density f € L' is said to be log-concave
and satisfies VA, B C R", V0 € [0, 1],

(1= 0)A +0B) > 1u(A)' = u(B)’

60’s and 70’s : Henstock-Mc Beath, Borell,
Prékopa-Leindler...

Classical examples :
1) Probabilistic : f(x) = exp(—|x[3), f(x) = exp(—|x|)
2) Geometric : f(x) = 1x(x) where K is a convex body.



Properties of log-concave measures.

Marginals
Let w : R? — R, be a log-concave function. Then

X /w(x,y)dy

is log-concave on R.
In other words, when  is log-concave, for every subspace
F, the marginal 7ru is log-concave.



Properties of log-concave measures.

Marginals
Let w : R? — R, be a log-concave function. Then

X /w(x,y)dy

is log-concave on R.

In other words, when  is log-concave, for every subspace
F, the marginal 7ru is log-concave.

Convolution

If f and g are two log-concave functions on R then

X / £ = y)g(y)dy

is log-concave on R.
In other words, if X et Y are random vectors with
log-concave law then X + Y is log-concave.



Convex geometry - Log-concave measures.

K. Ball

Logarithmically concave functions and sections of convex
sets in R". Studia Math. 88 (1988), no. 1, 69-84

and more recent ones of Klartag, Paouris . ..

L. Lovasz, M. Simonovits

Random walks in a convex body and an improved volume
algorithm. Random Structures Algorithms 4 (1993), no. 4,
359-412.

R. Kannan, L. Lovasz, M. Simonovits

Isoperimetric problems for convex bodies and a
localization lemma. Discrete Comput. Geom. 13 (1995),
no. 3-4, 541-559.

Random walks and an O*(n°) volume algorithm for convex
bodies. Random Structures Algorithms 11 (1997), no. 1,
1-50.



Convex geometry - Log-concave measures.

The hyperplane conjecture :
does there exist a constant C > 0 such that :

for every n and every convex body K C R”" of volume 1
and barycenter at the origin, there is a direction £ such
that Vol (K N¢H) > C?

let K, and K, be two convex bodies with barycenter at the
origin such that for every ¢ € 5!

Vol (K; N &) < Vol (K, N €T
then Vol (K,) < C Vol (K,) ?



Convex geometry - Log-concave measures.

The hyperplane conjecture : equivalent formulation

1
2 : 2
[2=— m S — Ly <C?
n Ly S,VolggfolBg (Vol K)”% /K”XHg dx, iu[]? K
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The hyperplane conjecture : equivalent formulation

1
L2 — 1 _ 2 L < ?
ML= ool ol K /K [ x[| 2 dx, sup k < C

Attained when K is in isotropic position :
K has barycenter at the origin and the inertia matrix is the

identity 1 |
/)Cl‘Xj dx = 6,‘1/. LK = 1
Vol K Jk (VolK)»

Letf : R" — R* be a log-concave isotropic function,
/f(x)dx =1, /xf(x)dx =0, /x,-xjf(x)dx = 0;;.

sup f(0)/" < C?

[ isotropic




Convex geometry - Log-concave measures.

The hyperplane conjecture : equivalent formulation

1
2 : 2
[ m - Ly <C?
n Ly g’wgomg (Vol K)”% /K”XHg dx, iu}}() K

Attained when K is in isotropic position :
K has barycenter at the origin and the inertia matrix is the

identity 1 |
/)Cl‘Xj dx = 6,‘1/. LK = 1
Vol K Jk (VolK)»

Letf : R" — R* be a log-concave isotropic function,
/f(x)dx =1, /xf(x)dx =0, /x,-xjf(x)dx = 0;;.

sup f(0)/" < C?

[ isotropic

Theorem (Ball). These two questions are equivalent.



Convex geometry - Log-concave measures.

Theorem (Ball, '85). Let f : R” — R, be a log-concave
function. Then for every p > 0, the function F : R* — R,

400 —1/p
X < f(rx) r”ldr>
0

iS convex.
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is convex. And homogeneous.



Convex geometry - Log-concave measures.

Theorem (Ball, '85). Let f : R” — R, be a log-concave
function. Then for every p > 0, the function F : R* — R,

+o0 —1/p
X ( f(rx) r”ldr>
0

is convex. And homogeneous.
When £(0) > 0, we define a family of convex sets

“+o00

ki) = {xerp [ rrarz )]

0
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Randomization - Given ¢ and n, Dyer-Frieze-Kannan(’89)
established randomized algorithms returning a
non-negative number ¢ such that

(1 —e)¢ < VolK < (1+¢)¢

with probability at least 1 — n. The running time of the
algorithm is polynomial in n, 1/ and log(1/n).



Computing the volume of a convex body

K C R" is given by a separation oracle

Elekes ('86), Barany-Flredi ('86) : it is not possible to
compute with a deterministic algorithm in polynomial time
the volume of a convex body (even approximately)

Randomization - Given ¢ and n, Dyer-Frieze-Kannan(’89)
established randomized algorithms returning a
non-negative number ¢ such that

(1 —e)¢ < VolK < (1+¢)¢

with probability at least 1 — n. The running time of the
algorithm is polynomial in n, 1/ and log(1/n).

The number of oracle calls is a random variable and the
bound is for example on its expected value.



Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovasz
and Simonovits improves significantly the polynomial
dependence.
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Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovasz
and Simonovits improves significantly the polynomial
dependence.

Rounding - Put the convex body in a position where
B CK CdB)
where d < n“™', 2 2

-John ('48) : d < n (ord < /nin the symmetric case).
How to find an algorithm to do so ?
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and Simonovits improves significantly the polynomial
dependence.

Rounding - Put the convex body in a position where

where d < n“™', B,ckcdb
- Idea : find an algorithm which produces in polynomial
time a matrix A such that AK is in an approximate
isotropic position.

Conjecture 2 of KLS ('97) : solved in 2010 by Adamczak,
Litvak, Pajor, Tomczak-Jaegermann



Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovasz
and Simonovits improves significantly the polynomial
dependence.

Rounding - Put the convex body in a position where

where d < n“™', B,ckcdb

- Idea : find an algorithm which produces in polynomial
time a matrix A such that AK is in an approximate
isotropic position.

Conjecture 2 of KLS ('97) : solved in 2010 by Adamczak,
Litvak, Pajor, Tomczak-Jaegermann

Computing the volume - Monte Carlo algorithm, estimates
of local conductance.

Conjecture 1 of KLS ('95) : isoperimetric inequality -
open!



Isoperimetric problem.



Isoperimetric problem.

Define
S +¢eBj) — u(S)

+ R TI 1
o (S) —11£1§f .



Isoperimetric problem.

Define oo g
E—>
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Question. Find the largest / such that
VSCK, pt(S) > hu(S)(1—uS) °
1 is log-concave with log concave density f.



Isoperimetric problem.

Define

S+ eBy) — u(S
1 (S) zlimiglfu( +eB) — ulS)
e—

3

Question. Find the largest / such that
VSCK, pt(S) > hu(S)(1—uS) °
1 is log-concave with log concave density f.
The probability du.(x) = f(x)dx is log-concave isotropic.

Poincaré type inequality. For every regular function F,

h* Var ,F < /|VF(x)|§f(x)dx.

The conjecture is that 7 is a universal constant.
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Poincaré type inequality. For every regular function F,
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KLS conjecture is that 7 is a universal constant.

Take F(x) = |x|, or F(x) = |x|5
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Kannan, Lovasz, Simonovits ['95], Bobkov [07] :

C C

h > ——— h > ——s—m
~ Jilx = gxladx (Var [X[3)'/4

Poincaré type inequality. For every regular function F,
h* Var ,F < / |VF(x)|3 f(x)dx.
KLS conjecture is that / is a universal constant.

Take F(x) = |x|, or F(x) = |x|5
Strong concentration of the Euclidean norm

P (||X], — V/n| > 1v/n) < C exp(—ct+/n)

Large and medium scales !



Concentration - Khintchine

Proposition. (Borell '73) Let i be a log-concave
probability, C a symmetric convex set in R" such that
u(C) >2/3. Then for every t > 1,

uE\ o) < (5)



Concentration - Khintchine

Proposition. (Borell '73) Let i be a log-concave
probability, C a symmetric convex set in R" such that
u(C) >2/3. Then for every t > 1,

141

2

ulB 00 < (5)

_ t=1 . _ 2
Indeed for o« = T we have: 1 —a = e and

(1 —a)(R"\ (1C)) + aC C (R"\ C)



Concentration - Khintchine

Proposition. (Borell '73) Let i be a log-concave
probability, C a symmetric convex set in R" such that
u(C) >2/3. Then for every t > 1,

sl
2

ulB 00 < (5)

Consequences : reverse Holder inequality. If X is a
log-concave random vector then for every 6 € R”, for
every p > 2,

(E|(x, 0" < cp (BIX,0))".



Concentration - Khintchine

Proposition. (Borell '73) Let i be a log-concave
probability, C a symmetric convex set in R" such that
u(C) >2/3. Then for every t > 1,

sl
2

ulB 00 < (5)

Consequences : reverse Holder inequality. If X is a
log-concave random vector then for every 6 € R”, for
every p > 2,

(E|(x, 0" < cp (BIX,0))".

c={xer |(x0) <3 (Ex,0)F) "}



Concentration - Khintchine

Proposition. (Borell '73) Let i be a log-concave
probability, C a symmetric convex set in R" such that
u(C) >2/3. Then for every t > 1,

sl
2

ulB 00 < (5)

Consequences : reverse Holder inequality. If X is a
log-concave random vector then for every 6 € R”, for
every p > 2,

(E|(X,0)P)"" < Cp (E|(X,0)P)".

c={xer |(x0) <3 (Ex,0)F) "}

norm, Khintchine-Kahane



Results.

Evidence : in isotropic position, E|X|3 = n. Take the
proposition with

C= {x eR", x|, < \/3n}
then u(C) > 2/3 and for every t > 1,

1 (R (1C)) < (%) N
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Results.
Evidence : X log-concave then for every r > 1,

P{\X|2 > t@} <e!

Theorem (Paouris 2006). For every ¢ > 10

P{|X‘22f\/ﬁ} S Ce—ct n

After works of Klartag, Fleury-G-Paouris, Fleury
Theorem (G-Milman 2011). For every ¢ € (0, 1)

P{|[X]2 = v/l > tv/n} < GV
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Pictures - Intuition in high dimension.

volume inside a ball of radius 100+/n



Pictures - Intuition in high dimension.

volume inside a shell of width /n/n!/®



Thin shell and central limit theorem

CLT : classical case. xi, ..., x,, ni.i.d random variables,
Ex! = 1,Ex; = 0,Ex; = 7
then V4 € §"~!

“ ! du
P Gixi <t|]| — / €_u2/2—
(Boe=) - [

< rloff = —-.

Vn

sup
teR




Thin shell and central limit theorem

Question. [Ball '97], [Brehm-Voigt '98] Let K be an
isotropic convex body, find a direction # € S"~! such that
sup

. ! du
P (9,-x,- S t) — / e‘”z/z—
teR <; ) —00 V 27

With lim oo e = 0 ?

<

— n
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isotropic convex body, find a direction # € S"~! such that
sup

. ! du
P (9,'X,‘ S t) — / e‘”z/z—
teR (; ) —00 V 27T

with lim,o a,, = 0?

Conjecture. [Anttila-Ball-Perissinaki ‘03]

Thin shell conjecture : Vn, 3¢, such that for every random
vector uniformly distributed in an isotropic convex body

P &—1 >e, | <e
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tozeroasn — o ?
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Thin shell and central limit theorem

Question. [Ball '97], [Brehm-Voigt '98] Let K be an
isotropic convex body, find a direction # € S"~! such that
sup

. ! du
P (9,'X,‘ S t) — / e‘”z/z—
teR (; ) —00 V 27T

with lim,o a,, = 0?

Conjecture. [Anttila-Ball-Perissinaki ‘03]

Thin shell conjecture : Vn, 3¢, such that for every random
vector uniformly distributed in an isotropic convex body

P &—1 >e, | <e
\/]71 _ ~n — ~n

with lim . £, = 0. Or more vaguely, does Var |X|,/n goes
tozeroasn — oo ?
Theorem[ABP]. Thin shell = CLT

< q
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Concentration of the mass in a Euclidean ball or shell
&

Behavior of (E[X[;)'/” for some values of p.

¢ X log-concave random vector. Paouris Theorem (large
deviation) may be written as (ALLOPT ’12)

Vp>1, (EX]5)"" < CE[X|+ cop(X)
where 0,(X) = sup,.,, (E{z, X)?)"/".

— In isotropic position, E|X|, < (E|X[3)!/? = /n.
By Borell's inequality (Khintchine type inequality)

w21, EX)") <Cp (BX?) =Cplh
Hence Vp>1, (EXP)'”" <Cyn+cp
Take p = tv/n, Markov gives
Vi>10, P (X2 >1y/n) <e 'V



KLS conjecture and consequences.

e Strong concentration of the Euclidean norm

P (||X]> — v/n| > t/n) < C exp(—ct+/n)

) 7] C
W € [evieval, (EIXE) < xR0+ )
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KLS conjecture and consequences.
e Strong concentration of the Euclidean norm

P (||X]> — v/n| > t/n) < C exp(—ct+/n)

D ) c\p
Vo € [evieval, (EXE < EXE(1+ P

e KLS conjecture : 3h > 0 a universal constant such that
for every regular function F,

MWMFS/W”Wﬁ@W
e Take F(x) = |x|, or F(x) = |x[3

Variance conjecture : Var [X|, < C or Var|X|5 < Cn.
e Eldan-Klartag ['11], Eldan ['12].
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|dea to attack the problem

We replace a simple quantity : |X|, by a more complicated
E’X|g = ka’p EEF‘PFX’g

Next, we compare to something we know how to
compute : G, Gaussian vector
E’Gn‘g = ka’p EEF‘PFGn’IZJ

But for a k-dimensional F, PrG, ~ G, hence
E|G,[
E|X|) = "2 REg|PeX].
| ‘2 E‘Gk‘g F‘ F ’2
An integration in polar coordinates proves that
EFE|PFX|1) == Eul’lkJ)(U)

where for every u € SO(n),
+oo
hy p(u) = |Sk_]|/ Py w(tu(0o) dt
0




Other reverse Holder inequalities ?

Log-Sobolev inequality

For every function i > 0, define

Enth = [hlogh— [ hlog [ h.

We have a log-Sobolev inequality when there exists C
such that for all smooth functions 4,

Ent h < C/h |V loghl;



Other reverse Holder inequalities ?

Consequences : reverse Holder inequality. Let

1/p 1
M:p»—></h”) :exp(—log/h”>
Then p

(o 152

1 p!
:;(/hp) (—/h”log/h”—i—/h”logh”)
1 p!
L ([w)
]{71
< Ciy ( / hf’) [ w19 1og




Other reverse Holder inequalities ?

Consequences : reverse Holder inequality. Let

1/p 1
M:p»—></h”) :exp(—log/h”>
p

If the function & has a log-Lispchitz constant bounded by
L, then we have

M'(p) < Cs L M(p)
hence for every p > r

M(p) 2
W < exp (CLSL (p— r))



Other reverse Holder inequalities ?

Consequences : reverse Holder inequality. Let

1/p 1
M:p»—></h”) :exp(—log/h”>
p

If the function & has a log-Lispchitz constant bounded by
L, then we have

M'(p) < Crs L* M(p)
hence for every p > r

M(p)
W S exXp (CLSLZ (p — 7"))
And SO(n) satisfies the criteria curvature-dimension of
Bakry-Emery and in this case, C;g < ©



Where disappears the geometry of convex
bodies ?

Everything is hidden in the study of the log-Lipshitz
constant of the function 4, , defined on SO(n) by

+o0
s [SE] / A wliu(B))dt
0



Where disappears the geometry of convex
bodies ?

Everything is hidden in the study of the log-Lipshitz
constant of the function 4, , defined on SO(n) by

+o0
s [SE] / A wliu(B))dt
0

e Marginals of log-concave measure are log-concave
e The Ball’s bodies

e Some reverse Holder inequality of Borell in a
log-concave setting
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