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Conjecture and thematics.

Let X be a random vector uniformly distributed on an
isotropic (choice of the Euclidean structure) convex body
in Rn.
Conjecture
All the volume is concentrated in a thin Euclidean shell.

P
(∣∣|X|2 −√n

∣∣ ≥ t
√

n
)
≤ C exp(−c t

√
n)

Hölder or reverse Hölder inequalities.



Pictures - Intuition in high dimension.

Convex body in ”isotropic position”.
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Intersection with a Euclidean ball of radius
√

n.



Pictures - Intuition in high dimension.

volume in a shell of radius
√

n and width 1



Brunn-Minkowski inequality.

Let A and B be two compacts in Rn such that |A| · |B| > 0
then

|A + B|1/n ≥ |A|1/n + |B|1/n

Geometry of convex bodies :
Let K be a convex body with non empty interior, λ ∈ [0, 1]

|(1− λ)(K ∩ A) + λ(K ∩ B)|1/n ≥ (1−λ)|K∩A|1/n+λ|K∩B|1/n

whenever |K ∩ A| · |K ∩ B| > 0
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when µ(A)µ(B) > 0.
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Brunn-Minkowski inequality.

Let A and B be two compacts in Rn such that |A| · |B| > 0
then

|A + B|1/n ≥ |A|1/n + |B|1/n

Geometry of convex bodies :
Let K be a convex body with non empty interior, λ ∈ [0, 1]

|(1− λ)(K ∩ A) + λ(K ∩ B)|1/n ≥ (1−λ)|K∩A|1/n+λ|K∩B|1/n

whenever |K ∩ A| · |K ∩ B| > 0

µ uniforme measure on K, for every compact A, B

µ ((1− λ)A + λB) ≥ µ(A)1−λ µ(B)λ

We say that µ is log-concave.



Log-concave measures.
Let f : Rn → R+ such that ∀x, y ∈ Rn,∀θ ∈ [0, 1],

f ((1− θ)x + θy) ≥ f (x)1−θf (y)θ

A measure with density f ∈ Lloc
1 is said to be log-concave

and satisfies ∀A,B ⊂ Rn,∀θ ∈ [0, 1],

µ((1− θ)A + θB) ≥ µ(A)1−θµ(B)θ

60’s and 70’s : Henstock-Mc Beath, Borell,
Prékopa-Leindler...
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Let f : Rn → R+ such that ∀x, y ∈ Rn,∀θ ∈ [0, 1],

f ((1− θ)x + θy) ≥ f (x)1−θf (y)θ

A measure with density f ∈ Lloc
1 is said to be log-concave

and satisfies ∀A,B ⊂ Rn,∀θ ∈ [0, 1],

µ((1− θ)A + θB) ≥ µ(A)1−θµ(B)θ

60’s and 70’s : Henstock-Mc Beath, Borell,
Prékopa-Leindler...

Classical examples :
1) Probabilistic : f (x) = exp(−|x|22), f (x) = exp(−|x|1)
2) Geometric : f (x) = 1K(x) where K is a convex body.



Properties of log-concave measures.
Marginals
Let w : R2 → R+ be a log-concave function. Then

x 7→
∫

w(x, y)dy

is log-concave on R.
In other words, when µ is log-concave, for every subspace
F, the marginal πFµ is log-concave.



Properties of log-concave measures.
Marginals
Let w : R2 → R+ be a log-concave function. Then

x 7→
∫

w(x, y)dy

is log-concave on R.
In other words, when µ is log-concave, for every subspace
F, the marginal πFµ is log-concave.
Convolution
If f and g are two log-concave functions on R then

x 7→
∫

f (x− y)g(y)dy

is log-concave on R.
In other words, if X et Y are random vectors with
log-concave law then X + Y is log-concave.



Convex geometry - Log-concave measures.

K. Ball
Logarithmically concave functions and sections of convex
sets in Rn. Studia Math. 88 (1988), no. 1, 69–84
and more recent ones of Klartag, Paouris . . .
L. Lovász, M. Simonovits
Random walks in a convex body and an improved volume
algorithm. Random Structures Algorithms 4 (1993), no. 4,
359–412.
R. Kannan, L. Lovász, M. Simonovits
Isoperimetric problems for convex bodies and a
localization lemma. Discrete Comput. Geom. 13 (1995),
no. 3-4, 541–559.
Random walks and an O∗(n5) volume algorithm for convex
bodies. Random Structures Algorithms 11 (1997), no. 1,
1–50.



Convex geometry - Log-concave measures.

The hyperplane conjecture :
does there exist a constant C > 0 such that :

for every n and every convex body K ⊂ Rn of volume 1
and barycenter at the origin, there is a direction ξ such
that Vol (K ∩ ξ⊥) ≥ C ?

x
O

let K1 and K2 be two convex bodies with barycenter at the
origin such that for every ξ ∈ Sn−1

Vol (K1 ∩ ξ⊥) ≤ Vol (K2 ∩ ξ⊥)
then Vol (K1) ≤ C Vol (K2)?



Convex geometry - Log-concave measures.

The hyperplane conjecture : equivalent formulation

n L2
K = min

E,Vol E=Vol Bn
2

1

(Vol K)1+ 2
n

∫
K
‖x‖2

E dx, sup
n,K

LK ≤ C ?
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Let f : Rn → R+ be a log-concave isotropic function,∫
f (x)dx = 1,

∫
x f (x)dx = 0,

∫
xixj f (x)dx = δi,j.

sup
f isotropic

f (0)1/n ≤ C?



Convex geometry - Log-concave measures.

The hyperplane conjecture : equivalent formulation

n L2
K = min

E,Vol E=Vol Bn
2

1

(Vol K)1+ 2
n

∫
K
‖x‖2

E dx, sup
n,K

LK ≤ C ?

Attained when K is in isotropic position :
K has barycenter at the origin and the inertia matrix is the
identity 1

Vol K

∫
K

xixj dx = δi,j. LK =
1

(Vol K)
1
n

Let f : Rn → R+ be a log-concave isotropic function,∫
f (x)dx = 1,

∫
x f (x)dx = 0,

∫
xixj f (x)dx = δi,j.

sup
f isotropic

f (0)1/n ≤ C?

Theorem (Ball). These two questions are equivalent.



Convex geometry - Log-concave measures.

Theorem (Ball, ’85). Let f : Rn → R+ be a log-concave
function. Then for every p > 0, the function F : Rn → R+

x 7→
(∫ +∞

0
f (rx) rp−1dr

)−1/p

is convex.
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Convex geometry - Log-concave measures.

Theorem (Ball, ’85). Let f : Rn → R+ be a log-concave
function. Then for every p > 0, the function F : Rn → R+

x 7→
(∫ +∞

0
f (rx) rp−1dr

)−1/p

is convex. And homogeneous.

When f (0) > 0, we define a family of convex sets

Kp(f ) =
{

x ∈ Rn, p
∫ +∞

0
f (rx) rp−1dr ≥ f (0)

}
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Randomization - Given ε and η, Dyer-Frieze-Kannan(’89)
established randomized algorithms returning a
non-negative number ζ such that

(1− ε)ζ < Vol K < (1 + ε)ζ

with probability at least 1− η. The running time of the
algorithm is polynomial in n, 1/ε and log(1/η).



Computing the volume of a convex body

K ⊂ Rn is given by a separation oracle

Elekes (’86), Bárány-Füredi (’86) : it is not possible to
compute with a deterministic algorithm in polynomial time
the volume of a convex body (even approximately)

Randomization - Given ε and η, Dyer-Frieze-Kannan(’89)
established randomized algorithms returning a
non-negative number ζ such that

(1− ε)ζ < Vol K < (1 + ε)ζ

with probability at least 1− η. The running time of the
algorithm is polynomial in n, 1/ε and log(1/η).

The number of oracle calls is a random variable and the
bound is for example on its expected value.
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dependence.
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The randomized algorithm proposed by Kannan, Lovász
and Simonovits improves significantly the polynomial
dependence.
Rounding - Put the convex body in a position where

Bn
2 ⊂ K ⊂ d Bn

2where d ≤ nconst.
- John (’48) : d ≤ n ( or d ≤

√
n in the symmetric case).

How to find an algorithm to do so ?
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time a matrix A such that AK is in an approximate
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Computing the volume of a convex body
The randomized algorithm proposed by Kannan, Lovász
and Simonovits improves significantly the polynomial
dependence.
Rounding - Put the convex body in a position where

Bn
2 ⊂ K ⊂ d Bn

2where d ≤ nconst.
- Idea : find an algorithm which produces in polynomial
time a matrix A such that AK is in an approximate
isotropic position.
Conjecture 2 of KLS (’97) : solved in 2010 by Adamczak,
Litvak, Pajor, Tomczak-Jaegermann

Computing the volume - Monte Carlo algorithm, estimates
of local conductance.
Conjecture 1 of KLS (’95) : isoperimetric inequality -
open !
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Isoperimetric problem.

S

K\S
ε

Define
µ+(S) = lim inf

ε→0

µ(S + εBn
2)− µ(S)
ε

Question. Find the largest h such that

∀ S ⊂ K, µ+(S) ≥ h µ(S)(1− µ(S)) ?

µ is log-concave with log concave density f .
The probability dµ(x) = f (x)dx is log-concave isotropic.
Poincaré type inequality. For every regular function F,

h2 Var µF ≤
∫
|∇F(x)|22 f (x)dx.

The conjecture is that h is a universal constant.
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(Var |X|22)1/4 .



Kannan, Lovász, Simonovits [’95], Bobkov [’07] :

h ≥ c∫
K |x− gK|2dx

h ≥ c
(Var |X|22)1/4 .
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Kannan, Lovász, Simonovits [’95], Bobkov [’07] :

h ≥ c∫
K |x− gK|2dx

h ≥ c
(Var |X|22)1/4 .

Poincaré type inequality. For every regular function F,

h2 Var µF ≤
∫
|∇F(x)|22 f (x)dx.

KLS conjecture is that h is a universal constant.

Take F(x) = |x|2 or F(x) = |x|p2
Strong concentration of the Euclidean norm

P
(∣∣|X|2 −√n

∣∣ ≥ t
√

n
)
≤ C exp(−c t

√
n)

Large and medium scales !



Concentration - Khintchine

Proposition. (Borell ’73) Let µ be a log-concave
probability, C a symmetric convex set in Rn such that
µ(C) ≥ 2/3. Then for every t ≥ 1,

µ (Rn \ (tC)) ≤
(

1
2

) t+1
2
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Proposition. (Borell ’73) Let µ be a log-concave
probability, C a symmetric convex set in Rn such that
µ(C) ≥ 2/3. Then for every t ≥ 1,

µ (Rn \ (tC)) ≤
(

1
2

) t+1
2

Indeed for α = t−1
t+1 we have : 1− α = 2

t+1 and

(1− α)
(
Rn \ (tC)

)
+ αC ⊂

(
Rn \ C

)
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Concentration - Khintchine

Proposition. (Borell ’73) Let µ be a log-concave
probability, C a symmetric convex set in Rn such that
µ(C) ≥ 2/3. Then for every t ≥ 1,

µ (Rn \ (tC)) ≤
(

1
2

) t+1
2

Consequences : reverse Hölder inequality. If X is a
log-concave random vector then for every θ ∈ Rn, for
every p ≥ 2,

(E|〈X, θ〉|p)1/p ≤ C p
(
E|〈X, θ〉|2

)1/2
.

C =
{

x ∈ Rn, |〈x, θ〉| ≤ 3
(
E|〈X, θ〉|2

)1/2
}

norm, Khintchine-Kahane



Results.

Evidence : in isotropic position, E|X|22 = n. Take the
proposition with

C =
{

x ∈ Rn, |x|2 ≤
√

3 n
}

then µ(C) ≥ 2/3 and for every t ≥ 1,

µ (Rn \ (tC)) ≤
(

1
2

) t+1
2
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Results.

Evidence : X log-concave then for every t ≥ 1,

P
{
|X|2 ≥ t

√
3n
}
≤ e−t

Theorem (Paouris 2006). For every t ≥ 10

P
{
|X|2 ≥ t

√
n
}
≤ Ce−c t

√
n

After works of Klartag, Fleury-G-Paouris, Fleury

Theorem (G-Milman 2011). For every t ∈ (0, 1)

P
{
||X|2 −

√
n| ≥ t

√
n
}
≤ Ce−c t3

√
n
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volume inside a ball of radius 100
√

n



Pictures - Intuition in high dimension.

volume inside a shell of width
√

n/n1/6



Thin shell and central limit theorem
CLT : classical case. x1, . . . , xn, n i.i.d random variables,

Ex2
i = 1,Exi = 0,Ex3

i = τ

then ∀θ ∈ Sn−1

sup
t∈R

∣∣∣∣∣P
(

n∑
i=1

θixi ≤ t

)
−
∫ t

−∞
e−u2/2 du√

2π

∣∣∣∣∣ ≤ τ |θ|24 =
τ√
n
.



Thin shell and central limit theorem
Question. [Ball ’97], [Brehm-Voigt ’98] Let K be an
isotropic convex body, find a direction θ ∈ Sn−1 such that

sup
t∈R
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n∑
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−
∫ t

−∞
e−u2/2 du√

2π

∣∣∣∣∣ ≤ αn

with lim+∞ αn = 0 ?
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Question. [Ball ’97], [Brehm-Voigt ’98] Let K be an
isotropic convex body, find a direction θ ∈ Sn−1 such that
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t∈R

∣∣∣∣∣P
(

n∑
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)
−
∫ t

−∞
e−u2/2 du√

2π
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with lim+∞ αn = 0 ?
Conjecture. [Anttila-Ball-Perissinaki ’03]
Thin shell conjecture : ∀n,∃εn such that for every random
vector uniformly distributed in an isotropic convex body

P
(∣∣∣∣ |X|2√n

− 1
∣∣∣∣ ≥ εn

)
≤ εn

with lim+∞ εn = 0. Or more vaguely, does Var |X|2/n goes
to zero as n→∞?
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Question. [Ball ’97], [Brehm-Voigt ’98] Let K be an
isotropic convex body, find a direction θ ∈ Sn−1 such that

sup
t∈R
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(
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)
−
∫ t

−∞
e−u2/2 du√

2π

∣∣∣∣∣ ≤ αn

with lim+∞ αn = 0 ?
Conjecture. [Anttila-Ball-Perissinaki ’03]
Thin shell conjecture : ∀n,∃εn such that for every random
vector uniformly distributed in an isotropic convex body

P
(∣∣∣∣ |X|2√n

− 1
∣∣∣∣ ≥ εn

)
≤ εn

with lim+∞ εn = 0. Or more vaguely, does Var |X|2/n goes
to zero as n→∞?
Theorem[ABP]. Thin shell⇒ CLT
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⇔

Behavior of (E|X|p2)
1/p for some values of p.

• X log-concave random vector. Paouris Theorem (large
deviation) may be written as (ALLOPT ’12)

∀p ≥ 1, (E|X|p2)
1/p ≤ C E|X|2 + cσp(X)

where σp(X) = sup|z|2≤1 (E〈z,X〉p)
1/p .

→ In isotropic position, E|X|2 ≤ (E|X|22)1/2 =
√

n.
By Borell’s inequality (Khintchine type inequality)

∀p ≥ 1, (E〈z,X〉p)1/p ≤ C p
(
E〈z,X〉2

)1/2
= C p |z|2

Hence ∀p ≥ 1, (E|X|p2)
1/p ≤ C

√
n + cp

Take p = t
√

n, Markov gives

∀t ≥ 10, P
(
|X|2 ≥ t

√
n
)
≤ e−c t

√
n.



KLS conjecture and consequences.

• Strong concentration of the Euclidean norm

P
(∣∣|X|2 −√n

∣∣ ≥ t
√

n
)
≤ C exp(−c t

√
n)

∀p ∈ [−c
√

n, c
√

n], (E|X|p2)
1/p ≤ (E|X|22)1/2(1 +

c |p|
n

)
.
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• Eldan-Klartag [’11], Eldan [’12].
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We replace a simple quantity : |X|2 by a more complicated

E|X|p2 = cn,k,p EEF|PFX|p2
Next, we compare to something we know how to
compute : Gn Gaussian vector

E|Gn|p2 = cn,k,p EEF|PFGn|p2

But for a k-dimensional F, PFGn ∼ Gk hence

E|X|p2 =
E|Gn|p2
E|Gk|p2

EEF|PFX|p2.

An integration in polar coordinates proves that
EFE|PFX|p2 = EUhk,p(U)

where for every u ∈ SO(n),

hk,p(u) = |Sk−1|
∫ +∞

0
tk+p−1πu(F0)w(tu(θ0))dt



Other reverse Hölder inequalities ?

Log-Sobolev inequality
For every function h ≥ 0, define
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We have a log-Sobolev inequality when there exists C
such that for all smooth functions h,

Ent h ≤ C
∫

h |∇ log h|22
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If the function h has a log-Lispchitz constant bounded by
L, then we have

M′(p) ≤ CLS L2 M(p)
hence for every p > r

M(p)
M(r)

≤ exp
(
CLS L2 (p− r)

)
And SO(n) satisfies the criteria curvature-dimension of

Bakry-Émery and in this case, CLS ≤ c
n
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Everything is hidden in the study of the log-Lipshitz
constant of the function hk,p defined on SO(n) by

u 7→ |Sk−1|
∫ +∞

0
tk+p−1πu(F0)w(tu(θ0))dt

• Marginals of log-concave measure are log-concave
• The Ball’s bodies
• Some reverse Hölder inequality of Borell in a
log-concave setting
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