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Clustering: task of grouping objects into classes (clusters) according
to their similarities.

Spectral clustering methods use data-dependent matrices (Laplacian
matrix) to perform unsupervised clustering.



Setting: Spectral clustering in a Hilbert space

(where the points are i.i.d. according to an unknown distribution
whose support is a union of compact connected components).

Our approach:

» View spectral clustering as a change of representation in a RKHS
» Modify the Ng, Jordan, Weiss algorithm
(interpretation in terms of Markov chains with exp transitions)

» Estimate automatically the number of clusters.



EXAMPLE

Goal: Cluster Xi, ..., X, € R?> (n = 900)

datal,1]



EXAMPLE

0.5

finalrep[, 1:2],2]
0.0
1
datal,2]
0
X
Fo ¢
%2,
BB

-0.5
L

o
\
T T T T T T T T T
-1.0 -05 00 05 -1 0 1 2 3
Number of classes = 4,
finalrep[, 1:21] trace = 0.0050, iter = 1441

Note: clusters are at the vertices of a simplex

— classification becomes trivial



NG, JORDAN, WEISS ALGORITHM

Input:
> X1,...,X, the points to cluster
» ¢ the number of clusters

. Form A;; = {

exp(—B)1X; — Xj[|*) ifi#j
0 otherwise

Construct L = D~'/2AD~1/2 where D;; = Zj Ajj

. Compute c largest eigenvectors vy, ..., v, of L

and form X = [vl ... vc}

nxc

. Cluster each (renormalized) row of X into ¢ clusters

(e.g. via k-means)



INTUITION

Let decompose
L= U diag(\i,...,\y) u'

The Ng, Jordan, Weiss algorithm is based on

U diag(\j,...,A,0,...,00U"

Idea: Replace the projection with a smooth cut-off of the eigenvalues.

More precisely
U diag(\7,..., XM U’



UNDERLYING INTEGRAL OPERATORS

Idea: View previous matrices as empirical versions

of underlying integral operators.

Assume X, ..., X, € H ~ P (unknown).

A (affinity matrix) —> K(x,y) = exp ( — Bllx — }’HZ)
L=D"'"2AD7"?  «—  K(xy) = )"V K (x, y)uly) "2
D,',':ZA,:/ — /K)CZ dP

{&Gtiei = ZLllgj — Lg - f’_>/ x,2)f(z) dP(z)



MARKOV CHAIN ANALYSIS OF SPECTRAL CLUSTERING

The matrix A is used to form M = D~'A (Markov matrix with exp
transitions).

Note:

(&Y - ZL,]@ ZD” D; '

To determine clusters, use M exp(8T)

Hope for a similar behavior in the continuous case:

Define M(x,y) = u(x)~'K(x,y), so that

Lg : fH/ (x, 2)f (z) dP(z ‘/Z/sz )"'*f(2) dP(2)

Idea: Consider an iterate of Lg.



MARKOV CHAINS AND LAPLACIAN ITERATES

Remark that
L?—(mf(x) = Li(sz(-x) = /I_(Zm(x7 Z) f(Z) dP(Z)7

where

Kom(x,y) = /1_((%21)1_((21722).--k(zzm—hx) dPECm (71 zomo1)

whereas the kernel M defines a Markov chain (Z ey with
transitions

dPz, |z, =«
M(x.y) = =222y

and invariant measure Q defined by its density dQ/dP = p.



PROPOSITION. For any x,y € supp(P),

dPz, | z=x dPz, | 7=y
dQ ' dQ

) =) R y) 2

Introduce

Km(xa )’) = kZm(x) x)—l/Zsz(x’ y)KZm(ya y)_1/2

In the new representation points are concentrated around ON vectors



IDEAL ALGORITHM IN TERMS OF KERNELS

Let K (x,y) = exp (= fllx = y[?)
1. Form (Laplacian operator)

K(x,y) = p(x)"" K (x,y)u(y) "'/

2. Construct
Ko (x,y) = /K(y7Z1)K(Z1,Zz)...K(szq,x) dPPm =D (71 zomt)
3. Renormalize to obtain
Kin(x,) = Ko (0, 2) ™2 Ko (%, ) Ko (3, ) ~/?

4. Cluster points according to the new representation
defined by the symmetric kernel K,,,.



NEXT STEP

» Construct an empirical algorithm

by estimating the kernels

K(x,y) = p(x) 72K (x,y)u(y) /2

and

I_(zm(x,y) = /k(y,Z])I?(Z],Zz)...I_((sz_],x) dP®(2m71)(Zl,... ,sz_])

» Provide convergence results



TOWARD AN EMPIRICAL ALGORITHM: GRAM OPERATORS

Idea: Link the previous kernels (K and K»,,) with Gram operators

Note: the kernel K defines
» a RHKS H where



AN ESTIMATOR OF K

Goal: Estimate K (x,y) = pu(x)~"/2K (x,y)pu(y) ="/ where

() = / K(x,2) dP(2)

Note: The kernel A(x,y) = K(x,y)!/? = exp(—gHX —y||*) defines

» aRKHS 14 where A(x,y) = (da(x), pa(y)) 7,
» a Gram operator Gav = [(v, pa(2))n, ¢a(z) dP(z)

so that

p(x) = /<¢A(x)a¢A(Z)>%-LA dP(z) = (Ga¢a(x), ¢a (X)),



AN ESTIMATOR OF K

Given any estimator of G4, we can estimate

1(x) = (Gaga(x), da(x))3e, = fi(x)

and thus we estimate  K(x,y) = u(x)~"/2K (x,y)p(y)~"/? with

A~

K(x,y) = fu(x) " 2K (x,y)s(y) "'/



AN ESTIMATOR OF K,

PROPOSITION. With the previous notation,
Kom(x,y) = (G&" ' ox (x), ok () m

where Ggog(x) = [ K(x,z) pg(z) dP(z).

We need to estimate Gg that depends on K and P. Thus

Kon(x,y) = (G2 or(x), o 0)n = (G" 05 (x), o (")

where Gpdi(x) = [K(x,z) ¢3(z) dP(z)  (still unknown!)



AN ESTIMATOR OF K,

Given Q any estimator of G & we obtain

Ko (x,y) = (G2 94 (x), 4 (9)

= (Q" 16 (x), 65 () =: Kam(x,)

where 6 (x) = x(0)0x(x) and x(x) = (/)"



Recall: kzm(x, y) = <Q2m_1¢f((x), ¢ () #

1/2
where o (x) = x(¥)x(x) and x(x) = (u(x)/ia(x)) "

PROPOSITION. For any x,y € supp(P),

|f(2m<x7 y) - [_(Zm(xv y)‘

_ max{1, [|x|)?

N2m—1 _2m—1
< oo (1977 =G e + 2l = 1)

and

A ) R 2m—2
”le—l_gklm—lHoo < (Zm_l)”Q—ng(x, <1 + HQ - gf{”@O)



CHOICE OF m

Notation:

> let 5\1 > 5\2 > ... be the eigenvalues of 0

> let p the maximal number of classes

The number of iterations m is the solution of
~ m
Ap 1
5\1 100

Note: p can be overestimated



ESTIMATE OF A GRAM OPERATOR

Recall: We have seen that |K»,,(x,y) — Kom(x, )| depends on

- @ = (n/ae)
> HQA_gf(Hoo

Last step: Provide some estimate of Gram operators



Notation:

» Let K be a symmetric kernel
> let H be the RKHS defined by K

Goal: Estimate

Gv = /(v, 2y zdP(z),

from an i.i.d. sample X1, ..

Assume that tr(G) < 400

L X, EH~P



THE EMPIRICAL ESTIMATOR

The classical empirical estimator is defined by

_ 1 <&
gv = . Z(V, Xi) X;

i=1

Let

» R= max [Xi
1= n

=1,..,

» X € Hbear.v. of law P.

Assume that
E[(6, X)*]

TP ELe. 0P <



THEOREM. With probability > 1 — 2e,

G = Glloo < 4max {Glloc, o} [B.(1G 1) + (Gl )] +

where

B*(lgw):J2.032(rlnl)< 0.73 tr(G) —|—b—|—10g(e—1))

max{||Gllcc; o'}

98.5x tr(G)
nmax{||G|lo, o}’

0.86 R* 0.73 t
2 (16]10) = [ 9)

0 671
w1 max{[Gllo 0} | max([Gllo, o) T+ 1 )}

and b ~ log(log(n)) < 4.35 ifn < 10%.



A MORE ROBUST ESTIMATOR

It is possible to use a PAC-Bayesian approach to construct a more
robust estimator G such that
THEOREM. With probability > 1 — 2e,

IG — Glloo < 4max{||Glloc; o} Bu([|Gloc) + 0

Note: In light tail situations, G and G behave in the same way



WORK IN PROGRESS: IMAGE CLASSIFICATION

Test the algorithm in the setting of image classification




WORK IN PROGRESS: CHOICE OF 3

Recall: we consider the Gaussian kernel

K(xvy) = K,B(xay) = exXp ( - ﬁ”x 7yH2)
The choice of 3 is based on the estimation of the trace of

Ly fx) = / Ks(x.2) £(z) dP(2)

Note: Let Ay > Ay > ... be the eigenvalues of Lg
Z)\ —/Kgxx)dP() 1
ZAZ / Kp(x,z)* dP(x)dP(z) < 1



WORK IN PROGRESS: CHOICE OF 3

Note:

F(p) = /Kg(x, z)2dP(x)dP(z) {—> L0

—0 if8—>

Thus F(8) controls the spread of the eigenvalues

— we have to choose [ sufficiently large

Goal: Find a way to calibrate 8
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