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Clustering: task of grouping objects into classes (clusters) according
to their similarities.

Spectral clustering methods use data-dependent matrices (Laplacian
matrix) to perform unsupervised clustering.



Setting: Spectral clustering in a Hilbert space
(where the points are i.i.d. according to an unknown distribution
whose support is a union of compact connected components).

Our approach:

I View spectral clustering as a change of representation in a RKHS
I Modify the Ng, Jordan, Weiss algorithm

(interpretation in terms of Markov chains with exp transitions)
I Estimate automatically the number of clusters.



EXAMPLE

Goal: Cluster X1, . . . ,Xn ∈ R2 (n = 900)



EXAMPLE

Note: clusters are at the vertices of a simplex
−→ classification becomes trivial



NG, JORDAN, WEISS ALGORITHM

Input:
I X1, . . . ,Xn the points to cluster
I c the number of clusters

1. Form Aij =

{
exp(−β‖Xi − Xj‖2) if i 6= j
0 otherwise

2. Construct L = D−1/2AD−1/2 where Dii =
∑

j Aij

3. Compute c largest eigenvectors v1, . . . , vc of L

and form X =
[
v1 . . . vc

]
n×c

4. Cluster each (renormalized) row of X into c clusters
(e.g. via k-means)



INTUITION

Let decompose
L = U diag(λ1, . . . , λn) U>

The Ng, Jordan, Weiss algorithm is based on

U diag(λ1, . . . , λc, 0, . . . , 0) U>

Idea: Replace the projection with a smooth cut-off of the eigenvalues.
More precisely

U diag(λm
1 , . . . , λ

m
n ) U>



UNDERLYING INTEGRAL OPERATORS

Idea: View previous matrices as empirical versions
of underlying integral operators.

Assume X1, . . . ,Xn ∈ H ∼ P (unknown).

A (affinity matrix) ←→ K(x, y) = exp
(
− β‖x− y‖2)

L = D−1/2AD−1/2 ←→ K̄(x, y) = µ(x)−1/2K(x, y)µ(y)−1/2

Dii =
∑

j

Aij ←→ µ(x) =

∫
K(x, z) dP(z)

{ξi}n
i=1 7→

1
n

n∑
j=1

Lijξj ←→ LK̄ : f 7→
∫

K̄(x, z)f (z) dP(z)



MARKOV CHAIN ANALYSIS OF SPECTRAL CLUSTERING

The matrix A is used to form M = D−1A (Markov matrix with exp
transitions).
Note:

{ξi}n
i=1 7→

1
n

n∑
j=1

Lijξj =
1
n

n∑
j=1

D1/2
ii MijD

−1/2
jj ξj

To determine clusters, use Mexp(βT)

Hope for a similar behavior in the continuous case:

Define M(x, y) = µ(x)−1K(x, y), so that

LK̄ : f 7→
∫

K̄(x, z)f (z) dP(z) = µ(x)1/2
∫

M(x, z)µ(z)−1/2f (z) dP(z)

Idea: Consider an iterate of LK̄ .



MARKOV CHAINS AND LAPLACIAN ITERATES

Remark that

L2m
K̄ f (x) = LK̄2m

f (x) =

∫
K̄2m(x, z) f (z) dP(z),

where

K̄2m(x, y) =

∫
K̄(y, z1)K̄(z1, z2) . . . K̄(z2m−1, x) dP⊗(2m−1)(z1, . . . , z2m−1)

whereas the kernel M defines a Markov chain (Zk)k∈N with
transitions

M(x, y) =
dPZk | Zk−1=x

dP
(y)

and invariant measure Q defined by its density dQ/dP = µ.



PROPOSITION. For any x, y ∈ supp(P),〈
dPZm | Z0=x

dQ
,

dPZm | Z0=y

dQ

〉
L2

Q

= µ(x)−1/2K̄2m(x, y)µ(y)−1/2

Introduce

Km(x, y) = K̄2m(x, x)−1/2K̄2m(x, y)K̄2m(y, y)−1/2

In the new representation points are concentrated around ON vectors



IDEAL ALGORITHM IN TERMS OF KERNELS

Let K(x, y) = exp
(
− β‖x− y‖2

)
1. Form (Laplacian operator)

K̄(x, y) = µ(x)−1/2K(x, y)µ(y)−1/2

2. Construct

K̄2m(x, y) =

∫
K̄(y, z1)K̄(z1, z2) . . . K̄(z2m−1, x) dP⊗(2m−1)(z1, . . . , z2m−1)

3. Renormalize to obtain

Km(x, y) = K̄2m(x, x)−1/2K̄2m(x, y)K̄2m(y, y)−1/2

4. Cluster points according to the new representation
defined by the symmetric kernel Km.



NEXT STEP

I Construct an empirical algorithm

by estimating the kernels

K̄(x, y) = µ(x)−1/2K(x, y)µ(y)−1/2

and

K̄2m(x, y) =

∫
K̄(y, z1)K̄(z1, z2) . . . K̄(z2m−1, x) dP⊗(2m−1)(z1, . . . , z2m−1)

I Provide convergence results



TOWARD AN EMPIRICAL ALGORITHM: GRAM OPERATORS

Idea: Link the previous kernels (K̄ and K̄2m) with Gram operators

Note: the kernel K̄ defines
I a RHKSH where

K̄(x, y) = 〈φK̄(x), φK̄(y)〉H

I a Gram operator

GK̄φK̄(x) =

∫
〈φK̄(x), φK̄(z)〉H φK̄(z) dP(z)

=

∫
K̄(x, z)φK̄(z) dP(z)



AN ESTIMATOR OF K̄

Goal: Estimate K̄(x, y) = µ(x)−1/2K(x, y)µ(y)−1/2 where

µ(x) =

∫
K(x, z) dP(z)

Note: The kernel A(x, y) = K(x, y)1/2 = exp
(
−β

2 ‖x− y‖2
)

defines

I a RKHSHA where A(x, y) = 〈φA(x), φA(y)〉HA

I a Gram operator GAv =
∫
〈v, φA(z)〉HA φA(z) dP(z)

so that

µ(x) =

∫
〈φA(x), φA(z)〉2HA

dP(z) = 〈GAφA(x), φA(x)〉HA



AN ESTIMATOR OF K̄

Given any estimator of GA, we can estimate

µ(x) = 〈GAφA(x), φA(x)〉HA ' µ̂(x)

and thus we estimate K̄(x, y) = µ(x)−1/2K(x, y)µ(y)−1/2 with

K̂(x, y) = µ̂(x)−1/2K(x, y)µ̂(y)−1/2



AN ESTIMATOR OF K̄2m

PROPOSITION. With the previous notation,

K̄2m(x, y) = 〈G2m−1
K̄ φK̄(x), φK̄(y)〉H

where GK̄φK̄(x) =
∫

K̄(x, z)φK̄(z) dP(z).

We need to estimate GK̄ that depends on K̄ and P. Thus

K̄2m(x, y) = 〈G2m−1
K̄ φK̄(x), φK̄(y)〉H ' 〈G2m−1

K̂
φK̂(x), φK̂(y)〉H

where GK̂φK̂(x) =
∫

K̂(x, z) φK̂(z) dP(z) (still unknown!)



AN ESTIMATOR OF K̄2m

Given Q̂ any estimator of GK̂ we obtain

K̄2m(x, y) ' 〈G2m−1
K̂

φK̂(x), φK̂(y)〉H

' 〈Q̂2m−1φK̂(x), φK̂(y)〉H =: K̂2m(x, y)

where φK̂(x) = χ(x)φK̄(x) and χ(x) =
(
µ(x)/µ̂(x)

)1/2
.



Recall: K̂2m(x, y) = 〈Q̂2m−1φK̂(x), φK̂(y)〉H

where φK̂(x) = χ(x)φK̄(x) and χ(x) =
(
µ(x)/µ̂(x)

)1/2
.

PROPOSITION. For any x, y ∈ supp(P),

|K̂2m(x, y)− K̄2m(x, y)|

≤ max{1, ‖χ‖∞}2

µ(x)1/2µ(y)1/2

(
‖Q̂2m−1 − GK̄

2m−1‖∞ + 2‖χ− 1‖∞
)

and

‖Q̂2m−1−GK̄
2m−1‖∞ ≤ (2m−1)‖Q̂−GK̄‖∞

(
1 + ‖Q̂ − GK̄‖∞

)2m−2



CHOICE OF m

Notation:

I let λ̂1 ≥ λ̂2 ≥ . . . be the eigenvalues of Q̂
I let p the maximal number of classes

The number of iterations m is the solution of(
λ̂p

λ̂1

)m

' 1
100

Note: p can be overestimated



ESTIMATE OF A GRAM OPERATOR

Recall: We have seen that |K̂2m(x, y)− K̄2m(x, y)| depends on

I χ(x) =
(
µ(x)/µ̂(x)

)1/2

I ‖Q̂ − GK̄‖∞

Last step: Provide some estimate of Gram operators



Notation:

I Let K be a symmetric kernel
I letH be the RKHS defined by K

Goal: Estimate

Gv =

∫
〈v, z〉H z dP(z), v ∈ H

from an i.i.d. sample X1, . . . ,Xn ∈ H ∼ P

Assume that tr(G) < +∞



THE EMPIRICAL ESTIMATOR

The classical empirical estimator is defined by

Ḡv =
1
n

n∑
i=1

〈v,Xi〉 Xi

Let

I R = max
i=1,...,n

‖Xi‖

I X ∈ H be a r.v. of law P.

Assume that

κ = sup
θ

E[〈θ,X〉4]

E[〈θ,X〉2]2
< +∞



THEOREM. With probability ≥ 1− 2ε,

‖G − Ḡ‖∞ ≤ 4 max {‖G‖∞, σ}
[
B∗(‖G‖∞) + τ∗(‖G‖∞)

]
+ σ

where

B∗(‖G‖∞) =

√√√√2.032(κ− 1)

n

(
0.73 tr(G)

max{‖G‖∞, σ}
+ b + log(ε−1)

)

+

√
98.5κ tr(G)

n max{‖G‖∞, σ}
,

τ∗(‖G‖∞) =
0.86 R4

n(κ− 1) max{‖G‖∞, σ}2

[
0.73 tr(G)

max{‖G‖∞, σ}
+ b + log(ε−1)

]

and b ' log(log(n)) ≤ 4.35 if n ≤ 1020.



A MORE ROBUST ESTIMATOR

It is possible to use a PAC-Bayesian approach to construct a more
robust estimator Ĝ such that

THEOREM. With probability ≥ 1− 2ε,

‖G − Ĝ‖∞ ≤ 4 max {‖G‖∞, σ}B∗(‖G‖∞) + σ.

Note: In light tail situations, Ḡ and Ĝ behave in the same way



WORK IN PROGRESS: IMAGE CLASSIFICATION

Test the algorithm in the setting of image classification



WORK IN PROGRESS: CHOICE OF β

Recall: we consider the Gaussian kernel

K(x, y) = Kβ(x, y) = exp
(
− β‖x− y‖2)

The choice of β is based on the estimation of the trace of

Lβ f (x) =

∫
Kβ(x, z) f (z) dP(z)

Note: Let λ1 ≥ λ2 ≥ . . . be the eigenvalues of Lβ∑
i

λi =

∫
Kβ(x, x) dP(x) = 1

∑
i

λ2
i =

∫
Kβ(x, z)2 dP(x)dP(z) ≤ 1



WORK IN PROGRESS: CHOICE OF β

Note:

F(β) =

∫
Kβ(x, z)2 dP(x)dP(z)

{
−→ 1 if β → 0

−→ 0 if β →∞

Thus F(β) controls the spread of the eigenvalues

−→ we have to choose β sufficiently large

Goal: Find a way to calibrate β



THANK YOU


