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Example of principal curve for a data cloud
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General idea

A parameterized curve

f : I → Rd

t 7→ (f1(t), . . . , fd(t)),

passing through the “middle” of a probability distribution / data cloud.︸ ︷︷ ︸
theoretical / empirical object

Probability: random variable X.
Statistics: sample (i.i.d. copies of X) X1, . . . ,Xn.

Parametrization: arc-length or I = [0, 1].

Links with
Principal Component Analysis,
Vector quantization / k-means clustering.
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Original definition

Hastie and Stuetzle (1989)

E‖X‖2 <∞.

A principal curve for X is a parameterized curve, which is:
smooth (C∞)
non-self-intersecting
of finite length inside balls

self-consistent (Tarpey and Flury (1996)): for every t,

f(t) = E[X|tf(X) = t].
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Projection index

Here, the projection index tf is given by

tf(x) = sup{t, ‖x− f(t)‖ = inf
t′
‖x− f(t ′)‖}.

Compactness argument ⇒ well-defined: there exists at least one value t
achieving the minimum of ‖x− f(t)‖.
→ tf(x) is the largest t minimizing ‖x− f(t)‖.
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Interpretation

Notation : ti = tf(Xi )

Interpretation of self-consistency : f(t) = E[X|tf(X) = t].

For a data cloud: each point of a principal curve is the average of the
observations projecting there.
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Remarks

Link with PCA: a self-consistent line is a principal component.

Self-consistency for surfaces: generalization to principal surfaces.
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Existence

Existence of principal curves with this definition: open problem in general.

Duchamp and Stuetzle (1996a,b): particular cases in dimension 2.

Spherical and elliptical distributions.
Uniform distribution on a rectangle or an annular.
Distribution concentrated on a regular curve (this curve is a principal
curve).
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Fitting a principal curve

Iterative algorithm proposed by Hastie and Stuetzle (1989).

Statistical case: data cloud X1, . . . ,Xn.

Principal curve given by a polygonal line defined by (ti , f(ti )).
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Description of the algorithm

1 Initialization: f(0) first principal-component line, t(0)i = tf(0)(Xi ).
2 Alternating between:

Projection step → t
(j)
i = tf(j)(Xi ), then sort again by increasing

order.
Conditional expectation step → estimating
f(j+1) = E[X|tf(j)(X) = t] at t(j)1 , . . . , t

(j)
n by the means of a

smoothing method (LOWESS for each coordinate, multivariate
cubic splines).

3 Stopping criterion: variation of 1
n

∑n
i=1 ‖Xi − f(j)(t(j)i )‖2 below some

threshold.

Result depends on calibration of some constant: penalty factor or
neighborhood.
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Generative curve of a model and principal curve

Assume a model Xj = fj(S) + εj , j = 1, . . . , d , where S and the εj are
independent random variables, and the εj are centered.

In general, the generating curve f is not a principal curve.
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Curvature bias

Bias due to curvature: more mass outside than inside projecting on a point
where the curvature is large.

⇒ The principal curve is translated.
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Mixture model definition

Tibshirani (1992): mixture model to fix the “bias problem”.

gX density of X, built in 2 steps:
Latent variable S , density gS .
X generated according to conditional density gX|S with mean f(S)
(coordinates conditionally independent given S).

Definition: a principal curve is (gS , gX|S , f):
gX(x) =

∫
gX|S(x|s)gS(s)ds.

X1, . . . ,Xd conditionally independent given S .
f(s) = E[X|S = s].

In practice, EM-type algorithm.
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Constrained principal curves

Minimize over a certain class / under some constraint:

∆(f) = E‖X− f(tf(X))‖2 = E
[
min
t∈I
‖X− f(t)‖2

]
(theoretical criterion).

∆n(f) =
1
n

n∑
i=1

E‖Xi − f(tf(Xi ))‖2 =
1
n

n∑
i=1

min
t∈I
‖Xi − f(t)‖2

(empirical counterpart).
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Length constraint

Kégl et al. (2000)

A principal curve for X is a parameterized curve that minimizes ∆(f) over
all curves with length ≤ L.

Remark: such a principal curve is continuous, but not necessarily
differentiable.

→ This includes polygonal lines.
Important fact, in particular in the algorithmic point of view.
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Polygonal line algorithm

In practice, Kégl et al. (2000) propose a polygonal approximation of a
principal curve by an iterative algorithm.
Statistical context: observations X1, . . . ,Xn.

Notation:

∆(x, sj) = min
y∈sj
‖x− y‖2, j = 1, . . . , k ,

∆(x, vj) = ‖x− vj‖2, j = 1, . . . , k + 1.

Outer loop: add a vertex.
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Inner loop: projection step

Projection: similar to Voronoi partition.

Vj = {x ∈ Rd ,∆(x, vj) = ∆(x, f),∆(x, vj) < ∆(x, v`), ` = 1, . . . , j − 1}, j = 1, . . . , k + 1.

Sj =
{
x ∈ Rd \

k+1⋃
j=1

Vj ,∆(x, sj) = ∆(x, f),∆(x, sj) < ∆(x, s`), ` = 1, . . . , j − 1
}
, j = 1, . . . , k .

Sj+1
Sj

Sj−1

Sj−2

Vj−2

Vj−1

Vj

Vj+1

Vj+2
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Inner loop: optimization step

Optimization:
One vertex optimized after the other, in a cyclic manner, based
on a local version of the criterion ∆n(f)

1
n

[ ∑
Xi∈Sj−1

∆(Xi , sj−1) +
∑

Xi∈Vj

∆(Xi , vj) +
∑
Xi∈Sj

∆(Xi , sj)

]
.

Local angle penalty, proportional to the sum of the cosines of the
angles corresponding to the vertices vj−1, vj and vj+1.
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Turn constraint

Sandilya et Kulkarni (2002)

Consider curvature instead of length: consistent with the algorithm.
Considering curves with bounded length does not seem very natural
when thinking of principal components and axes.

Notion of turn or integral curvature, defined, for a polygonal line, by

K (f) =
k∑

j=2

φj .
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Principal curve with bounded turn

A principal curve for X is a parameterized curve that minimizes ∆(f) over
all curves of the class

CK ,τ = {f : K (f) ≤ K ,K (f)−K (f|BR
) ≤ τ(R)},

where τ is a continuous function decreasing to 0.

Alexandrov and Reshetnyak (1989): a link between both constraints.

Bounded turn + compact support ⇒ bounded length.

A. Fischer (Université Paris 7) Principal curves 23



Principal curve with bounded turn

A principal curve for X is a parameterized curve that minimizes ∆(f) over
all curves of the class

CK ,τ = {f : K (f) ≤ K ,K (f)−K (f|BR
) ≤ τ(R)},

where τ is a continuous function decreasing to 0.

Alexandrov and Reshetnyak (1989): a link between both constraints.

Bounded turn + compact support ⇒ bounded length.

A. Fischer (Université Paris 7) Principal curves 23



Inverting the minimization problem

Gerber and Whitaker (2013)

Differences between observations: variation orthogonal to the curve or
variation along the curve ?

Minimize E‖X− f(t(X))‖2 in t instead of f + explicit orthogonality
constraint:

E

[〈
f(t(X))− X,

d

ds
f(s)|s=t(X)

〉2
]
.
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Extension of another property of PCA

Delicado (2001); Delicado and Huerta (2003): principal curve of oriented
points.
Property of multivariate Gaussian distributions:
Conditional total variance of X given X ∈ H is minimal for hyperplane H
orthogonal to the first principal component.

H(x, y): hyperplane orthogonal to y passing through x.

m(x) = {E[X|X ∈ H(x, y(x))], where y(x) is the set of unit vectors
minimizing y 7→Tr(Var(X|X ∈ H(x, y)))}.

If X ∼ N (m,Σ) and v is the unit eigenvector associated to the largest
eigenvalue of Σ:

v is the unique unit vector minimizing y 7→Tr(Var(X|X ∈ H(x, y))) ∀x.
x belongs to the first principal component ⇔ x = m(x).
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Principal oriented points and associated principal curve

Principal oriented points of X : Γ(X) = {x ∈ Rd , x ∈ m(x)}.

A parameterized curve is a principal curve of oriented points if its
image is included in the set Γ(X) of principal oriented points.
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Local principal components

Einbeck et al. (2005a,b): several local principal components.

Localization by smoothing kernel.
Moving at each step in the direction of the first principal axis.

Verbeek et al. (2001)

“k-segment algorithm”: build a principal curve by connecting several
segments obtained by alternative algorithm mixing k-means and PCA.

Calculate Voronoi partition.
Segments obtained as first principal component of the Voronoi cells.
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Ridge point of view

Ozertem and Erdogmus (2011), Genovese et al. (2012)

Maximum instead of mean appearing in the self-consistency property.
→ Ridge lines of a probability density.

Assume that X admits a density gX, that is C 2 and never vanishes.

(λ1(x), v1(x)), . . . , λd(x), vd(x)) eigenvalues (distinct and non-zero) and
eigenvectors of the Hessian matrix of gX at x.
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Definition of the principal curve

Let Cm denote the set of points such that the gradient of gX is orthogonal
to d −m eigenvectors vp, p ∈ P , of the Hessian of gX.

→ C0 = {critical points of the density}.

The set of points x ∈ C1 such that λp(x) < 0, p ∈ P , is a principal curve
for the random vector X.
→ Local maxima in the vector space generated by the vp, p ∈ P .

Generalization to higher dimension: C2 leads to a principal surface of
dimension 2.
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Several principal curves

Some theoretical facts in R2 for the original definition: Duchamp and
Stuetzle (1996a,b).

If f1 and f2 are two principal curves for X , they cannot be
separated by a hyperplane.
Under some conditions (regularity of the curves, convexity of the
support of the distribution of X ), two principal curves always
intersect.

Some tricks with the algorithms or generalization ability of specific
definition:

Detecting different kind of nodes, with specific penalties: Kégl
and Krzyżak (2002)
Different initializations: Einbeck et al. (2005a)
Principal components of higher order: Einbeck et al. (2005b)
Extension of the definition by Delicado (2001) to higher orders.
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Notation and assumptions

E‖X‖2 <∞.

Parameterized curve f : [0, 1]→ Rd , length L (f).

∆(f) = E[mint∈[0,1] ‖X− f(t)‖2].

For L ≥ 0, G (L) = min{∆(f); f : [0, 1]→ Rd ,L (f) ≤ L}.

Also, G (L) = min{E[‖X− X̂‖2], X̂ random variable taking its values in
f([0, 1]), where f : [0, 1]→ Rd , L (f) ≤ L}.
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Main result: curve

Let L > 0, G (L) > 0, f : [0, 1]→ Rd such that L (f) ≤ L, ∆(f) = G (L).

Theorem
There exists ϕ : [0, 1]→ Rd such that ϕ([0, 1]) = f([0, 1]), where:

ϕ is right-derivable on [0, 1[, left-derivable on ]0, 1].
‖ϕ′d(t)‖ = L for t ∈ [0, 1[, ‖ϕ′g (t)‖ = L for t ∈]0, 1].
There exists a (vector-valued) signed measure ϕ′′ on [0, 1] such that
ϕ′d(t) = ϕ′′([0, t]) for t ∈ [0, 1[, ϕ′g (t) = ϕ′′([0, t[) for t ∈]0, 1],
ϕ′′({1}) = −ϕ′g (1).
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Main result: projection index

Theorem (continued)

There exist a random variable t̂, taking its values in [0, 1], and a constant
λ > 0, such that

‖X− ϕ(t̂)‖ = min
t∈[0,1]

‖X− ϕ(t)‖ a.s.,

and, for every Borel function g : [0, 1]→ Rd , locally bounded,

E[〈X− ϕ(t̂), g(t̂)〉] = −λ
∫
[0,1]
〈g(t), ϕ′′(dt)〉.

⇒ Finite curvature.
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Properties of G

Lemma
G is non increasing and continuous.
G is decreasing on [0, L0[, where

L0 = inf{L ≥ 0 : G (L) = 0} ∈ R+ ∪ {+∞}.

⇒ L (f) = L.
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Deviation from self-consistency

Let L > 0, G (L) > 0, f : [0, 1]→ Rd , L (f) ≤ L, ∆(f) = G (L).

X̂ random variable taking its values in f([0, 1]) such that
‖X− X̂‖ = mint∈[0,1] ‖f(t)‖ a.s.

Lemma

P(E[X|X̂] 6= X̂) > 0.
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Length and squared norm

Lemma
For L ≥ 0, G (L) = min{∆(f); f : [0, 1]→ Rd absolutely continuous,∫ 1
0 ‖f

′(t)‖2dt ≤ L2}.
Let L > 0, G (L) > 0, f : [0, 1]→ Rd absolutely continuous and such
that

∫ 1
0 ‖f

′(t)‖2dt ≤ L2 and ∆(f) = G (L). Then, ‖f ′(t)‖ = L dt-a.e.
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A few things already done, interesting things to do

Previous work → model selection:
Bounded
Gaussian

Some ideas for future projects:
Uniform distribution
Smart concentration tools
Mimicking various results for vector quantization
About graphs
Existence of double points in the length-constrained definition ?
...
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Thank you !
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