Some facts about principal curves

Aurélie Fischer

Université Paris Diderot - Paris 7

21 october 2015

Joint workshop Gudhi-TopData, Porquerolles

Various definitions of principal curve: a summary

- Introduction
- Self-consistency and closely related definitions
- Further points of view
- Several curves ?

Investigating properties of a length-constrained principal curve with Sylvain Delattre

- 4 B b - 4 B b

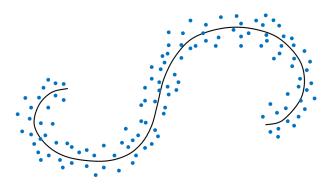
Various definitions of principal curve: a summary — Introduction

- Self-consistency and closely related definitions
- Further points of view
- Several curves ?

Investigating properties of a length-constrained principal curve with Sylvain Delattre

- 4 B b - 4 B b

Example of principal curve for a data cloud



3 N.

A parameterized curve

 $\mathbf{f}: I o \mathbb{R}^d$ $t \mapsto (f_1(t), \dots, f_d(t)),$

passing through the "middle" of a probability distribution / data cloud. theoretical / empirical object Probability: random variable X.

Statistics: sample (i.i.d. copies of X) X_1, \ldots, X_n .

Parametrization: arc-length or I = [0, 1].

Links with

- Principal Component Analysis,
- Vector quantization / k-means clustering.

(本語)と 本語(と) 本語(と) 一語

Various definitions of principal curve: a summary

- Introduction
- Self-consistency and closely related definitions
- Further points of view
- Several curves ?

Investigating properties of a length-constrained principal curve with Sylvain Delattre

・何ト ・ヨト ・ヨト

Hastie and Stuetzle (1989)

 $\mathbb{E}\|\boldsymbol{X}\|^2 < \infty.$

A principal curve for X is a parameterized curve, which is:

- smooth (C^{∞})
- non-self-intersecting
- of finite length inside balls

Hastie and Stuetzle (1989)

 $\mathbb{E}\|\boldsymbol{X}\|^2 < \infty.$

A principal curve for X is a parameterized curve, which is:

- smooth (C^{∞})
- non-self-intersecting
- of finite length inside balls
- self-consistent (Tarpey and Flury (1996)): for every t,

 $\mathbf{f}(t) = \mathbb{E}[\mathbf{X}|t_{\mathbf{f}}(\mathbf{X}) = t].$

- 本間 医 (本語) (本語) (二語)

Here, the projection index t_f is given by

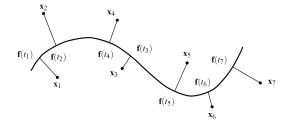
$$t_{\mathbf{f}}(\mathbf{x}) = \sup\{t, \|\mathbf{x} - \mathbf{f}(t)\| = \inf_{t'} \|\mathbf{x} - \mathbf{f}(t')\|\}.$$

Compactness argument \Rightarrow well-defined: there exists at least one value t achieving the minimum of $||\mathbf{x} - \mathbf{f}(t)||$.

 $\rightarrow t_{\mathbf{f}}(\mathbf{x})$ is the largest t minimizing $\|\mathbf{x} - \mathbf{f}(t)\|$.

イロト 不得下 イヨト イヨト

Notation : $t_i = t_f(X_i)$



Interpretation of self-consistency : $f(t) = \mathbb{E}[X|t_f(X) = t]$.

For a data cloud: each point of a principal curve is the average of the observations projecting there.

★ ∃ ▶ ★

• Link with PCA: a self-consistent line is a principal component.

э

イロト イポト イヨト イヨト

- Link with PCA: a self-consistent line is a principal component.
- Self-consistency for surfaces: generalization to principal surfaces.

э

(人間) トイヨト イヨト

Existence of principal curves with this definition: open problem in general.

Duchamp and Stuetzle (1996a,b): particular cases in dimension 2.

- Spherical and elliptical distributions.
- Uniform distribution on a rectangle or an annular.
- Distribution concentrated on a regular curve (this curve is a principal curve).

- Iterative algorithm proposed by Hastie and Stuetzle (1989).
- Statistical case: data cloud X_1, \ldots, X_n .
- Principal curve given by a polygonal line defined by $(t_i, f(t_i))$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三面

Description of the algorithm

• Initialization: $f^{(0)}$ first principal-component line, $t_i^{(0)} = t_{f^{(0)}}(X_i)$.

- Alternating between:
 - Projection step $\rightarrow t_i^{(j)} = t_{\mathbf{f}^{(j)}}(\mathbf{X}_i)$, then sort again by increasing order.
 - Conditional expectation step \rightarrow estimating $\mathbf{f}^{(j+1)} = \mathbb{E}[\mathbf{X}|t_{\mathbf{f}^{(j)}}(\mathbf{X}) = t]$ at $t_1^{(j)}, \ldots, t_n^{(j)}$ by the means of a smoothing method (LOWESS for each coordinate, multivariate cubic splines).
- Stopping criterion: variation of $\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{X}_{i} \mathbf{f}^{(j)}(t_{i}^{(j)})||^{2}$ below some threshold.

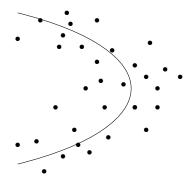
Result depends on calibration of some constant: penalty factor or neighborhood.

(ロ)、(型)、(E)、(E)、(E)、(O)(C)

Generative curve of a model and principal curve

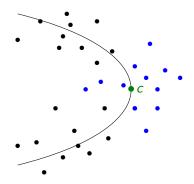
Assume a model $X_j = f_j(S) + \varepsilon_j$, j = 1, ..., d, where S and the ε_j are independent random variables, and the ε_j are centered.

In general, the generating curve f is not a principal curve.



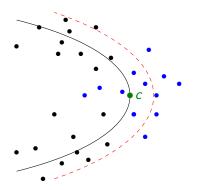
Bias due to curvature: more mass outside than inside projecting on a point where the curvature is large.

 \Rightarrow The principal curve is translated.



Bias due to curvature: more mass outside than inside projecting on a point where the curvature is large.

 \Rightarrow The principal curve is translated.



Tibshirani (1992): mixture model to fix the "bias problem".

 $g_{\mathbf{X}}$ density of \mathbf{X} , built in 2 steps:

- Latent variable S, density g_S .
- X generated according to conditional density $g_X|S$ with mean f(S) (coordinates conditionally independent given S).

Tibshirani (1992): mixture model to fix the "bias problem".

 $g_{\mathbf{X}}$ density of \mathbf{X} , built in 2 steps:

- Latent variable S, density g_S .
- X generated according to conditional density $g_X|S$ with mean f(S) (coordinates conditionally independent given S).

Definition: a principal curve is $(g_S, g_X|S, f)$:

- $g_{\mathbf{X}}(\mathbf{x}) = \int g_{\mathbf{X}|S}(\mathbf{x}|s)g_{S}(s)ds.$
- X_1, \ldots, X_d conditionally independent given S.
- $\mathbf{f}(s) = \mathbb{E}[\mathbf{X}|S = s].$

- 4 緑 ト 4 日 ト - 4 日 ト - 日

Tibshirani (1992): mixture model to fix the "bias problem".

 $g_{\mathbf{X}}$ density of \mathbf{X} , built in 2 steps:

- Latent variable S, density g_S .
- X generated according to conditional density $g_X|S$ with mean f(S) (coordinates conditionally independent given S).

Definition: a principal curve is $(g_S, g_X|S, f)$:

- $g_{\mathbf{X}}(\mathbf{x}) = \int g_{\mathbf{X}|S}(\mathbf{x}|s)g_{S}(s)ds.$
- X_1, \ldots, X_d conditionally independent given S.
- $\mathbf{f}(s) = \mathbb{E}[\mathbf{X}|S = s].$

In practice, EM-type algorithm.

- 本間 医 (本語) (本語) (二語)

Minimize over a certain class / under some constraint:

$$\begin{split} \Delta(\mathbf{f}) &= \mathbb{E} \|\mathbf{X} - \mathbf{f}(t_{\mathbf{f}}(\mathbf{X}))\|^{2} = \mathbb{E} \left[\min_{t \in I} \|\mathbf{X} - \mathbf{f}(t)\|^{2} \right] \\ \text{(theoretical criterion).} \\ \Delta_{n}(\mathbf{f}) &= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \|\mathbf{X}_{i} - \mathbf{f}(t_{\mathbf{f}}(\mathbf{X}_{i}))\|^{2} = \frac{1}{n} \sum_{i=1}^{n} \min_{t \in I} \|\mathbf{X}_{i} - \mathbf{f}(t)\|^{2} \\ \text{(empirical counterpart).} \end{split}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

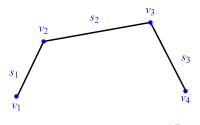
Kégl et al. (2000)

A principal curve for X is a parameterized curve that minimizes $\Delta(f)$ over all curves with length $\leq L$.

Remark: such a principal curve is continuous, but not necessarily differentiable.

 \rightarrow This includes polygonal lines.

Important fact, in particular in the algorithmic point of view.



Polygonal line algorithm

In practice, Kégl et al. (2000) propose a polygonal approximation of a principal curve by an iterative algorithm. Statistical context: observations X_1, \ldots, X_n .

Notation:

$$\Delta(\mathbf{x}, s_j) = \min_{\mathbf{y} \in s_j} \|\mathbf{x} - \mathbf{y}\|^2, \quad j = 1, \dots, k,$$

$$\Delta(\mathbf{x}, v_j) = \|\mathbf{x} - v_j\|^2, \quad j = 1, \dots, k+1.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Polygonal line algorithm

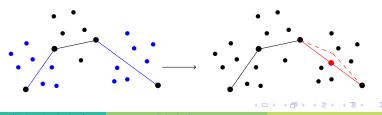
In practice, Kégl et al. (2000) propose a polygonal approximation of a principal curve by an iterative algorithm. Statistical context: observations X_1, \ldots, X_n .

Notation:

$$\Delta(\mathbf{x}, s_j) = \min_{\mathbf{y} \in s_j} \|\mathbf{x} - \mathbf{y}\|^2, \quad j = 1, \dots, k,$$

$$\Delta(\mathbf{x}, v_j) = \|\mathbf{x} - v_j\|^2, \quad j = 1, \dots, k+1.$$

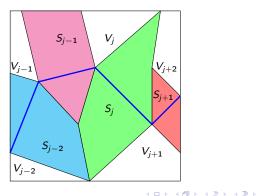
Outer loop: add a vertex.



Inner loop: projection step

• Projection: similar to Voronoi partition.

$$\begin{split} &V_j = \{\mathbf{x} \in \mathbb{R}^d, \Delta(\mathbf{x}, v_j) = \Delta(\mathbf{x}, \mathbf{f}), \Delta(\mathbf{x}, v_j) < \Delta(\mathbf{x}, v_\ell), \ell = 1, \dots, j-1\}, \, j = 1, \dots, k+1. \\ &S_j = \Big\{\mathbf{x} \in \mathbb{R}^d \setminus \bigcup_{j=1}^{k+1} V_j, \Delta(\mathbf{x}, s_j) = \Delta(\mathbf{x}, \mathbf{f}), \Delta(\mathbf{x}, s_j) < \Delta(\mathbf{x}, s_\ell), \ell = 1, \dots, j-1\Big\}, \, j = 1, \dots, k. \end{split}$$



3

• Optimization:

• One vertex optimized after the other, in a cyclic manner, based on a local version of the criterion $\Delta_n(f)$

$$\frac{1}{n} \bigg[\sum_{\mathbf{X}_i \in S_{j-1}} \Delta(\mathbf{X}_i, s_{j-1}) + \sum_{\mathbf{X}_i \in V_j} \Delta(\mathbf{X}_i, v_j) + \sum_{\mathbf{X}_i \in S_j} \Delta(\mathbf{X}_i, s_j) \bigg].$$

 Local angle penalty, proportional to the sum of the cosines of the angles corresponding to the vertices v_{j-1}, v_j and v_{j+1}.

Turn constraint

Sandilya et Kulkarni (2002)

- Consider curvature instead of length: consistent with the algorithm.
- Considering curves with bounded length does not seem very natural when thinking of principal components and axes.

・ 伺 ト ・ ヨ ト ・ ヨ ト

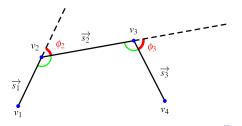
Turn constraint

Sandilya et Kulkarni (2002)

- Consider curvature instead of length: consistent with the algorithm.
- Considering curves with bounded length does not seem very natural when thinking of principal components and axes.

Notion of turn or integral curvature, defined, for a polygonal line, by

$$\mathscr{K}(\mathbf{f}) = \sum_{j=2}^{k} \phi_j.$$



A principal curve for X is a parameterized curve that minimizes $\Delta(f)$ over all curves of the class

 $\mathcal{C}_{K,\tau} = \{\mathbf{f}: \mathscr{K}(\mathbf{f}) \leq K, \mathscr{K}(\mathbf{f}) - \mathscr{K}(\mathbf{f}|_{B_R}) \leq \tau(R)\},\$

where τ is a continuous function decreasing to 0.

イロト イポト イヨト イヨト

A principal curve for X is a parameterized curve that minimizes $\Delta(f)$ over all curves of the class

 $\mathcal{C}_{\mathcal{K},\tau} = \{\mathbf{f}: \mathscr{K}(\mathbf{f}) \leq \mathcal{K}, \mathscr{K}(\mathbf{f}) - \mathscr{K}(\mathbf{f}|_{B_R}) \leq \tau(R)\},\$

where τ is a continuous function decreasing to 0.

Alexandrov and Reshetnyak (1989): a link between both constraints. Bounded turn + compact support \Rightarrow bounded length.

Inverting the minimization problem

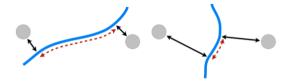
Gerber and Whitaker (2013)

Differences between observations: variation orthogonal to the curve or variation along the curve ?

Inverting the minimization problem

Gerber and Whitaker (2013)

Differences between observations: variation orthogonal to the curve or variation along the curve ?



Minimize $\mathbb{E} \|\mathbf{X} - \mathbf{f}(t(\mathbf{X}))\|^2$ in *t* instead of \mathbf{f} + explicit orthogonality constraint:

$$\mathbb{E}\left[\left\langle \mathsf{f}(t(\mathsf{X})) - \mathsf{X}, \frac{d}{ds}\mathsf{f}(s)|_{s=t(\mathsf{X})}\right\rangle^2\right]$$

Various definitions of principal curve: a summary

- Introduction
- Self-consistency and closely related definitions
- Further points of view
- Several curves ?

Investigating properties of a length-constrained principal curve with Sylvain Delattre

・ 何 ト ・ ヨ ト ・ ヨ ト

Delicado (2001); Delicado and Huerta (2003): principal curve of oriented points.

Property of multivariate Gaussian distributions:

Conditional total variance of X given $X \in H$ is minimal for hyperplane H orthogonal to the first principal component.

Delicado (2001); Delicado and Huerta (2003): principal curve of oriented points.

Property of multivariate Gaussian distributions:

Conditional total variance of X given $X \in H$ is minimal for hyperplane H orthogonal to the first principal component.

H(x, y): hyperplane orthogonal to y passing through x.

 $m(\mathbf{x}) = \{ \mathbb{E}[\mathbf{X} | \mathbf{X} \in H(\mathbf{x}, \mathbf{y}(\mathbf{x}))], \text{ where } \mathbf{y}(\mathbf{x}) \text{ is the set of unit vectors} \\ \text{minimizing } \mathbf{y} \mapsto \mathsf{Tr}(\mathsf{Var}(\mathbf{X} | \mathbf{X} \in H(\mathbf{x}, \mathbf{y}))) \}.$

If $X \sim \mathcal{N}(m, \Sigma)$ and v is the unit eigenvector associated to the largest eigenvalue of Σ :

- v is the unique unit vector minimizing $\mathbf{y} \mapsto \text{Tr}(\text{Var}(\mathbf{X} | \mathbf{X} \in H(\mathbf{x}, \mathbf{y}))) \forall \mathbf{x}$.
- **x** belongs to the first principal component $\Leftrightarrow \mathbf{x} = m(\mathbf{x})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○へ⊙

- Principal oriented points of X: $\Gamma(\mathbf{X}) = \{\mathbf{x} \in \mathbb{R}^d, \mathbf{x} \in m(\mathbf{x})\}.$
- A parameterized curve is a principal curve of oriented points if its image is included in the set Γ(X) of principal oriented points.

Einbeck et al. (2005a,b): several local principal components.

- Localization by smoothing kernel.
- Moving at each step in the direction of the first principal axis.

Einbeck et al. (2005a,b): several local principal components.

- Localization by smoothing kernel.
- Moving at each step in the direction of the first principal axis.

Verbeek et al. (2001)

"*k*-segment algorithm": build a principal curve by connecting several segments obtained by alternative algorithm mixing *k*-means and PCA.

- Calculate Voronoi partition.
- Segments obtained as first principal component of the Voronoi cells.

Ozertem and Erdogmus (2011), Genovese et al. (2012)

Maximum instead of mean appearing in the self-consistency property. \rightarrow Ridge lines of a probability density.

Assume that **X** admits a density $g_{\mathbf{X}}$, that is C^2 and never vanishes.

 $(\lambda_1(\mathbf{x}), v_1(\mathbf{x})), \dots, \lambda_d(\mathbf{x}), v_d(\mathbf{x}))$ eigenvalues (distinct and non-zero) and eigenvectors of the Hessian matrix of $g_{\mathbf{X}}$ at \mathbf{x} .

イロト イポト イヨト イヨト 二日

Let C_m denote the set of points such that the gradient of g_X is orthogonal to d - m eigenvectors v_p , $p \in P$, of the Hessian of g_X .

 $\rightarrow \mathcal{C}_0 = \{ \text{critical points of the density} \}.$

The set of points $\mathbf{x} \in C_1$ such that $\lambda_p(\mathbf{x}) < 0$, $p \in P$, is a principal curve for the random vector \mathbf{X} .

 \rightarrow Local maxima in the vector space generated by the v_p , $p \in P$.

Generalization to higher dimension: C_2 leads to a principal surface of dimension 2.

(日) (周) (日) (日) (日)

Various definitions of principal curve: a summary

- Introduction
- Self-consistency and closely related definitions
- Further points of view
- Several curves ?

Investigating properties of a length-constrained principal curve with Sylvain Delattre

- 4 B b - 4 B b

Several principal curves

- Some theoretical facts in \mathbb{R}^2 for the original definition: Duchamp and Stuetzle (1996a,b).
 - If f_1 and f_2 are two principal curves for X, they cannot be separated by a hyperplane.
 - Under some conditions (regularity of the curves, convexity of the support of the distribution of X), two principal curves always intersect.

Several principal curves

- Some theoretical facts in \mathbb{R}^2 for the original definition: Duchamp and Stuetzle (1996a,b).
 - If f_1 and f_2 are two principal curves for X, they cannot be separated by a hyperplane.
 - Under some conditions (regularity of the curves, convexity of the support of the distribution of X), two principal curves always intersect.
- Some tricks with the algorithms or generalization ability of specific definition:
 - Detecting different kind of nodes, with specific penalties: Kégl and Krzyżak (2002)
 - Different initializations: Einbeck et al. (2005a)
 - Principal components of higher order: Einbeck et al. (2005b)
 - Extension of the definition by Delicado (2001) to higher orders.

(日) (周) (日) (日) (日)

Various definitions of principal curve: a summary

- Introduction
- Self-consistency and closely related definitions
- Further points of view
- Several curves ?

Investigating properties of a length-constrained principal curve with Sylvain Delattre

- 4 B b - 4 B b

 $\mathbb{E}\|\boldsymbol{\mathsf{X}}\|^2 < \infty.$

Parameterized curve $f : [0,1] \rightarrow \mathbb{R}^d$, length $\mathscr{L}(f)$.

 $\Delta(\mathbf{f}) = \mathbb{E}[\min_{t \in [0,1]} \|\mathbf{X} - \mathbf{f}(t)\|^2].$

For $L \ge 0$, $G(L) = \min{\{\Delta(\mathbf{f}); \mathbf{f} : [0, 1] \rightarrow \mathbb{R}^d, \mathscr{L}(\mathbf{f}) \le L\}}$.

 $\mathbb{E}\|\boldsymbol{\mathsf{X}}\|^2 < \infty.$

Parameterized curve $f : [0,1] \rightarrow \mathbb{R}^d$, length $\mathscr{L}(f)$.

 $\Delta(\mathbf{f}) = \mathbb{E}[\min_{t \in [0,1]} \|\mathbf{X} - \mathbf{f}(t)\|^2].$

For $L \ge 0$, $G(L) = \min{\{\Delta(\mathbf{f}); \mathbf{f} : [0, 1] \rightarrow \mathbb{R}^d, \mathscr{L}(\mathbf{f}) \le L\}}$.

Also, $G(L) = \min\{\mathbb{E}[||\mathbf{X} - \hat{\mathbf{X}}||^2], \hat{\mathbf{X}} \text{ random variable taking its values in } \mathbf{f}([0, 1]), \text{ where } \mathbf{f} : [0, 1] \to \mathbb{R}^d, \mathscr{L}(\mathbf{f}) \leq L\}.$

Let L > 0, G(L) > 0, $f : [0,1] \rightarrow \mathbb{R}^d$ such that $\mathscr{L}(f) \leq L$, $\Delta(f) = G(L)$.

Theorem

There exists $\varphi : [0,1] \to \mathbb{R}^d$ such that $\varphi([0,1]) = f([0,1])$, where:

- φ is right-derivable on [0, 1[, left-derivable on]0, 1].
- $\|\varphi'_d(t)\| = L$ for $t \in [0, 1[, \|\varphi'_g(t)\| = L$ for $t \in]0, 1]$.
- There exists a (vector-valued) signed measure φ'' on [0,1] such that $\varphi'_d(t) = \varphi''([0,t])$ for $t \in [0,1[, \varphi'_g(t) = \varphi''([0,t[) \text{ for } t \in]0,1], \varphi''(\{1\}) = -\varphi'_g(1).$

イロト イポト イヨト イヨト 二日

Theorem (continued)

There exist a random variable \hat{t} , taking its values in [0,1], and a constant $\lambda > 0$, such that

$$\|\mathbf{X} - \varphi(\hat{t})\| = \min_{t \in [0,1]} \|\mathbf{X} - \varphi(t)\|$$
 a.s.,

and, for every Borel function $g:[0,1] \to \mathbb{R}^d$, locally bounded,

$$\mathbb{E}[\langle \mathbf{X} - arphi(\hat{t}), g(\hat{t})
angle] = -\lambda \int_{[0,1]} \langle g(t), arphi''(dt)
angle.$$

\Rightarrow Finite curvature.

Lemma

- G is non increasing and continuous.
- G is decreasing on $[0, L_0[$, where

 $L_0 = \inf\{L \ge 0 : G(L) = 0\} \in \mathbb{R}_+ \cup \{+\infty\}.$

 $\Rightarrow \mathscr{L}(\mathsf{f}) = L.$

3

イロト 不得下 イヨト イヨト

Let L > 0, G(L) > 0, $f : [0,1] \rightarrow \mathbb{R}^d$, $\mathscr{L}(f) \leq L$, $\Delta(f) = G(L)$.

 \hat{X} random variable taking its values in f([0, 1]) such that $\|X - \hat{X}\| = \min_{t \in [0, 1]} \|f(t)\|$ a.s.

Lemma

- For $L \ge 0$, $G(L) = \min{\{\Delta(f); f : [0,1] \to \mathbb{R}^d \text{ absolutely continuous,} \int_0^1 \|f'(t)\|^2 dt \le L^2 \}}$.
- Let L > 0, G(L) > 0, $\mathbf{f} : [0, 1] \to \mathbb{R}^d$ absolutely continuous and such that $\int_0^1 \|\mathbf{f}'(t)\|^2 dt \le L^2$ and $\Delta(\mathbf{f}) = G(L)$. Then, $\|\mathbf{f}'(t)\| = L$ dt-a.e.

・ 何 ト ・ ヨ ト ・ ヨ ト …

A few things already done, interesting things to do

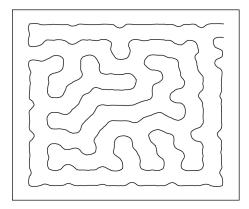
\bullet Previous work \rightarrow model selection:

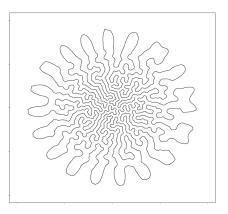
- Bounded
- Gaussian

• Some ideas for future projects:

- Uniform distribution
- Smart concentration tools
- Mimicking various results for vector quantization
- About graphs
- Existence of double points in the length-constrained definition ?

• ...





イロト イロト イヨト イヨト

- A. D. Alexandrov and Y. G. Reshetnyak. *General Theory of Irregular Curves*. Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1989.
- P. Delicado. Another look at principal curves and surfaces. *Journal of Multivariate Analysis*, 77:84–116, 2001.
- P. Delicado and M. Huerta. Principal curves of oriented points: theoretical and computational improvements. *Computational Statistics*, 18:293–315, 2003.
- T. Duchamp and W. Stuetzle. Extremal properties of principal curves in the plane. *The Annals of Statistics*, 24:1511–1520, 1996a.
- T. Duchamp and W. Stuetzle. Geometric properties of principal curves in the plane. In H. Rieder, editor, *Robust Statistics, Data Analysis, and Computer Intensive Methods: in Honor of Peter Huber's 60th Birthday,* volume 109 of *Lecture Notes in Statistics,* pages 135–152. Springer-Verlag, New York, 1996b.

References II

- J. Einbeck, G. Tutz, and L. Evers. Local principal curves. *Statistics and Computing*, 15:301–313, 2005a.
- J. Einbeck, G. Tutz, and L. Evers. Exploring multivariate data structures with local principal curves. In C. Weihs and W. Gaul, editors, *Classification – The Ubiquitous Challenge, Proceedings of the 28th Annual Conference of the Gesellschaft für Klassifikation, University of Dortmund*, Studies in Classification, Data Analysis, and Knowledge Organization, pages 256–263. Springer, Berlin, Heidelberg, 2005b.
- C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman. The geometry of nonparametric filament estimation. *Journal of the American Statistical Association*, 107:788–799, 2012.
- S. Gerber and R. Whitaker. Regularization-free principal curve estimation. *Journal of Machine Learning Research*, 14:1285–1302, 2013.
- T. Hastie and W. Stuetzle. Principal curves. *Journal of the American Statistical Association*, 84:502–516, 1989.

э

- B. Kégl and A. Krzyżak. Piecewise linear skeletonization using principal curves. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24:59–74, 2002.
- B. Kégl, A. Krzyżak, T. Linder, and K. Zeger. Learning and design of principal curves. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22:281–297, 2000.
- U. Ozertem and D. Erdogmus. Locally defined principal curves and surfaces. *Journal of Machine Learning Research*, 12:1249–1286, 2011.
- T. Tarpey and B. Flury. Self-consistency: a fundamental concept in statistics. *Statistical Science*, 11:229–243, 1996.
- J. J. Verbeek, N. Vlassis, and B. Kröse. A soft *k*-segments algorithm for principal curves. In *Proceedings of International Conference on Artificial Neural Networks 2001*, pages 450–456, 2001.

3

イロト 不得下 イヨト イヨト