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What do we provide?
Given two point clouds, we localize the discrepancy,

to find spatially coherent regions and provide a cluster based
of high discrepancy, decomposed effect size.
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Data discrepancies: two-sample problem and effect size

. The two-sample test (TST) approach

– Two datasets x (n0) ≡ {x1, . . . , xn0} and y (n1) ≡ {y1, . . . , yn1} in Rd

as i.i.d. samples from two unknown densities fX and fY
– Hypothesis testing: H0 : fX = fY , H1 : fX and fY differ in some way.
→ accept/reject: summarizes difference in a single bit

. Effect size: “quantitative measure of the strength of a phenomenon”
– p-value gives magnitude of the statistical significance

but “Statistical significance = Effect size × Sample size”
– The statistic of TST reflects the global discrepancy

and could be considered as a measure of the effect size

. Towards a nonparametric multivariate effect size:
– effect size must be standardized in some way in order to be comparable
– we seek to represent more general discrepancies,

in multidimensional spaces



Outline of our method: three steps

I Step 1: Estimate a measure of local discrepancy on each given point

I Step 2: Aggregate local discrepancy in a spatial coherent way, using
topological persistence analysis to spot stable features, and produce
clusters by removing low discrepancy points

I Step 3: Produce an effect size bar plot to summarize the discrepancy
profile
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Pre-requisite: Jensen-Shannon divergence

. Kullback-Leibler divergence (KLD):
DKL (f ‖g) ≡

∫∞
−∞ f (x) log f (x)

g(x)
dx

DKL (P‖Q) ≡
∑

l∈A P(l) log P(l)
Q(l)

. The Jensen-Shannon divergence (JSD): symmetrizes and smoothes the KLD:
Consider f ≡ (fX +fY )/2, then

JS (fX ‖fY ) ≡
1

2
(DKL (fX ‖f ) + DKL (fY ‖f ))

. Main properties of JSD:

– JSD is symmetric
– JSD is bounded between 0 and 1
– Its square root yields a metric

.Ref: Endres and Schindelin; IEEE Trans. Info. Theory, 2003



Step 1: Jensen-Shannon divergence and its decomposition

. Notations: two unknown densities fX and fY , and the associated samples x(n0) and y (n1)

. Two random variables are implicitly defined:
– a position variable Z with density fZ ≡ f = (fX + fY )/2
– a binary label L ∈ {0, 1} with pmf P(0) = 1/2,

indicating from which density (fX or fY ) an instance of Z is obtained.

. Equivalently, one defines the following pair of random variables:

(L,Z) =

{
(0,X ) with prob. 1

2

(1,Y ) with prob. 1
2

. Associated conditional and unconditional probability mass functions:{
P(l |z) = P (L = l |Z = z)

P(l) = P (L = l) = 1
2

. Lemma: the JSD can be expressed as:

JS (fX ‖fY ) =

∫
Rd

fZ (z)DKL (P(·|z)‖P(·)) dz



Step 1: the local discrepancy

. From

JS (fX‖fY ) =

∫
Rd

fZ (z)DKL (P(·|z)‖P(·)) dz

. We define the discrepancy at location z as

δ(z) ≡ DKL (P(·|z)‖P(·)) .

. Remarks:

– δ(z) ∈ [0, 1] and δ(z) = 0⇔ fX (z) = fY (z).
– P(l) is known but P(l |z) is not:

we need to estimate P(l |z) at each given location z .



Step 1: random design nonparametric regression

. Consider random variables: location Z ∈ Rd , and response variable R ∈ R

. Associated regression function:

m(z) ≡ E [R|Z = z] .

. Consider data: {(Zi ,Ri )}i=1,...,n

. kn-nearest neighbors regressor: upon sorting samples by increasing distance
to z :

mn(z) =
1

kn

∑
i=1,...,kn

R(i,n)(z)

. NB: mn(z) is a random variables: some convergence assessment is in order.

.Ref: L. Györfi and A. Krzyzak; A distribution-free theory of

nonparametric regression; 2002



Step 1: estimation via k-nearest neighbors

. Using the labels as reponse variable R ≡ L

. Estimate P(·|z) via random design nonparametric regression:
– build an estimator mn(z) using n i.i.d. realizations of (L,Z) for:

m(z) = E [L|Z = z] = P(1|z).

– Then, if 0 ≤ mn(z) ≤ 1, we can use the following estimator for P(l |z):

P̂n (l |z) ≡ |1− l −mn(z)|.

. Thm: Using a kn-nearest neighbors regressor, s.t. kn
log n
→∞ and kn

n
→ 0:

δ̂n(z) ≡ DKL

(
P̂n (·|z)‖P(·)

)
n→∞−−−→ δ(z) a.s.

for f -almost all z ∈ Rd .



The random multiplexer to obtain
i.i.d. realizations of (L,Z )

. A random sampler produces i.i.d. realizations of (Z , L) from x (n0) and y (n1):

L ∼ B (1/2)X

Y
(L,Z)

B: Bernoulli
distribution

Figure: Random multiplexer generating pairs (label, position).

. The case of populations of uneven sizes:

– the multiplexer will consume faster the small population, and halt
– unused samples of the large population: detrimental since information loss
– resample B times and take the median of estimates, on a per sample basis



Step 1: Illustration: statistical image comparison
. Images: taking 2× 2 blocks in each color channel (R,G,B) yields points in R12.
. Interpolate gray scale pixel color with red scale representing discrepancy at each
pixel (upper left corner of the corresponding block) estimated with kn = n1/3

. Multidimensional Scaling of
parameter space:

The two populations. . .

. . . colored with δ̂:
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Step 2: Building the clusters from sublevel sets of −δ̂(z)

. Ingredients:

I Height function / landscape:
estimated discrepancy δ̂(z)

I Parameter: significance
threshold δmax

. Construction:

I Idea: one cluster ∼ one
connected component of the
sublevel set of −δ̂(z) defined
by δmax

I Extra ingredient: smoothing
the landscape to get rid of
small clusters : smoothing
using topological persistence
at threshold ρ

(B)

−δmax

(C)

δ̂

Rd

Rd

−δmax

−δ̂

−δ̂

(A)

Rd
zi

δ̂(zi)

C1 C2 C3 C4

C1 ∪ C2 C3 ∪ C4

. NB: spurions samples removed
from clusters due to filtering wrt
δmax .



Step 2: Building the clusters: persistence diagram

. Partition of the PD induced by:

I Significance threshold δmax

I Persistence threshold ρ

y : Death

x : Birth

y = x

0

0

−δmax

−δmax

R1
R3

R5

R4 R2

y = x + ρ

−1
−1

. Local minimum m of −δ̂(z):

I Selected/rejected: m was
born before −δmax .

I Persistent/canceled:
persistence(m) ≥ ρ

I Filtered (un-filtered): the
catchment basin of m dies
after (before) −δmax .

. Observation:

I # clusters : 1 + # points in
region R5 of the PD.

I # persistent local minima : 1
+ num points in the region
R4 ∪ R5 of the PD.



Step 2: Illustration: statistical image comparison
. Images again:

. Parameters: k = 10 (NNG), ρ = 0.1, δmax = 0.1
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Landscape Simplification:
Union-find versus recursive simplification of the Morse-Smale-Witten complex

. Clustering: one versus many:
– Work with critical points (instead of all samples)
– Pre-process the c.p. to redo analysis at various δmax threshold
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.Ref: Chazal et al; Tomato; ACM SoCG 2011

.Ref: Banyaga, Hurtubise; Lectures on Morse Homology; 2004

.Ref: Cazals, Cohen-Steiner; CGTA, 2011
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Step 3: Effect size: discrepancy profile

. Global estimated JSD: area under dashed line

. Maximum JSD: area under continuous line (=1)

. Contribution of each cluster C to JSD: area of bar

JSC (fX‖fY ) ≡ 1

n0 + n1

∑
z∈(x(n0)∪y (n1))∩C

δ̂(z).

. Mass of each cluster: bar width

. Population balance in each cluster: bar color

. Ellipses:
– Large global JSD (dashed line)
– Contributed by 2+2 balanced clusters

. Images:
– Smaller global JSD (dashed line)
– Contributed by 2 clusters
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Wrapping-up: workflow

L ∼ B(1/2)
x(n0)

y(n1) {zji , lji}i=1,...,mj

Repeat from j = 1 to B

kn′
b

D
a
ta
se
ts
:t
w
o
p
oi
n
t
cl
o
u
d
s

Output: estimated discrepancy

δ̂(zi), zi ∈ x(n0) ∪ y(n1)

JSD decomp. by clusters {Ci}

JSCi
(fX‖fY )

Output: divergence by cluster

Output:

{Ci} s.t.
{
∪Ci = x(n0) ∪ y(n1)

∩Ci = ∅

Clustering with topological
persistence:
- k-Nearest neighbor graph
- Persistence: ρ
- Filtering: δmax

estimate
for δ(z)

. Compulsory parameters:
kn: regression parameter
δmax : discrepancy significance threshold
ρ: persistence threshold
k: num. of nearest neighbors for the persistence based clustering

. Optional parameter:
B: num. repetition in case of unbalanced populations
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Gaussian mixture: specification

. Goal: ability to spot regions of different intensity of discrepancy.

. Data:

– distributions for X and Y : two mixtures of four 2D Gaussians
– n0 = n1 = 2000.



Gaussian mixture: results I

– k = 6 (NNG)
– δmax = 0.13 yields two large clusters
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Gaussian mixture: results II

– k = 6 (NNG)
– δmax = 0.25 yields four small clusters
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Crenels: specification
. Goal: coping with data of low intrinsic dimension (in fact: 1 in d=121)
. Data:

– Points:
– consider the pixels (0/1) of a m ×m grayscale image T
– rotating the image I yields a point cloud (1 point per image)
– m = 11 yields d = 121; but intrinsic dimension is one

– Populations:
red points: from RV X = rotate(I ,AX ) with uniform RV AX ∼ U(s, t),
blue points: from RV Y = rotate(I ,AY ), with:

consider two Bernoulli RV B1 ∼ B(p1) and B2 ∼,B(p2),
two uniform RV U1 ∼ U(a, b) and U1 ∼ U(c, d).
Define: AY = B1(B2U1 + (1− B2)U2) + (1− B1)AX .

n0 = 2000, n1 = 2000

. Rotated images: (a) Orignal image (b,c,d,e) Example rotated images

(a) (b) (c) (d) (e)



Crenels: results

– k = 30 (NNG),
– δmax = 0.1
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Handwritten digits: specification

. Handwritten digits:
– One digit: 28× 28 grayscale image: d = 784
– Populations: n0 = n1 = 1600

. More specifically: two mixtures of 3s, 6s and 8s

digit blue red

3 100 1000
6 500 500
8 1000 100

. Images from: http://www.cs.nyu.edu/~roweis/data.html:

.Ref: LeCun and Cortes; The MNIST database of handwritten digits, 1998

http://www.cs.nyu.edu/~roweis/data.html


Handwritten: results

– k = 30 (NNG),
– δmax = 0.35
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Outlook: about regression

I k-NN based regressors: adapt to local intrinsic dimension: convergence
results proved (L2 sense) for marginals µ which are doubling measures.

I random projection tree based regressors: convergence results proved (L2

sense) when X has Assouad dimension d . NB: more efficient than k-NN
since cells of RPT have constant size.

I Open problem (AFAIK): strong pointwise consistency using RPTrees.

.Ref: Kpotufe; k-NN regression adapts to local intrinsic dimension;

NIPS 2011

.Ref: Kpotufe and Dasgupta; A tree-based regressor that adapts to

intrinsic dimension; J. of Computer and System Sciences, 2012



Outlook: general

I About p-values:

I Use a classical test, possibly Maximum Mean Discrepancy
(Gretton et al).

I Also: the k-NN estimator used in a sequential way can be used
to compute a p-value in a flexible way—the number of samples
to process need not be known in advance.

I More applications:

I Finding clusters with low discrepancy: study δ̂.
I Goodness-of-fit analysis: sampling from a given model, then

comparing data to spot discrepancies

I Feedback versus feature based selection: Compare to NIPS 2015 paper
Principal differences analysis: feature based identification in the context
of TST
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