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What do we provide?

Given two point clouds, we localize the discrepancy,
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to find spatially coherent regions and provide a cluster based
of high discrepancy, decomposed effect size.
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Beyond two-sample tests

Goals



Data discrepancies: two-sample problem and effect size

> The two-sample test (TST) approach
— Two datasets x\™) = {x1,..., x5, } and y™) = {y1,...,yn } in R
as i.i.d. samples from two unknown densities fx and fy
— Hypothesis testing: Hp : fx = fy,H;i : fx and fy differ in some way.
— accept/reject: summarizes difference in a single bit

> Effect size: “quantitative measure of the strength of a phenomenon”
— p-value gives magnitude of the statistical significance
but “Statistical significance = Effect size x Sample size”
— The statistic of TST reflects the global discrepancy
and could be considered as a measure of the effect size

> Towards a nonparametric multivariate effect size:
— effect size must be standardized in some way in order to be comparable
— we seek to represent more general discrepancies,
in multidimensional spaces



Outline of our method: three steps

> Step 1: Estimate a measure of local discrepancy on each given point

> Step 2: Aggregate local discrepancy in a spatial coherent way, using
topological persistence analysis to spot stable features, and produce
clusters by removing low discrepancy points

> Step 3: Produce an effect size bar plot to summarize the discrepancy
profile



Beyond two-sample tests

Step 1



Pre-requisite: Jensen-Shannon divergence

> Kullback-Leibler divergence (KLD):
D1 (fllg) = x) log £ 4.
kL (Flg) = [°2, F(x)log 0 dx
Di, (P[1Q) = Sie 4 P(1) 108 1)
KL IeA LX)

> The Jensen-Shannon divergence (JSD): symmetrizes and smoothes the KLD:
Consider f = (fx+fv)/2, then

JS (fxllfy) = - (Dxr (fx|If) + Dk (fyr [|f))

N =

> Main properties of JSD:
— JSD is symmetric

— JSD is bounded between 0 and 1
— Its square root yields a metric

>Ref: Endres and Schindelin; IEEE Trans. Info. Theory, 2003



Step 1: Jensen-Shannon divergence and its decomposition

> Notations: two unknown densities fx and fy, and the associated samples x(") and (")

> Two random variables are implicitly defined:
— a position variable Z with density fz = f = (fx + fy)/2
— a binary label L € {0,1} with pmf P(0) =1/2,
indicating from which density (fx or fy) an instance of Z is obtained.

> Equivalently, one defines the following pair of random variables:

(L,7)= (0,X)  with prob.
’ (1,Y)  with prob.

NI=N|=

> Associated conditional and unconditional probability mass functions:

P(llz) =P(L=1|Z = z)
P(h=P(L=1)=1

> Lemma: the JSD can be expressed as:

IS(lIF) = [ ()P (PCI)IP() o



Step 1: the local discrepancy

> From
IS (fxllfy) = /Rd fz(z)Dxw (P(+|2)[|P(-)) dz

> We define the discrepancy at location z as
6(z) = Dxr (P(-12)IP()) -
> Remarks:

—-94(z) €]0,1] and 6(z) =0 < fx(z) = fy(2).
— P(/) is known but P(/|z) is not:
we need to estimate P(/|z) at each given location z.



Step 1: random design nonparametric regression

> Consider random variables: location Z € R?, and response variable R € R

> Associated regression function:

m(z) =E[R|Z =z].

> Consider data: {(Z;, Ri)}i=1,...,n

> kn-nearest neighbors regressor: upon sorting samples by increasing distance

to z:
1

mi(z) == Y Rin(2)

" i=1,... ke

> NB: mp(z) is a random variables: some convergence assessment is in order.

>Ref : L. Gyorfi and A. Krzyzak; A distribution-free theory of
nonparametric regression; 2002



Step 1: estimation via k-nearest neighbors

> Using the labels as reponse variable R = L

> Estimate P(+|z) via random design nonparametric regression:
— build an estimator m,(z) using n i.i.d. realizations of (L, Z) for:

m(z) =E[L|Z = z] = P(1]|z).

— Then, if 0 < m,(z) < 1, we can use the following estimator for P(/|z):

P,(l|z) = |1 — I — ma(2)].

kn
log n

> Thm: Using a ks,-nearest neighbors regressor, s.t. — 0o and k—n” — 0:
5a(2) = Dict. (P (12)IP()) "= 8(2) a.s.

for f-almost all z € RY.



The random multiplexer to obtain
i.i.d. realizations of (L, Z)

> A random sampler produces i.i.d. realizations of (Z, L) from x(™) and y(m);

X .
L~ B(Y2) (L, Z)
Y B: Bernoulli ’
distribution

Figure: Random multiplexer generating pairs (label, position).

> The case of populations of uneven sizes:

— the multiplexer will consume faster the small population, and halt
— unused samples of the large population: detrimental since information loss
— resample B times and take the median of estimates, on a per sample basis



Step 1: lllustration: statistical image comparison

> Images: taking 2 x 2 blocks in each color channel (R,G,B) yields points in R2,
> Interpolate gray scale pixel color with red scale representing discrepancy at each
pixel (upper left corner of the corresponding block) estimated with k, = nl/3

> Multidimensional Scaling of
parameter space:
The two populations. ..
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Beyond two-sample tests

Step 2



Step 2: Building the clusters from sublevel sets of —(z)

> Ingredients: (A)

> Height function / landscape: s \/J
estimated discrepancy 0(z)

> Parameter: significance . R!
threshold 0max

> Construction:

> Idea: one cluster ~ one l
connected component of the -
sublevel set of —§(z) defined L ]
by Omax (©) -~ s R

» Extra ingredient: smoothing R —a NNy e
the landscape to get rid of
small clusters : smoothing
using topological persistence
at threshold p

> NB: spurions samples removed
from clusters due to filtering wrt

5max .



Step 2: Building the clusters: persistence diagram

> Partition of the PD induced by:
» Significance threshold §max

» Persistence threshold p

y = Death

—Omax

-1 - S x @ Birth

> Local minimum m of —4(z):

> Selected/rejected: m was
born before —dmax.

> Persistent/canceled:
persistence(m) > p

> Filtered (un-filtered): the
catchment basin of m dies
after (before) —dmax-.

> Observation:

» £ clusters : 1 + # points in
region Rs of the PD.

» 4 persistent local minima :
-+ num points in the region
R4 U R5 of the PD.

1



Step 2: lllustration: statistical image comparison

> Images again:

> Parameters: k =10 (NNG), p = 0.1,0max = 0.1
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Landscape Simplification:

Union-find versus recursive simplification of the Morse-Smale-Witten complex

> Clustering: one versus many:
— Work with critical points (instead of all samples)
— Pre-process the c.p. to redo analysis at various dmax threshold

(D) E a (E)
D>DRef: Chazal et al; Tomato; ACM SoCG 2011
>Ref: Banyaga, Hurtubise; Lectures on Morse Homology; 2004
>Ref: Cazals, Cohen-Steiner; CGTA, 2011



Beyond two-sample tests

Step 3



Step 3: Effect size: discrepancy profile

> Global estimated JSD: area under dashed line
> Maximum JSD: area under continuous line (=1)
> Contribution of each cluster C to JSD: area of bar
1 n
JSc (fx||fy) = o(2).
c (x|l fr) - > (2)

ze(x(m)uy(m)nc

> Mass of each cluster: bar width
> Population balance in each cluster: bar color

> Ellipses: > Images:
— Large global JSD (dashed line) — Smaller global JSD (dashed line)
— Contributed by 242 balanced clusters — Contributed by 2 clusters

J5Diber_width




Beyond two-sample tests

Wrapping-up



Wrapping-up: workflow

estimate
for 6(2)
k

p(no)
P! JSD decomp. by clusters {C;}

y(7v|)

n},

Output: divergence by cluster

JSe,(fxfr)

Output: estimated discrepancy

5(2:), 2 € () Yy(n1)

Datasets:two point clouds

Clustering with topological
persistence:

- k-Nearest neighbor graph

- Persistence: p

- Filtering: 0pmaz

Output:
{Ci} s.t. {

UG; = o) uym)
nc; =0

> Compulsory parameters:

kn: regression parameter

Omax: discrepancy significance threshold

p: persistence threshold

k: num. of nearest neighbors for the persistence based clustering
> Optional parameter:

B: num. repetition in case of unbalanced populations



Try

me: http://sbl.inria.fr

Structural Bioinformatics Library

Template

C++ [ Python API for developping structural bioinformatics applications.

Classes

Density_difference_based clustering

Authors: A, Lheritier and F. Cazals

1. Goals

Comparing two sets of multivariate samples is a central problem in data analysis
From a statistical standpoint, one way to perform such a comparison is to resort
to & non-parametric two-sample test (TST), which checks whether the two sets
can be seen as i.i.d. samples of an identical unknown distribution (the null
hypothesis, denoted HO)
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Beyond two-sample tests

More examples



Gaussian mixture: specification

> Goal: ability to spot regions of different intensity of discrepancy.
> Data:

— distributions for X and Y: two mixtures of four 2D Gaussians
—Nop =N = 2000.



Gaussian mixture: results |

— k=6 (NNG)
— Omax = 0.13 yields two large clusters
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Gaussian mixture: results |l

— k=6 (NNG)
— dmax = 0.25 yields four small clusters

: 0s 0.00
20 s 20
15 07 5 1 -025+------- 1
10 06 10] £ ]
1 '
03 05
o5 o] '
8 -0.50 1
00/ 04 00 ]
'
-0.5 03 =0.5] 1
5 -0.75 1
-10 0.2 -1.0]
T !
15 . 01 15 . U i U i
-0.75 -0.50 -0.25 0.00
-2 oo - .
“20 -15 -10 -05 00 05 10 15 20 20 -15 -10 -05 00 05 10 15 20 irtl
2 L 10
05
08
07
5 06
H
5 05
g 04
03
02
01
0o
04 o5
clusters (elative size)




Crenels: specification
> Goal: coping with data of low intrinsic dimension (in fact: 1 in d=121)
> Data:

— Points:
— consider the pixels (0/1) of a m x m grayscale image T
— rotating the image / yields a point cloud (1 point per image)
— m = 11 yields d = 121; but intrinsic dimension is one

— Populations:
red points: from RV X = rotate(/, Ax) with uniform RV Ax ~ U(s, t),
blue points: from RV Y = rotate(/, Ay), with:
consider two Bernoulli RV By ~ B(p1) and B, ~, B(p2),
two uniform RV U; ~ U(a, b) and U; ~ U(c, d).
Define: Ay = B1(BzU1 -+ (1 — Bz)UQ) =+ (1 — B1)Ax.
no = 2000, n; = 2000

> Rotated images: (a) Orignal image (b,c,d,e) Example rotated images

(a)




Crenels: results

- k =30 (NNG),
— Smax = 0.1
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Handwritten digits: specification

> Handwritten digits:
— One digit: 28 x 28 grayscale image: d = 784
— Populations: ny = n; = 1600

> More specifically: two mixtures of 3s, 6s and 8s

[ digit [[ blue [ red ]
3 100 | 1000
6 500 500
8 1000 | 100

> Images from: http://www.cs.nyu.edu/~roweis/data.html:
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>Ref: LeCun and Cortes; The MNIST database of handwritten digits, 1998


http://www.cs.nyu.edu/~roweis/data.html

Handwritten: results

- k =30 (NNG),
Smax = 0.35
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Beyond two-sample tests

Outlook



Outlook: about regression

» k-NN based regressors: adapt to local intrinsic dimension: convergence
results proved (L sense) for marginals p which are doubling measures.

> random projection tree based regressors: convergence results proved (L,
sense) when X has Assouad dimension d. NB: more efficient than k-NN
since cells of RPT have constant size.

> Open problem (AFAIK): strong pointwise consistency using RPTrees.

>Ref: Kpotufe; k-NN regression adapts to local intrinsic dimension;
NIPS 2011

>Ref: Kpotufe and Dasgupta; A tree-based regressor that adapts to
intrinsic dimension; J. of Computer and System Sciences, 2012



Outlook: general

» About p-values:

» Use a classical test, possibly Maximum Mean Discrepancy
(Gretton et al).

> Also: the k-NN estimator used in a sequential way can be used
to compute a p-value in a flexible way—the number of samples
to process need not be known in advance.

» More applications:

» Finding clusters with low discrepancy: study 5.
» Goodness-of-fit analysis: sampling from a given model, then
comparing data to spot discrepancies
> Feedback versus feature based selection: Compare to NIPS 2015 paper
Principal differences analysis: feature based identification in the context
of TST
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