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Introduction

Goal: provide theoretical treatment and guarantees on the Mapper
algorithm
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Introduction

Several attempts have been made to bring theory to Mapper:

I Bakken-Stovner (2012) express Mapper as a functor

I Dey et al (2013) introduced MultiScale Mapper, a
construction tailored for stability
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Mapper

I Famous algorithm widely used in TDA

I Input:
I Topological Space X
I Continuous f : X→ R,
I Covering I = {I} s.t. im(f ) ⊆ ⋃

I∈I I

I Output: Simplicial Complex Mf (X, I)
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Mapper
I Nodes in Mf (X, I) are given by the path-connected

components (cc) of each f −1(I ), I ∈ I

I Create k-simplex between nodes v0, ..., vk iff the
corresponding cc intersect

I Equivalently, take the nerve of the pullback covering
U = cc(f −1(I)) :

N (U) = {A ⊆ U |
⋂
A

6= ∅}
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Mapper

I Definition: Small intervals of a covering: I = I−∩ t Ip t I+

I Definition: A covering is minimal if there is no element
included in the others’ union

I Lemma: I is minimal =⇒ Mf (X, I) is a graph

Proof: No more than 2 elements can intersect ⇒ 1-simplices only
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Persistence Diagrams
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Persistence Diagrams

I Persistence Diagrams (PD) are useful tools to characterize the
topological information of a space

I Given function f , observe the space through:
I sublevel sets Fα = f −1((−∞, α])
I surlevel sets X \ (Fα = f −1([α,+∞)))
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Persistence Diagrams
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Persistence Diagrams

I PD record birth and death times b, d of topological features
I PD distinguish between:

I Ordinary topological features (b, d sublevel)
I Extended topological features (b sublevel, d surlevel)
I Relative topological features (b, d surlevel)
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Persistence Diagrams

∆

Ext+∆

Ext−∆

Ord

Rel
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Reeb Graphs
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Reeb Graphs

I Mapper is deeply related to Reeb Graphs

I Rf (X) = X/ ∼ where
x ∼ y ⇐⇒ f (x) = f (y) and x , y ∈ same cc of f −1(f (x))

I Notation: f̃ : Rf (X)→ R

X Rf (X)

R

∼

f f̃
c1

c2

c3

c4
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Reeb Graphs

Definition: f : X→ R is of Morse type if:

I (i) ∃a1 < ... < an s. t. for every
I ∈ {(−∞, a1), (ai , ai+1), (an,+∞)}, XI = f −1(I )
homeomorphic to Yi × I and f = projection onto the second
factor π2

I (ii) ∃φi : Yi × {ai} → Xai , ψi : Yi × {ai+1} → Xai+1

continuous

I (iii) Xt has finitely-generated homology
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Reeb Graphs
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Reeb Graphs

I Includes Morse functions, PL functions...

I Reeb Graph behaves nicely: multi-graph

I Theorem: If f is of Morse type:

Dg0(f̃ ,Rf (X)) = Dg0(f ,X)

Dg1(f̃ ,Rf (X)) = Dg1(f ,X) \ Ext+∆
1 (f ,X)

Dgp(f̃ ,Rf (X)) = ∅, p ≥ 2
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MultiNerve Mapper
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MultiNerve Mapper

I Variant of Mapper naturally related to the Reeb graph

I Same inputs

I Outputs a multigraph Mf (X, I)
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MultiNerve Mapper

I Definition: The MultiNerve of a covering U is:

M(U) =

{
(C ,A)| A ⊆ U and C ∈ cc

⋂
A

}

I MultiNerve Mapper takes the MultiNerve of the pullback
covering

I Mapper is the simple graph obtained by gluing edges of
MultiNerve Mapper
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MultiNerve Mapper

Mapper

MultiNerve
Mapper

ci

ci+1
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MultiNerve Mapper

I We filter the multigraph to have a Dg

I Notation: f̄ : Mf (X, I)→ R

I ∀vI ∈ V (Mf (X, I)), f̄ (vI ) ∈ Ip

I Ordinary part of filtration: lower-star of f̄

∀e = (vI , vJ) ∈ E (Mf (X, I)), f̄ (e) = max(f̄ (vI ), f̄ (vJ))

I Relative part of filtration: upper-star of f̄

∀e = (vI , vJ) ∈ E (Mf (X, I)), f̄ (e) = min(f̄ (vI ), f̄ (vJ))

I PD encodes multigraph structure and function behaviour

24 / 50



MultiNerve Mapper

I MultiNerve Mapper is a coarse version of Reeb Graph

I Goal: Conditions on I for equality ?

I Theorem: If no interval of I contains paired critical values:
I ∃ bijection between Dg(f̄ ,Mf (X, I)) and Dg(f̃ ,Rf (X))
I Rf (X) and Mf (X, I) have same homology (⇒ same homotopy

type – e.g. X is connected)

I To prove this, we slightly modify (X, f ) into (X′, f ′)
(according to I) without changing Mf (X, I) s.t.

I Mf (X, I) ' Mf ′(X′, I) ' Rf ′(X′) combinatorially
I same Dg
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MultiNerve Mapper
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MultiNerve Mapper

We define three operations on X that preserve MultiNerve Mapper
but change the Reeb Graph:

I Merge

I Split

I Shift

(X, f) (X′, f ′)

Rf (X) Rf ′(X′)

Mf (X, I) Mf ′(X′, I)'

'
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Telescope

Definition: The telescope of f is:

(Y0 × (a0, a1])∪(Xa1 × {a1})∪(Y1 × [a1, a2])∪...∪(Yn × [an, an+1))

(X, f ) is equivalent to (telescope, π2)
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Telescope

I A Merge operation between a < b gives the same value ā to
all points whose function value belongs to [a, b]:

...(Yi−1 × [ai−1, ai ]) ∪ (Xai × {ai})...(Xaj × {aj}) ∪ (Yj × [aj , aj+1])...

↓
...(Yi−1 × [ai−1, ā]) ∪ (X[a,b] × {ā}) ∪ (Yj × [ā, aj+1])...
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Telescope

Effect on PD:

a

a

b

b

ā

ā
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Telescope

Given I, MergeI collapses all critical values inside the same small
interval I−∩ , Ip, I

+
∩ :
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Telescope

I A Split operation of size ε at ai extrudes the levelset Xai :

...(Yi−1 × [ai−1, ai ]) ∪ (Xai × {ai}) ∪ (Yi × [ai , ai+1])...

↓
...(Yi−1 × [ai−1, ai − ε]) ∪ (Xai × [ai − ε,ai + ε]) ∪ (Yi × [ai + ε, ai+1])...
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Telescope

I A Split operation of size ε at ai extrudes the levelset Xai :

...(Yi−1 × [ai−1, ai ]) ∪ (Xai × {ai}) ∪ (Yi × [ai , ai+1])...

↓
...(Yi−1 × [ai−1, ai − ε]) ∪ (Xai × [ai − ε,ai + ε]) ∪ (Yi × [ai + ε, ai+1])...

I MultiNerve Mapper is unchanged

I Definition: ai is a down-fork if φi homeomorphism and an
up-fork if ψi−1 homeomorphism
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Telescope

I A Split operation of size ε at ai extrudes the levelset Xai :

...(Yi−1 × [ai−1, ai ]) ∪ (Xai × {ai}) ∪ (Yi × [ai , ai+1])...

↓
...(Yi−1 × [ai−1, ai − ε]) ∪ (Xai × [ai − ε,ai + ε]) ∪ (Yi × [ai + ε, ai+1])...

I Lemma: ai − ε is a down-fork; ai + ε is an up-fork.

I Lemma:

down-forks ∈ b(Ord),d(Ord),b(Ext)

up-forks ∈ b(Rel), d(Rel), d(Ext)
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Telescope

Effect on PD:

ai

ai
ai + ε

ai − ε

ai − ε ai + ε
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Telescope

Given I, SplitI extrudes all critical values s.t. the extrusion stays
in the same small interval:
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Telescope

I A Shift operation of size ε at ai moves the critical value to
ai + ε:

...(Yi−1 × [ai−1, ai ])∪(Xai × {ai}) ∪ (Yi × [ai , ai+1])...

↓
...(Yi−1 × [ai−1, ai + ε])∪(Xai × {ai + ε}) ∪ (Yi × [ai + ε, ai+1])...
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Telescope

Effect on PD:

ai

ai

ai + ε

ai + ε
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Telescope

Given I, ShiftI moves all up-forks in an intersection upward and
all down-forks in an intersection downward:
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Telescope

Let T := MergeI ◦ ShiftI ◦ SplitI ◦MergeI and X′ = T (X)
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Telescope

Let T := MergeI ◦ ShiftI ◦ SplitI ◦MergeI and X′ = T (X)
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Telescope

Let QO ,QE ,QR denote the following staircases:

J

I

QE

QO

QR
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Telescope

I Theorem: Dg(f̄ ′,Mf ′(X′, I)) = Dg(f̃ ′,Rf ′(X′))

I Theorem: Bijection between:

Ext+∆(f̃ ′,Rf ′(X′)) and Ext+∆(f̃ ,Rf (X))

Ext−∆(f̃ ′,Rf ′(X′)) and Ext−∆(f̃ ,Rf (X)) \ QE

Ord(f̃ ′,Rf ′(X′)) and Ord(f̃ ,Rf (X)) \ QO

Rel(f̃ ′,Rf ′(X′)) and Rel(f̃ ,Rf (X)) \ QR

I We can consider either
I Dg(Mf (X, I)) = Dg(f̃ ) \ Q
I Dg′(Mf (X, I)) = Dg(f̄ )
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Stability
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Stability

I Definition: Let S ⊆ R2. The bottleneck distance between
two multisets P,Q ⊆ R2 is:

dS(P,Q) = infγ sup(p,q)∈γ ‖p − q‖∞
where γ is a partial matching between P and Q that can match
points to their projection on S

I Lemma: For Q ∈ {QE ,QR ,QO}, dQ(D1,D2) ≤ d∆(D1,D2)

I Definition: Pseudo-metric between MultiNerve Mapper:

d(Dg(Mf (X, I)),Dg(Mg (X, I))) := max{dQO
(Ord(f̃ ),Ord(g̃)),

d∆(Ext+∆(f̃ ),Ext+∆(g̃)),

dQE
(Ext−∆(f̃ ),Ext−∆(g̃)),

dQR
(Rel(f̃ ),Rel(g̃))}
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Stability

I Definition: Let S ⊆ R2. The bottleneck distance between
two multisets P,Q ⊆ R2 is:

dS(P,Q) = infγ sup(p,q)∈γ ‖p − q‖∞
where γ is a partial matching between P and Q that can match
points to their projection on S

I Lemma: For Q ∈ {QE ,QR ,QO}, dQ(D1,D2) ≤ d∆(D1,D2)

I Definition: Pseudo-metric between MultiNerve Mapper:

d(Dg′Mf (X, I)),Dg′(Mg (X, I))) := max{dQO
(Ord(f̄ ),Ord(ḡ)),

d∆(Ext+∆(f̄ ),Ext+∆(ḡ)),

dQE
(Ext−∆(f̄ ),Ext−∆(ḡ)),

dQR
(Rel(f̄ ),Rel(ḡ))}
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Stability

I Theorem: Stability

d(Dg(Mf (X, I)),Dg(Mg (X, I))) ≤ d∆(Dg(f̃ ,Rf (X)),Dg(g̃ ,Rg (X)))

≤ d∆(Dg(f ,X),Dg(g ,X))

≤ ‖f − g‖∞

I Corollary: If I is of size λ > 0:

d(Dg′(Mf (X, I)),Dg′(Mg (X, I)))

≤ λ+ d(Dg(Mf (X, I)),Dg(Mg (X, I)))
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Implementation: Point-based Version

I Available Python code: danifold.net/mapper/

I Discrete Case: Input = Point Cloud

I CC found with Hierarchical Clustering (need parameters:
cutoff, threshold...)

I 2 CC intersect iff they have at least 1 point in common (in
practice threshold again...)
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Implementation: Edge-based Version

I Input = Graph – e.g. δ-Neighborhood Graph

I CC naturally defined

I 2 CC intersect iff there is at least 1 edge connecting the CC
→ Graph-induced Simplicial Complex

I Only 1 parameter δ
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Open Questions

I Sampling conditions for which discrete case = continuous
case?

I Functoriality of the mapping?

I Extension to f : X→ Rd?

Thank you !

50 / 50


	Background
	Mapper
	Persistence Diagrams
	Reeb Graphs

	MultiNerve Mapper
	Telescope
	Stability

