Guarantees for the Langevin Monte Carlo sampling algorithm in terms of Wasserstein distance

The problem

Let μ be a probability measure of \mathbb{R}^p with $d\mu = e^{-u}dx$. How to sample from μ ? (i.e. obtaining a random variable with measure μ).

The problem

Let μ be a probability measure of \mathbb{R}^p with $d\mu = e^{-u}dx$. How to sample from μ ? (i.e. obtaining a random variable with measure μ).

Applications in

- Bayesian statistics
- Volume computation
- . . .

(One of) The Solution

The diffusion process solution of

$$dX_t = -\nabla u dt + \sqrt{2} dW_t$$

has stationary measure μ .

(One of) The Solution

The diffusion process solution of

$$dX_t = -\nabla u dt + \sqrt{2} dW_t$$

has stationary measure μ .

 $\Rightarrow \text{Approximate } X_t \text{ long enough for it to converge to } \mu \text{, using the scheme}$ $M^{n+1} = M^n - h(n) \nabla u(M^n) + \sqrt{2h(n)} \mathcal{N}_n,$

with the \mathcal{N}_n i.i.d. normal random variables.

(One of) The Solution

The diffusion process solution of

$$dX_t = -\nabla u dt + \sqrt{2} dW_t$$

has stationary measure μ .

 \Rightarrow Approximate X_t long enough for it to converge to μ , using the scheme

$$M^{n+1} = M^n - h(n)\nabla u(M^n) + \sqrt{2h(n)}\mathcal{N}_n$$

with the \mathcal{N}_n i.i.d. normal random variables.

Problem: good approximation \Rightarrow small $h \Rightarrow$ many iterations to approximate X_t up to time T. How to choose h? How many iterations do we need to achieve a given accuracy ϵ .

Let $\mu,\,\nu$ be two measures. The total variation distance between them is given by

$$TV(\nu,\mu) = \max_{\mathcal{B}} |P_{\mu}(\mathcal{B}) - P_{\nu}(\mathcal{B})|,$$

where \mathcal{B} is a Borel set.

 μ is log-concave if it has density e^{-u} with u convex. This property traditionally ensures exponential convergence for many quantities quantifying the distance between X_t and μ (Entropy, Fisher information, total variation, Wasserstein distance, ...).

Theorem [Dalalyan 2015, fixed h]

Suppose μ is log-concave and ∇u is bounded. Then, one can choose h and T in order to reach an ϵ accuracy in total variation in no more than $O(\epsilon^{-2}p(p^2 + \log^2(1/\epsilon)))$ steps.

Theorem [Dalalyan 2015, fixed h]

Suppose μ is log-concave and ∇u is bounded. Then, one can choose h and T in order to reach an ϵ accuracy in total variation in no more than $O(\epsilon^{-2}p(p^2 + \log^2(1/\epsilon)))$ steps.

Sketch of Proof

$$TV(M^n, \mu) \le TV(M^n, X_{nh}) + TV(X_{nh}, \mu).$$

Theorem [Dalalyan 2015, fixed h]

Suppose μ is log-concave and ∇u is bounded. Then, one can choose h and T in order to reach an ϵ accuracy in total variation in no more than $O(\epsilon^{-2}p(p^2 + \log^2(1/\epsilon)))$ steps.

Sketch of Proof

$$TV(M^{n}, \mu) \leq TV(M^{n}, X_{nh}) + TV(X_{nh}, \mu).$$
Approximation term.
$$\leq (CpTh)^{1/2}$$
Exponential convergence from log-concavity.
$$\leq \frac{1}{2}e^{C_{1}p-C_{2}T}$$

Theorem [Dalalyan 2015, fixed h]

Suppose μ is log-concave and ∇u is bounded. Then, one can choose h and T in order to reach an ϵ accuracy in total variation in no more than $O(\epsilon^{-2}p(p^2 + \log^2(1/\epsilon)))$ steps.

Problems:

- In this analysis, taking too large of a T is harmful.
- In practice, by the discrete nature of the computation, the total variation distance between μ and our approximation is infinite.
- Better rates for diffusion approximation are known for other distances. [Alfonsi, Jourdain, Kohatsu-Higa 2015]

Theorem [Dalalyan 2015, fixed h]

Suppose μ is log-concave and ∇u is bounded. Then, one can choose h and T in order to reach an ϵ accuracy in total variation in no more than $O(\epsilon^{-2}p(p^2 + \log^2(1/\epsilon)))$ steps.

Disappears if one has access to a *warm start*.

Problems:

- In this analysis, taking too large of a T is harmful.
- In practice, by the discrete nature of the computation, the total variation distance between μ and our approximation is infinite.
- Better rates for diffusion approximation are known for other distances. [Alfonsi, Jourdain, Kohatsu-Higa 2015]

Wasserstein Distance

Let μ and ν be two measures over a metric space (E, d). The Wasserstein disance between these two measures is given by :

$$W_p^p(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \int_{E \times E} d(x,y)^p d\pi(x,y)$$

Where $\Pi(\mu,\nu)$ is the set of measures of $E \times E$ with marginals μ and ν .

Wasserstein Distance

Let μ and ν be two measures over a metric space (E, d). The Wasserstein disance between these two measures is given by :

$$W_p^p(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \int_{E \times E} d(x,y)^p d\pi(x,y)$$

Where $\Pi(\mu,\nu)$ is the set of measures of $E \times E$ with marginals μ and ν .

Theorem [Durmus and Moulines 2015] Suppose μ is log-concave and ∇u is bounded. Then, one can choose h(n) in order to reach an ϵ accuracy in total variation/ W_2 distance in no more than $O(\epsilon^{-2}p)$ steps.

Our assumptions

- μ has a finite second moment.
- The first 2 derivatives of u are Lipschitz continuous with respective Lipschitz constants L_1, L_2 , i.e.

$$\forall 1 \le k \le 2, \forall x, y \in \mathbb{R}^p, \|\nabla^k u(x) - \nabla^k u(y)\| \le L_k \|x - y\|.$$

• For any
$$n$$
, $\mathbb{E}[||M^n||^2] \leq Cp$.

• There exists $\rho > 0$ such that, if X_0 has finite second moment,

$$W_2(X_t,\mu) \le e^{-\rho t} W_2(X_0,\mu).$$

Our assumptions

- μ has a finite second moment.
- The first 2 derivatives of u are Lipschitz continuous with respective Lipschitz constants L_1, L_2 , i.e.

$$\forall 1 \le k \le 2, \forall x, y \in \mathbb{R}^p, \|\nabla^k u(x) - \nabla^k u(y)\| \le L_k \|x - y\|.$$

• For any
$$n$$
, $\mathbb{E}[||M^n||^2] \leq Cp$.

• There exists $\rho > 0$ such that, if X_0 has finite second moment,

$$W_2(X_t,\mu) \le e^{-\rho t} W_2(X_0,\mu).$$

Last assumption is true if μ is strictly log-concave, but also holds in more general cases, for instance it holds if μ is strictly log-concave outside of a bounded set **Theorem**[Bolley, Gentil, Guilli, 2012].

Theorem

For any $n \ge 0$,

$$W_2(M^{n+1},\mu) \le Ch(n)^{3/2}\sqrt{p} + e^{-\rho h(n)}W_2(M^n,\mu).$$

For any n sufficiently large,

$$W_2(M^{n+1},\mu) \le Ch(n)^2 p + e^{-\rho h(n)} W_2(M^n,\mu).$$

Theorem

For any $n \ge 0$,

$$W_2(M^{n+1},\mu) \le Ch(n)^{3/2}\sqrt{p} + e^{-\rho h(n)}W_2(M^n,\mu).$$

For any n sufficiently large,

$$W_2(M^{n+1},\mu) \le Ch(n)^2 p + e^{-\rho h(n)} W_2(M^n,\mu).$$

Sketch of proof Let X_t continuous process started in M^n .

$$W_2(M^{n+1},\mu) \le W_2(M^{n+1},X_{h(n)}) + W_2(X_{h(n)},\mu).$$

Theorem

For any $n \ge 0$,

$$W_2(M^{n+1},\mu) \le Ch(n)^{3/2}\sqrt{p} + e^{-\rho h(n)}W_2(M^n,\mu).$$

For any n sufficiently large,

 $\leq max(C_1h(n)^{3/2}\sqrt{p}, C_2(h)h(n)^2p).$

$$W_2(M^{n+1},\mu) \le Ch(n)^2 p + e^{-\rho h(n)} W_2(M^n,\mu).$$

Sketch of proof Let X_t continuous process started in M^n .

$$W_2(M^{n+1},\mu) \le W_2(M^{n+1},X_{h(n)}) + W_2(X_{h(n)},\mu).$$

Approximation

Exponential convergence to μ

$$\leq e^{-\rho h(n)} W_2(M^n, \mu).$$

Theorem

For any $n \ge 0$,

$$W_2(M^{n+1},\mu) \le Ch(n)^{3/2}\sqrt{p} + e^{-\rho h(n)}W_2(M^n,\mu).$$

For any n sufficiently large,

$$W_2(M^{n+1},\mu) \le Ch(n)^2 p + e^{-\rho h(n)} W_2(M^n,\mu).$$

Corollary

For any $\nu > 0$, there exists C such that for $h(n) = (2 + \nu)/(n + 1)\rho$,

 $W_2(M^n,\mu) \le Cp/(n+1).$

Theorem

For any $n \ge 0$,

$$W_2(M^{n+1},\mu) \le Ch(n)^{3/2}\sqrt{p} + e^{-\rho h(n)}W_2(M^n,\mu).$$

For any n sufficiently large,

$$W_2(M^{n+1},\mu) \le Ch(n)^2 p + e^{-\rho h(n)} W_2(M^n,\mu).$$

Corollary

For any $\nu > 0$, there exists C such that for $h(n) = (2 + \nu)/(n + 1)\rho$,

$$W_2(M^n,\mu) \le Cp/(n+1).$$

No more than $O(\epsilon^{-1}p)$ steps required to reach an ϵ accuracy.

For t < h(n), \overline{X} is the continuous Euler's scheme associated to M.

$$\frac{dW_2(X_t, \bar{X}_t)}{dt} \le L_1 W_2(X_t, \bar{X}_t) + \mathbb{E}[|b(\bar{X}_s) - \mathbb{E}[b(\bar{X}_0)|\bar{X}_s]|^2]^{1/2}$$

Taylor expansion:

$$b(\bar{X}_{s}) - b(\bar{X}_{0}) = \nabla b(\bar{X}_{s}) \cdot (\bar{X}_{s} - \bar{X}_{0}) + \left[\int_{0}^{1} \nabla b(v\bar{X}_{s} + (1 - v)\bar{X}_{0}) - \nabla b(\bar{X}_{s})dv \right] (\bar{X}_{s} - \bar{X}_{0})$$

Strong error: $\mathbb{E}[|b(\bar{X}(s)) - b(\bar{X}_0)|^2].$

Strong error: $\mathbb{E}[|b(\bar{X}(s)) - b(\bar{X}_0)|^2].$

Strong error: $\mathbb{E}[|b(\bar{X}(s)) - \mathbb{E}[b(\bar{X}_0)|\bar{X}_s]|^2].$

If the measure of M^n is smooth enough, the first term of the Taylor expansion is of order h.

Ozaki's discretization scheme: approximates X_t by \bar{X}_t with drift a diffusion process \bar{X}_t with drift

$$b_t(\bar{X}_t) = -\nabla u(\bar{X}_{\tau_t}) - \nabla^2 u(\bar{X}_{\tau_t})(\bar{X}_t - \bar{X}_{\tau_t}),$$

Ozaki's discretization scheme: approximates X_t by \bar{X}_t with drift a diffusion process \bar{X}_t with drift

$$b_t(\bar{X}_t) = -\nabla u(\bar{X}_{\tau_t}) - \nabla^2 u(\bar{X}_{\tau_t})(\bar{X}_t - \bar{X}_{\tau_t}),$$

Closed form solution: let $B = (I - e^{-h(n)\nabla b})(\nabla b)^{-1}b$ and $\Sigma = (I - e^{-2h(n)\nabla b})(\nabla b)^{-1}$ then $\bar{X}_{X_{\sum_{i=0}^{n-1}h(i)}} = M^n$ with

$$M^{n+1} = M^n + B + \Sigma^{1/2} \mathcal{N}_n.$$

Ozaki's discretization scheme: approximates X_t by \bar{X}_t with drift a diffusion process \bar{X}_t with drift

$$b_t(\bar{X}_t) = -\nabla u(\bar{X}_{\tau_t}) - \nabla^2 u(\bar{X}_{\tau_t})(\bar{X}_t - \bar{X}_{\tau_t}),$$

Accuracy of ϵ for total variation can be reached in $O^*(\epsilon^{-1}p^{5/2})$ [Dalalyan 2015]

Ozaki's discretization scheme: approximates X_t by \bar{X}_t with drift a diffusion process \bar{X}_t with drift

$$b_t(\bar{X}_t) = -\nabla u(\bar{X}_{\tau_t}) - \nabla^2 u(\bar{X}_{\tau_t})(\bar{X}_t - \bar{X}_{\tau_t}),$$

Accuracy of ϵ for total variation can be reached in $O^*(\epsilon^{-1}p^{5/2})$ [Dalalyan 2015]

Theorem

For any $n \ge 0$,

$$W_2(M^{n+1},\mu) \le e^{h(n)L_1} \frac{L_2}{\sqrt{2}} \left[\frac{h(n)^3 \mathbb{E}[\|M^n\|_2^2]}{3} + \frac{h(n)^2 p}{2} \right] + e^{-\rho h(n)} W_2(M^n,\mu).$$

Ozaki's discretization scheme: approximates X_t by \bar{X}_t with drift a diffusion process \bar{X}_t with drift

$$b_t(\bar{X}_t) = -\nabla u(\bar{X}_{\tau_t}) - \nabla^2 u(\bar{X}_{\tau_t})(\bar{X}_t - \bar{X}_{\tau_t}),$$

Accuracy of ϵ for total variation can be reached in $O^*(\epsilon^{-1}p^{5/2})$ [Dalalyan 2015]

Theorem

For any $n \ge 0$,

$$W_2(M^{n+1},\mu) \le e^{h(n)L_1} \frac{L_2}{\sqrt{2}} \left[\frac{h(n)^3 \mathbb{E}[\|M^n\|_2^2]}{3} + \frac{h(n)^2 p}{2} \right] + e^{-\rho h(n)} W_2(M^n,\mu).$$

 \Rightarrow No major improvement on the rate, each iteration is more costly (computing Hessian matrix of u).

General scheme:

 $M^{n+1} = M^n + \xi_n(M^n)$

General scheme:

 $M^{n+1} = M^n + \xi_n(M^n)$

Rough idea (maybe works?): use Central Limit Theorem for W_2 distance (Bobkov 2013, B. 2015) \Rightarrow the addition of multiple noise converges to a Gaussian \Rightarrow fallback to the Euler's scheme.

General scheme:

$$M^{n+1} = M^n + \xi_n(M^n)$$

Let π be the stationary measure of M_n , we have

$$W_2(M^n,\mu) \le W_2(\pi,\mu) + W_2(M^n,\pi)$$

General scheme:

$$M^{n+1} = M^n + \xi_n(M^n)$$

Let π be the stationary measure of M_n , we have

$$W_2(M^n,\mu) \le W_2(\pi,\mu) + W_2(M^n,\pi)$$

- μ has a finite second moment.
- The first *i* derivatives of *u* are Lipschitz continuous with respective Lipschitz constants L_1, \ldots, L_i , i.e.

$$\forall 1 \le k \le 2, \forall x, y \in \mathbb{R}^p, \|\nabla^k u(x) - \nabla^k u(y)\| \le L_k \|x - y\|.$$

•
$$\mathbb{E}_{\pi}[||X||^2] < \infty.$$

• μ is strictly ρ log-concave

General scheme:

$$M^{n+1} = M^n + \xi_n(M^n)$$

$$\begin{split} W_{2}(\pi,\mu) \leq & T\mathbb{E}_{\pi}[\|\nabla u\|^{2}]^{1/2} + C(L_{2})\sqrt{T}p^{1/2} + \frac{1}{\rho}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi}{h} - b]\|^{2}]^{1/2} \\ &+ C(\rho,L_{2})\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi^{\otimes 2}}{2h} - I_{d}]\|^{2}]^{1/2} \\ &+ \log(T)C(\rho,L_{2},L_{3})\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes 3}}{6h}]\|^{2}]^{1/2} \\ &+ \sum_{4 < k < i} \frac{C(\rho,L_{2},\ldots,L_{k})}{T^{(k-3)/2}}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes k}}{k!h}]\|^{2}]^{1/2} \\ &+ \frac{C(\rho,L_{2},\ldots,L_{i})}{T^{(i-3)/2}}\mathbb{E}_{\pi,\xi}[\frac{\|\xi\|^{i}}{i!h}]\|^{2}]^{1/2}. \end{split}$$

General scheme:

$$M^{n+1} = M^n + \xi_n(M^n)$$

$$W_{2}(\pi,\mu) \leq \overline{T\mathbb{E}_{\pi}[\|\nabla u\|^{2}]^{1/2} + C(L_{2})\sqrt{T}p^{1/2}} + \frac{1}{\rho}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi}{h} - b]\|^{2}]^{1/2} \\ + C(\rho,L_{2})\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi^{\otimes 2}}{2h} - I_{d}]\|^{2}]^{1/2} \\ + \log(T)C(\rho,L_{2},L_{3})\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes 3}}{6h}]\|^{2}]^{1/2} \\ + \sum_{4 < k < i} \frac{C(\rho,L_{2},\ldots,L_{k})}{T^{(k-3)/2}}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes k}}{k!h}]\|^{2}]^{1/2} \\ + \frac{C(\rho,L_{2},\ldots,L_{i})}{T^{(i-3)/2}}\mathbb{E}_{\pi,\xi}[\frac{\|\xi\|^{i}}{i!h}]\|^{2}]^{1/2}.$$

General scheme:

$$M^{n+1} = M^n + \xi_n(M^n)$$

$$\begin{split} W_{2}(\pi,\mu) \leq & T\mathbb{E}_{\pi}[\|\nabla u\|^{2}]^{1/2} + C(L_{2})\sqrt{T}p^{1/2} + \frac{1}{\rho}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi}{h} - b]\|^{2}]^{1/2} \\ &+ C(\rho,L_{2})\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi^{\otimes 2}}{2h} - I_{d}]\|^{2}]^{1/2} \\ &+ \log(T)C(\rho,L_{2},L_{3})\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes 3}}{6h}]\|^{2}]^{1/2} \\ &+ \sum_{4 < k < i} \frac{C(\rho,L_{2},\ldots,L_{k})}{T^{(k-3)/2}}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes k}}{k!h}]\|^{2}]^{1/2} \\ &+ \frac{C(\rho,L_{2},\ldots,L_{i})}{T^{(i-3)/2}}\mathbb{E}_{\pi,\xi}[\frac{\|\xi\|^{i}}{i!h}]\|^{2}]^{1/2}. \end{split}$$

General scheme:

$$M^{n+1} = M^n + \xi_n(M^n)$$

Theorem[B. 2015] If μ is log-concave then, for any T > 0

 $W_2(\pi,\mu) \le T\mathbb{E}_{\pi}[\|\nabla u\|^2]^{1/2} + C(L_2)\sqrt{T}p^{1/2} + \frac{1}{\rho}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi}{h} - b]\|^2]^{1/2}$ + $C(\rho, L_2) \mathbb{E}_{\pi} [\|\mathbb{E}[\frac{\xi^{\otimes 2}}{2h} - I_d]\|^2]^{1/2}$ $+\log(T)C(\rho, L_2, L_3)\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes 3}}{6h}]\|^2]^{1/2}$ + $\sum \frac{C(\rho, L_2, \dots, L_k)}{T^{(k-3)/2}} \mathbb{E}_{\pi} [\|\mathbb{E}[\frac{(\xi)^{\otimes k}}{k!k}]\|^2]^{1/2}$ 4 < k < i+ $\frac{C(\rho, L_2, \dots, L_i)}{T^{(i-3)/2}} \mathbb{E}_{\pi,\xi} [\frac{\|\xi\|^i}{i!h}] \|^2]^{1/2}.$

General scheme:

$$M^{n+1} = M^n + \xi_n(M^n)$$

$$W_{2}(\pi,\mu) \leq T\mathbb{E}_{\pi}[\|\nabla u\|^{2}]^{1/2} + C(L_{2})\sqrt{T}p^{1/2} + \frac{1}{\rho}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi}{h} - b]\|^{2}]^{1/2} \\ + C(\rho,L_{2})\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{\xi^{\otimes 2}}{2h} - I_{d}]\|^{2}]^{1/2} \\ + \log(T)C(\rho,L_{2},L_{3})\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes 3}}{6h}]\|^{2}]^{1/2} \\ + \sum_{4 < k < i} \frac{C(\rho,L_{2},\ldots,L_{k})}{T^{(k-3)/2}}\mathbb{E}_{\pi}[\|\mathbb{E}[\frac{(\xi)^{\otimes k}}{k!h}]\|^{2}]^{1/2} \\ + \frac{C(\rho,L_{2},\ldots,L_{i})}{T^{(i-3)/2}}\mathbb{E}_{\pi,\xi}[\frac{\|\xi\|^{i}}{i!h}]\|^{2}]^{1/2}.$$

 $\xi_n = e_{I_n} \cdot (-hp \nabla u + \sqrt{2hp} B_n)$ where I_n are independent uniform random variable on [|1, p|], B_n are independent Bernoulli random variable and the e_i are the canonical basis of \mathbb{R}^p .

 $\xi_n = e_{I_n} \cdot (-hp \nabla u + \sqrt{2hp} B_n)$ where I_n are independent uniform random variable on [|1, p|], B_n are independent Bernoulli random variable and the e_i are the canonical basis of \mathbb{R}^p .

 $\xi_n = e_{I_n} \cdot (-hp \nabla u + \sqrt{2hp} B_n)$ where I_n are independent uniform random variable on [|1, p|], B_n are independent Bernoulli random variable and the e_i are the canonical basis of \mathbb{R}^p .

 $\xi_n = e_{I_n} \cdot (-hp \nabla u + \sqrt{2hp} B_n)$ where I_n are independent uniform random variable on [|1, p|], B_n are independent Bernoulli random variable and the e_i are the canonical basis of \mathbb{R}^p .

 $\xi_n = e_{I_n} \cdot (-hp \nabla u + \sqrt{2hp} B_n)$ where I_n are independent uniform random variable on [|1, p|], B_n are independent Bernoulli random variable and the e_i are the canonical basis of \mathbb{R}^p .

 $\xi_n = e_{I_n} \cdot (-hp \nabla u + \sqrt{2hp} B_n)$ where I_n are independent uniform random variable on [|1, p|], B_n are independent Bernoulli random variable and the e_i are the canonical basis of \mathbb{R}^p .

 $\xi_n = e_{I_n} \cdot (-hp \nabla u + \sqrt{2hp} B_n)$ where I_n are independent uniform random variable on [|1, p|], B_n are independent Bernoulli random variable and the e_i are the canonical basis of \mathbb{R}^p .

Computations on a single direction \Rightarrow cost of an iteration is O(1) compared to O(p) for the Euler's scheme.

Theorem Assume $h \leq \frac{\sqrt{\rho}}{\sqrt{p}L_1}$. Then, there exists a constant C such that

$$W_2(M^n,\mu) \le (1-2h\rho+h^2L_1^2p)^{n/2}\frac{2hp}{2\rho h-pL_1^2h^2} + Ch^{1/2}p^{1+1/(4(i-2))}.$$

 $\xi_n = e_{I_n} \cdot (-hp \nabla u + \sqrt{2hp} B_n)$ where I_n are independent uniform random variable on [|1, p|], B_n are independent Bernoulli random variable and the e_i are the canonical basis of \mathbb{R}^p .

Computations on a single direction \Rightarrow cost of an iteration is O(1) compared to O(p) for the Euler's scheme.

Theorem Assume $h \leq \frac{\sqrt{\rho}}{\sqrt{p}L_1}$. Then, there exists a constant C such that

$$W_2(M^n,\mu) \le (1-2h\rho+h^2L_1^2p)^{n/2}\frac{2hp}{2\rho h-pL_1^2h^2} + Ch^{1/2}p^{1+1/(4(i-2))}.$$

 \Rightarrow needs no more than $O^*(\epsilon^{-2}p^{2+1/2(i-1)})$ (we conjecture $O^*(\epsilon^{-1}p^3)$) steps to reach an ϵ -accuracy. Still worse than Euler's Scheme.

Conclusion

- Linear rates (accuracy/dimension) for the LMC algorithm.
- Heuristic to choose *h*.
- Ozaki's discretization not interesting in higher dimension.
- Able to cope with general schemes.
- Sampling from a manifold.
- Dealing with measures on a convex set [Bubeck, Lehec, Eldan 2015].
- General schemes are not tight yet.
- Applications to Stochastic Gradient Descent.

Bibliography

- Alfonsi, Jourdain, Kohatsu-Higa 2015, Optimal transport bounds between the time-marginals of a multidimensional diffusion and its Euler scheme.
- Bubeck, Lehec, Eldan 2015, Sampling from a log-concave distribution with Projected Langevin Monte Carlo.
- Bobkov 2013, Entropic approach to E. Rio' central limit theorem for W_2 transport distance.
- Bolley, Gentil, Guillin 2012, Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations.
- Dalalyan 2015, Theoretical guarantees for approximate sampling from smooth and log-concave densities.
- Durmus and Moulines 2015, Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm.
- Bonis 2015, Stable measures and Stein's method: rates in the Central Limit Theorem and diffusion approximation.