Guarantees for the Langevin Monte Carlo
sampling algorithm in terms of Wasserstein
distance
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Applications In
e Bayesian statistics

e Volume computation
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(One of) The Solution

The diffusion process solution of

dX, = —Vudt + vV 2dW,

has stationary measure L.

= Approximate X; long enough for it to converge to u, using the scheme

M"Y = M"™ — h(n)Vu(M™) + \/2h(n)N,,,

with the N, i.i.d. normal random variables.

Problem: good approximation = small A = many iterations to approx-

Imate X; up to time 1.
How to choose h? How many iterations do we need to achieve a given

accuracy €.



Total variation distance and log-concave u

Let 1, v be two measures. The total variation distance between them is

given by

TV (v, 1) = max |P,(B) - P,(B)|

where 5 is a Borel set.

1t is log-concave if it has density e™* with u convex. This property
traditionaly ensures exponential convergence for many quantities quanti-
fying the distance between X; and p (Entropy, Fisher information, total
variation, Wasserstein distance, ...).
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e In this analysis, taking too large of a T is harmful.

e In practice, by the discrete nature of the computation, the total
variation distance between 1 and our approximation is infinite.

e Better rates for diffusion approximation are known for other dis-
tances. [Alfonsi, Jourdain, Kohatsu-Higa 2015]
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Theorem [Dalalyan 2015, fixed A]
Suppose u is log-concave and Vu is bounded. Then, one can choose h
and 7' in order to reach an € accuracy in total variation in no more than

O (e~ 2p(p>gF log*(1/€)) steps.
\ Disappears if one has access to a warm start.
Problems:

e In this analysis, taking too large of a T is harmful.

e In practice, by the discrete nature of the computation, the total
variation distance between 1 and our approximation is infinite.

e Better rates for diffusion approximation are known for other dis-
tances. [Alfonsi, Jourdain, Kohatsu-Higa 2015]
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Let 11 and v be two measures over a metric space (E, d). The Wasserstein
disance between these two measures iIs given by :

Wynv)= ot | d(ey)dn(ay
ExXE

mell(p,v)

Where TI(, v) is the set of measures of E x E with marginals i and v.

Theorem [Durmus and Moulines 2015]

Suppose p is log-concave and Vu is bounded. Then, one can choose
h(n) in order to reach an € accuracy in total variation/W5 distance in
no more than O(e™?p) steps.
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Our assumptions

e [, has a finite second moment.

e The first 2 derivatives of u are Lipschitz continuous with respective
Lipschitz constants L1, Lo, I.e.

V1<k<2VaxyecRP, Hvku(x) — Vku(y)H < Li||lz — y|.

e For any n, E[||M"]|*] < Cp.

e There exists p > 0 such that, if Xy has finite second moment,

Wo (X, ) < e P Wo(Xo, p).

Last assumption is true if u is strictly log-concave, but also holds in more
general cases, for instance it holds if u is strictly log-concave outside of
a bounded set Theorem|Bolley, Gentil, Guilli, 2012].
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Main Result

Theorem
For any n > 0,

Wao (M1 1) < Ch(n)>2/p + e MW Wa(M", ).
For any n sufficiently large,

Wa(M"™ 1, 1) < Ch(n)?p + e "W Wo(M™, ),

Corollary
For any v > 0, there exists C' such that for h(n) = (2 +v)/(n+ 1)p,

Wo(M™, n) < Cp/(n+1).

No more than O(e~1p) steps required to reach an € accuracy.
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Sketch of proof

For t < h(n), X is the continuous Euler's scheme associated to M.

dWZ (Xta Xt)

g < LiWa(X¢, Xy) + E[|b(X;) — E[b(Xo)|X,]?]/?

Taylor expansion:

b(Xs) —

X
{ / Vb(uX, + (1 — ) Xo) — Vb(X.)do| (X, — o)
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Sketch of proof

Strong error: E[|b(X(s)) — E[b(X))|X,]|?].

My, .

~ +/h(n) M,
M;,\'
M

o
n—+1 Mn

M,

If the measure of M" is smooth enough, the first term of the Taylor
expansion is of order h.
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Ozaki's discretization scheme: approximates X; by X, with drift a dif-
fusion process X; with drift

be(Xe) = —Vu(X7,) — Vou(Xr,)(Xe — Xr,),

Closed form solution: let B = (I — e "®MVo)(Vb)~'h and ¥ = (I —

e 2hVOY(gh)~L then X, = M™ with
Sy hi)

Mn-|—1 _ Mn—|—B—|—Zl/2Nn
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Other Schemes

Ozaki's discretization scheme: approximates X; by X, with drift a dif-
fusion process X; with drift

be(Xe) = —Vu(X7,) — Vou(Xr,)(Xe — Xr,),

Accuracy of € for total variation can be reached in O* (e ~1p°/2) [Dalalyan
2015]

Theorem
For any n > 0,

3 n|l2 2
W (M 1) < Sh(n)La Lo [ h(n)°El||M™||3] I h(n)2p
V2 3 9
+ e—ph(n) Ws (]\4717 ,u)

= No major improvement on the rate, each iteration is more costly
(computing Hessian matrix of u).
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Other Schemes

General scheme:
Mn+1 = M" +€n(Mn)

Rough idea (maybe works?): use Central Limit Theorem for W5 distance
(Bobkov 2013, B. 2015) = the addition of multiple noise converges to
a Gaussian = fallback to the Euler’'s scheme.
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Other Schemes

General scheme:
Mn+1 = M" + gn(Mn)

Let ™ be the stationary measure of M,,, we have

WQ(Mna :LL) < WQ(WMU) T WQ(Mnaﬂ-)

e /; has a finite second moment.

e The first ¢ derivatives of u are Lipschitz continuous with respective
Lipschitz constants Lq,...,L;, I.e.

V1 <k <2,V y € R, ||[VFu(x) — VFu(y)|| < Lillz — .

o E[|X]?] < oo.

e /i Is strictly p log-concave
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Other Schemes: an example

¢, = er (—hpVu++/2hpB,,) where I,, are independent uniform random
variable on [|1, p|], B,, are independent Bernoulli random variable and the
e; are the canonical basis of RP.

Computations on a single direction = cost of an iteration is O(1) com-
pared to O(p) for the Euler's scheme.
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Other Schemes: an example

¢n = er (—hpVu++/2hpB,,) where I,, are independent uniform random
variable on [|1, p|], B,, are independent Bernoulli random variable and the
e; are the canonical basis of RP.

Computations on a single direction = cost of an iteration is O(1) com-
pared to O(p) for the Euler's scheme.

Theorem Assume h < \/\z‘ﬁl . Then, there exists a constant (' such that

2hp
2ph — pLih?

W (M™, 1) < (1—2hp+h2L%p)”/2 - CR/2ptHL/(4G-2))

= needs no more than O*(e~2p?+1/2(i=1)) (we conjecture O*(e~1p?))
steps to reach an e-accuracy. Still worse than Euler’'s Scheme.



Conclusion

Linear rates (accuracy/dimension) for the LMC algorithm.
Heuristic to choose h.
Ozaki's discretization not interesting in higher dimension.

Able to cope with general schemes.

Sampling from a manifold.

Dealing with measures on a convex set [Bubeck, Lehec, Eldan
2015].

General schemes are not tight yet.

Applications to Stochastic Gradient Descent.
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