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dXt = −∇udt+
√

2dWt

has stationary measure µ.

⇒ Approximate Xt long enough for it to converge to µ, using the scheme

Mn+1 = Mn − h(n)∇u(Mn) +
√

2h(n)Nn,

with the Nn i.i.d. normal random variables.

Problem: good approximation ⇒ small h ⇒ many iterations to approx-
imate Xt up to time T .
How to choose h? How many iterations do we need to achieve a given
accuracy ε.



Total variation distance and log-concave µ

Let µ, ν be two measures. The total variation distance between them is
given by

TV (ν, µ) = max
B
|Pµ(B)− Pν(B)|,

where B is a Borel set.

µ is log-concave if it has density e−u with u convex. This property
traditionaly ensures exponential convergence for many quantities quanti-
fying the distance between Xt and µ (Entropy, Fisher information, total
variation, Wasserstein distance, . . . ).



Total variation distance and log-concave µ

Theorem [Dalalyan 2015, fixed h]
Suppose µ is log-concave and ∇u is bounded. Then, one can choose h
and T in order to reach an ε accuracy in total variation in no more than
O(ε−2p(p2 + log2(1/ε)) steps.
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TV (Mn, µ) ≤ TV (Mn, Xnh) + TV (Xnh, µ).

Exponential convergence from
log-concavity.
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≤ (CpTh)
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Total variation distance and log-concave µ

Theorem [Dalalyan 2015, fixed h]
Suppose µ is log-concave and ∇u is bounded. Then, one can choose h
and T in order to reach an ε accuracy in total variation in no more than
O(ε−2p(p2 + log2(1/ε)) steps.

Problems:

• In this analysis, taking too large of a T is harmful.

• In practice, by the discrete nature of the computation, the total
variation distance between µ and our approximation is infinite.

• Better rates for diffusion approximation are known for other dis-
tances. [Alfonsi, Jourdain, Kohatsu-Higa 2015]
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Theorem [Dalalyan 2015, fixed h]
Suppose µ is log-concave and ∇u is bounded. Then, one can choose h
and T in order to reach an ε accuracy in total variation in no more than
O(ε−2p(p2 + log2(1/ε)) steps.

Problems:

• In this analysis, taking too large of a T is harmful.

• In practice, by the discrete nature of the computation, the total
variation distance between µ and our approximation is infinite.

• Better rates for diffusion approximation are known for other dis-
tances. [Alfonsi, Jourdain, Kohatsu-Higa 2015]

Disappears if one has access to a warm start.



Wasserstein Distance

Let µ and ν be two measures over a metric space (E, d). The Wasserstein
disance between these two measures is given by :

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫
E×E

d(x, y)pdπ(x, y)

Where Π(µ, ν) is the set of measures of E ×E with marginals µ and ν.
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Let µ and ν be two measures over a metric space (E, d). The Wasserstein
disance between these two measures is given by :

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫
E×E

d(x, y)pdπ(x, y)

Where Π(µ, ν) is the set of measures of E ×E with marginals µ and ν.

Theorem [Durmus and Moulines 2015]
Suppose µ is log-concave and ∇u is bounded. Then, one can choose
h(n) in order to reach an ε accuracy in total variation/W2 distance in
no more than O(ε−2p) steps.



Our assumptions

• µ has a finite second moment.

• The first 2 derivatives of u are Lipschitz continuous with respective
Lipschitz constants L1, L2, i.e.

∀1 ≤ k ≤ 2,∀x, y ∈ Rp, ‖∇ku(x)−∇ku(y)‖ ≤ Lk‖x− y‖.

• For any n, E[‖Mn‖2] ≤ Cp.

• There exists ρ > 0 such that, if X0 has finite second moment,

W2(Xt, µ) ≤ e−ρtW2(X0, µ).
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• µ has a finite second moment.

• The first 2 derivatives of u are Lipschitz continuous with respective
Lipschitz constants L1, L2, i.e.

∀1 ≤ k ≤ 2,∀x, y ∈ Rp, ‖∇ku(x)−∇ku(y)‖ ≤ Lk‖x− y‖.

• For any n, E[‖Mn‖2] ≤ Cp.

• There exists ρ > 0 such that, if X0 has finite second moment,

W2(Xt, µ) ≤ e−ρtW2(X0, µ).

Last assumption is true if µ is strictly log-concave, but also holds in more
general cases, for instance it holds if µ is strictly log-concave outside of
a bounded set Theorem[Bolley, Gentil, Guilli, 2012].
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Main Result

Theorem
For any n ≥ 0,

W2(Mn+1, µ) ≤ Ch(n)3/2√p+ e−ρh(n)W2(Mn, µ).

For any n sufficiently large,

W2(Mn+1, µ) ≤ Ch(n)2p+ e−ρh(n)W2(Mn, µ).

Corollary
For any ν > 0, there exists C such that for h(n) = (2 + ν)/(n+ 1)ρ,

W2(Mn, µ) ≤ Cp/(n+ 1).

No more than O(ε−1p) steps required to reach an ε accuracy.
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Sketch of proof

For t < h(n), X̄ is the continuous Euler’s scheme associated to M .

dW2(Xt, X̄t)

dt
≤ L1W2(Xt, X̄t) + E[|b(X̄s)− E[b(X̄0)|X̄s]|2]1/2

Taylor expansion:

b(X̄s)− b(X̄0) = ∇b(X̄s).(X̄s − X̄0)

+

[∫ 1

0

∇b(vX̄s + (1− v)X̄0)−∇b(X̄s)dv

]
(X̄s − X̄0)
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Sketch of proof

Mn+1

Strong error: E[|b(X̄(s))− E[b(X̄0)|X̄s]|2].

Mn

∼
√
h(n) Mn

Mn

Mn

Mn

If the measure of Mn is smooth enough, the first term of the Taylor
expansion is of order h.
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Ozaki’s discretization scheme: approximates Xt by X̄t with drift a dif-
fusion process X̄t with drift

bt(X̄t) = −∇u(X̄τt)−∇2u(X̄τt)(X̄t − X̄τt),
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Ozaki’s discretization scheme: approximates Xt by X̄t with drift a dif-
fusion process X̄t with drift

bt(X̄t) = −∇u(X̄τt)−∇2u(X̄τt)(X̄t − X̄τt),

Closed form solution: let B = (I − e−h(n)∇b)(∇b)−1b and Σ = (I −
e−2h(n)∇b)(∇b)−1 then X̄X∑n−1

i=0
h(i)

= Mn with

Mn+1 = Mn +B + Σ1/2Nn.
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+
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Ozaki’s discretization scheme: approximates Xt by X̄t with drift a dif-
fusion process X̄t with drift

bt(X̄t) = −∇u(X̄τt)−∇2u(X̄τt)(X̄t − X̄τt),

Accuracy of ε for total variation can be reached in O∗(ε−1p5/2) [Dalalyan
2015]

Theorem
For any n ≥ 0,

W2(Mn+1, µ) ≤ eh(n)L1
L2√

2

[
h(n)3E[‖Mn‖22]

3
+
h(n)2p

2

]
+ e−ρh(n)W2(Mn, µ).

⇒ No major improvement on the rate, each iteration is more costly
(computing Hessian matrix of u).
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General scheme:
Mn+1 = Mn + ξn(Mn)

Rough idea (maybe works?): use Central Limit Theorem for W2 distance
(Bobkov 2013, B. 2015) ⇒ the addition of multiple noise converges to
a Gaussian ⇒ fallback to the Euler’s scheme.
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General scheme:
Mn+1 = Mn + ξn(Mn)

Let π be the stationary measure of Mn, we have

W2(Mn, µ) ≤W2(π, µ) +W2(Mn, π)

• µ has a finite second moment.

• The first i derivatives of u are Lipschitz continuous with respective
Lipschitz constants L1, . . . , Li, i.e.

∀1 ≤ k ≤ 2,∀x, y ∈ Rp, ‖∇ku(x)−∇ku(y)‖ ≤ Lk‖x− y‖.

• Eπ[‖X‖2] <∞.

• µ is strictly ρ log-concave



Other Schemes

General scheme:
Mn+1 = Mn + ξn(Mn)

Theorem[B. 2015] If µ is log-concave then, for any T > 0

W2(π, µ) ≤TEπ[‖∇u‖2]1/2 + C(L2)
√
Tp1/2 +

1

ρ
Eπ[‖E[

ξ

h
− b]‖2]1/2

+ C(ρ, L2)Eπ[‖E[
ξ⊗2

2h
− Id]‖2]1/2

+ log(T )C(ρ, L2, L3)Eπ[‖E[
(ξ)⊗3

6h
]‖2]1/2

+
∑

4<k<i

C(ρ, L2, . . . , Lk)

T (k−3)/2
Eπ[‖E[

(ξ)⊗k

k!h
]‖2]1/2

+
C(ρ, L2, . . . , Li)

T (i−3)/2
Eπ,ξ[

‖ξ‖i

i!h
]‖2]1/2.
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√
2hpBn) where In are independent uniform random

variable on [|1, p|], Bn are independent Bernoulli random variable and the
ei are the canonical basis of Rp.
Computations on a single direction ⇒ cost of an iteration is O(1) com-
pared to O(p) for the Euler’s scheme.
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Other Schemes: an example
ξn = eIn .(−hp∇u+

√
2hpBn) where In are independent uniform random

variable on [|1, p|], Bn are independent Bernoulli random variable and the
ei are the canonical basis of Rp.
Computations on a single direction ⇒ cost of an iteration is O(1) com-
pared to O(p) for the Euler’s scheme.

Theorem Assume h ≤
√
ρ√
pL1

. Then, there exists a constant C such that

W2(Mn, µ) ≤ (1−2hρ+h2L2
1p)

n/2 2hp

2ρh− pL2
1h

2
+Ch1/2p1+1/(4(i−2)).

⇒ needs no more than O∗(ε−2p2+1/2(i−1)) (we conjecture O∗(ε−1p3))
steps to reach an ε-accuracy. Still worse than Euler’s Scheme.



Conclusion

• Sampling from a manifold.

• Dealing with measures on a convex set [Bubeck, Lehec, Eldan
2015].

• General schemes are not tight yet.

• Applications to Stochastic Gradient Descent.

• Linear rates (accuracy/dimension) for the LMC algorithm.

• Heuristic to choose h.

• Ozaki’s discretization not interesting in higher dimension.

• Able to cope with general schemes.
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