Weighted Delaunay and alpha Complexes

Jean-Daniel Boissonnat

MPRI, Lecture 3

Laguerre geometry

Power distance of two balls or of two weighted points.

ball $b_1(p_1,r_1)$, center p_1 radius $r_1 \longleftrightarrow$ weighted point $(p_1,r_1^2) \in \mathbb{R}^d$ ball $b_2(p_2,r_2)$, center p_2 radius $r_2 \longleftrightarrow$ weighted point $(p_2,r_2^2) \in \mathbb{R}^d$

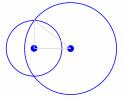
$$\pi(b_1, b_2) = (p_1 - p_2)^2 - r_1^2 - r_2^2$$

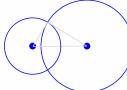
Orthogonal balls

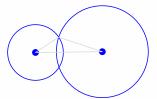
$$b_1, b_2 \text{ closer} \iff \pi(b_1, b_2) < 0 \iff (p_1 - p_2)^2 \le r_1^2 + r_2^2$$

$$b_1, b_2 \text{ orthogonal} \iff \pi(b_1, b_2) = 0 \iff (p_1 - p_2)^2 = r_1^2 + r_2^2$$

$$b_1, b_2 \text{ further} \iff \pi(b_1, b_2) > 0 \iff (p_1 - p_2)^2 \le r_1^2 + r_2^2$$







Laguerre geometry

Power distance of two balls or of two weighted points.

ball $b_1(p_1,r_1)$, center p_1 radius $r_1 \longleftrightarrow$ weighted point $(p_1,r_1^2) \in \mathbb{R}^d$ ball $b_2(p_2,r_2)$, center p_2 radius $r_2 \longleftrightarrow$ weighted point $(p_2,r_2^2) \in \mathbb{R}^d$

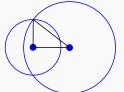
$$\pi(b_1, b_2) = (p_1 - p_2)^2 - r_1^2 - r_2^2$$

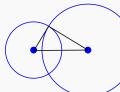
Orthogonal balls

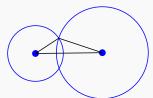
$$b_1, b_2 \text{ closer} \iff \pi(b_1, b_2) < 0 \iff (p_1 - p_2)^2 \le r_1^2 + r_2^2$$

$$b_1, b_2 \text{ orthogonal} \iff \pi(b_1, b_2) = 0 \iff (p_1 - p_2)^2 = r_1^2 + r_2^2$$

$$b_1, b_2 \text{ further} \iff \pi(b_1, b_2) > 0 \iff (p_1 - p_2)^2 \le r_1^2 + r_2^2$$







Power distance of a point wrt a ball

If
$$b_1$$
 is reduced to a point p : $\pi(p,b_2)=(p-p_2)^2-r_2^2$

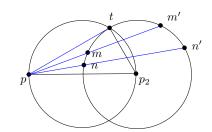
Normalized equation of bounding sphere :

$$p \in \partial b_2 \iff \pi(p, b_2) = 0$$

 $p \in \text{int}b_2 \iff \pi(p, b) < 0$
 $p \in \partial b_2 \iff \pi(p, b) = 0$

$$p \notin b_2 \iff \pi(p,b) > 0$$

Tangents and secants through p $\pi(p,b) = pt^2 = \overline{pm} \cdot \overline{pm'} = \overline{pn} \cdot \overline{pn'}$



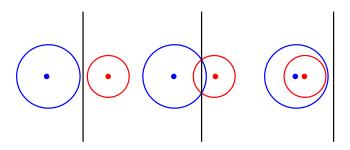
Radical Hyperplane

The locus of point $\in \mathbb{R}^d$ with same power distance to balls $b_1(p_1,r_1)$ and $b_2(p_2,r_2)$ is a hyperplane of \mathbb{R}^d

$$\pi(x, b_1) = \pi(x, b_2) \iff (x - p_1)^2 - r_1^2 = (x - p_2)^2 - r_2^2$$

$$\iff -2p_1x + p_1^2 - r_1^2 = -2p_2x + p_2^2 - r_2^2$$

$$\iff 2(p_2 - p_1)x + (p_1^2 - r_1^2) - (p_2^2 - r_2^2) = 0$$



A point in h_{12} is the center of a ball orthogonal to b_1 and b_2

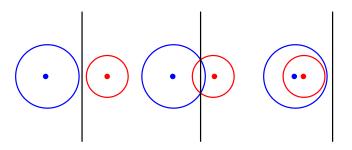
Radical Hyperplane

The locus of point $\in \mathbb{R}^d$ with same power distance to balls $b_1(p_1,r_1)$ and $b_2(p_2,r_2)$ is a hyperplane of \mathbb{R}^d

$$\pi(x, b_1) = \pi(x, b_2) \iff (x - p_1)^2 - r_1^2 = (x - p_2)^2 - r_2^2$$

$$\iff -2p_1x + p_1^2 - r_1^2 = -2p_2x + p_2^2 - r_2^2$$

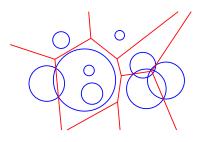
$$\iff 2(p_2 - p_1)x + (p_1^2 - r_1^2) - (p_2^2 - r_2^2) = 0$$



A point in h_{12} is the center of a ball orthogonal to b_1 and b_2

Power Diagrams

also named Laguerre diagrams or weighted Voronoi diagrams



Sites : n balls
$$B = \{b_i(p_i, r_i), i = 1, ... n\}$$

Power distance: $\pi(x,b_i) = (x-p_i)^2 - r_i^2$

Power Diagram: Vor(B)One cell $V(b_i)$ for each site $V(b_i) = \{x : \pi(x,b_i) \le \pi(x,b_i). \forall j \ne i\}$

- Each cell is a polytope
- ullet $V(b_i)$ may be empty
- ullet p_i may not belong to $V(b_i)$

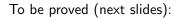
Weighted Delaunay triangulations

 $B = \{b_i(p_i, r_i)\}$ a set of balls

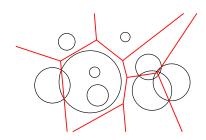
Del(B) = nerve of Vor(B):

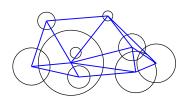
$$B_{\tau} = \{b_i(p_i, r_i), i = 0, \dots k\}\} \subset B$$

$$B_{\tau} \in \mathsf{Del}(B) \Longleftrightarrow \bigcap_{b_i \in B_{\tau}} V(b_i) \neq \emptyset$$

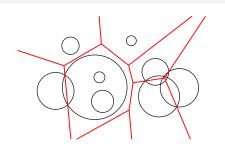


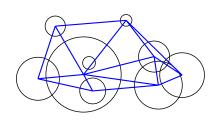
under a general position condition on B, $B_{\tau} \longrightarrow \tau = \text{conv}(\{p_i, i = 0 \dots k\})$ embeds Del(B) as a triangulation in \mathbb{R}^d , called the weighted Delaunay triangulation





Characteristic property of weighted Delaunay complexes





$$\tau \in \mathsf{Del}(B) \iff \bigcap_{b_i \in B_\tau} V(b_i) \neq \emptyset$$

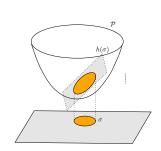
$$\iff \exists \ x \in \mathbb{R}^d \ \text{ s.t. } \ \forall b_i, b_j \in B_\tau, \ b_l \in B \setminus B_\tau$$

$$\pi(x, b_i) = \pi(x, b_j) < \pi(x, b_l)$$

$$\iff \exists \ \mathsf{ball} \ b(x, \omega) \ \mathsf{s.t.} \ \forall b_i \in B_\tau, \ b_l \in B \setminus B_\tau$$

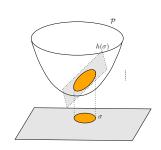
$$0 = \pi(b, b_i) < \pi(b, b_l)$$

$$\begin{split} b(p,r) \text{ ball of } \mathbb{R}^d \\ &\to \mathsf{point } \phi(b) \in \mathbb{R}^{d+1} \\ & \phi(b) = (p,s=p^2-r^2) \\ &\to \mathsf{polar hyperplane } h_b = \phi(b)^* \in \mathbb{R}^{d+1} \\ \mathcal{P} &= \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = x^2\} \\ &h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\} \end{split}$$



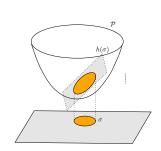
- Balls will null radius are mapped onto \mathcal{P} h_p is tangent to \mathcal{P} at $\phi(p)$.
- The vertical projection of $h_b \cap \mathcal{P}$ onto $x_{d+1} = 0$ is ∂b

$$\begin{split} b(p,r) \text{ ball of } \mathbb{R}^d \\ &\to \mathsf{point} \ \phi(b) \in \mathbb{R}^{d+1} \\ & \phi(b) = (p,s=p^2-r^2) \\ &\to \mathsf{polar hyperplane} \ h_b = \phi(b)^* \in \mathbb{R}^{d+1} \\ \mathcal{P} &= \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = x^2\} \\ & h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\} \end{split}$$



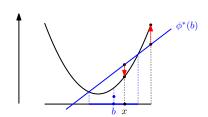
- Balls will null radius are mapped onto \mathcal{P} h_p is tangent to \mathcal{P} at $\phi(p)$.
- The vertical projection of $h_b \cap \mathcal{P}$ onto $x_{d+1} = 0$ is ∂b

$$\begin{split} b(p,r) \text{ ball of } \mathbb{R}^d \\ &\to \mathsf{point} \ \phi(b) \in \mathbb{R}^{d+1} \\ & \phi(b) = (p,s=p^2-r^2) \\ &\to \mathsf{polar hyperplane} \ h_b = \phi(b)^* \in \mathbb{R}^{d+1} \\ \mathcal{P} &= \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = x^2\} \\ & h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\} \end{split}$$



- Balls will null radius are mapped onto \mathcal{P} h_p is tangent to \mathcal{P} at $\phi(p)$.
- The vertical projection of $h_b \cap \mathcal{P}$ onto $x_{d+1} = 0$ is ∂b

$$\begin{split} b(p,r) \text{ ball of } \mathbb{R}^d \\ &\to \mathsf{point } \phi(b) \in \mathbb{R}^{d+1} \\ & \phi(b) = (p,s=p^2-r^2) \\ &\to \mathsf{polar hyperplane } h_b = \phi(b)^* \in \mathbb{R}^{d+1} \\ & h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\} \end{split}$$

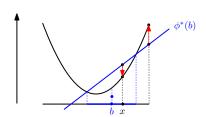


• The vertical distance between $\hat{x} = (x, x^2)$ and h_b is equal to

$$x^2 - 2p \cdot x + s = \pi(x, b)$$

• The faces of the power diagram of B are the vertical projections onto $x_{d+1} = 0$ of the faces of the polytope $\mathcal{V}(B) = \bigcap_i h_b^+$ of \mathbb{R}^{d+1}

$$\begin{split} b(p,r) \text{ ball of } \mathbb{R}^d \\ &\to \mathsf{point } \phi(b) \in \mathbb{R}^{d+1} \\ & \phi(b) = (p,s=p^2-r^2) \\ &\to \mathsf{polar hyperplane } h_b = \phi(b)^* \in \mathbb{R}^{d+1} \\ & h_b = \{\hat{x} \in \mathbb{R}^{d+1} : x_{d+1} = 2p \cdot x - s\} \end{split}$$



• The vertical distance between $\hat{x} = (x, x^2)$ and h_b is equal to

$$x^2 - 2p \cdot x + s = \pi(x, b)$$

• The faces of the power diagram of B are the vertical projections onto $x_{d+1} = 0$ of the faces of the polytope $\mathcal{V}(B) = \bigcap_i h_b^+$ of \mathbb{R}^{d+1}

Weighted points in general position wrt spheres

 $B=\{b_1,b_2\dots b_n\}$ is said to be in general position wrt spheres if $ot \exists \ x\in\mathbb{R}^d$ with equal power to d+2 balls of B

 $P = \{p_1, ..., p_n\}$: set of centers of the balls of B

Theorem

If B is in general position wrt spheres, the natural mapping

$$f: \operatorname{vert}(\operatorname{Del}(B)) \to P$$

provides a realization of Del(B)

 $\mathrm{Del}(B)$ is a triangulation of $P'\subseteq P$ called the Delaunay triangulation of B

Weighted points in general position wrt spheres

 $B=\{b_1,b_2\dots b_n\}$ is said to be in general position wrt spheres if $\not\exists \ x\in\mathbb{R}^d$ with equal power to d+2 balls of B

 $P = \{p_1, ..., p_n\}$: set of centers of the balls of B

Theorem

If \boldsymbol{B} is in general position wrt spheres, the natural mapping

$$f: \operatorname{vert}(\operatorname{Del}(B)) \to P$$

provides a realization of Del(B)

Del(B) is a triangulation of $P' \subseteq P$ called the Delaunay triangulation of B

Proof of the theorem

$$B_{\tau} \subset B, |B_{\tau}| = d+1, \ \tau = \operatorname{conv}(\{p_i, b_i(p_i, r_i) \in B_{\tau}\}),$$

$$\phi(\tau) = \operatorname{conv}(\{\phi(b_i), b_i \in B_{\tau}\})$$

$$\exists \ b(p, r) \text{ s.t. } h_b = \phi(b)^* = \operatorname{aff}(\{\phi(b_i), b_i \in B_{\tau}\})$$

$$\phi(\tau) \in \mathcal{D}(B) = \operatorname{conv}^-(\{\phi(b_i)\})$$

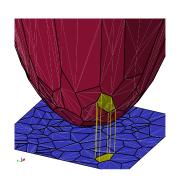
$$\iff \forall b_i \in B_{\tau}, \phi(b_i) \in h_b \ \ \forall b_j \not\in B_{\tau}, \phi(b_j) \in h_b^{*+}$$

$$\iff \forall b_i \in B_{\tau}, \pi(b, b_i) = 0 \quad \ \forall b_j \not\in B_{\tau}, \pi(b, b_j) > 0$$

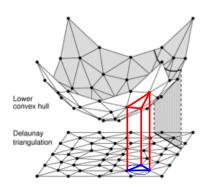
$$\iff p \in \bigcap_{b_i \in B_{\tau}} V(b_i)$$

$$\iff \tau \in \operatorname{Del}(B)$$

Duality



$$\mathcal{V}(B) = \cap_i \, \phi(b_i)^{*+}$$



$$\mathcal{D}(B) = \mathsf{conv}^-(\hat{P})$$

Weighted Voronoi diagrams and Delaunay triangulations, and polytopes

If B is a set of balls in general position wrt spheres :

$$\mathcal{V}(B) = h_{b_1}^+ \cap \ldots \cap h_{b_n}^+ \xrightarrow{\text{duality}} \mathcal{D}(B) = \text{conv}^-(\{\phi(b_1), \ldots, \phi(b_n)\})$$

$$\uparrow \qquad \qquad \downarrow$$

Voronoi Diagram of B

Delaunay Complex of B

Complexity and algorithm for weighted VD and DT

Number of faces
$$=\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Upper Bound Th.)

Construction can be done in time
$$\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2}\rfloor}\right)$$
 (Convex hull)

Main predicate

power_test
$$(b_0, \dots, b_{d+1}) = \text{sign}$$

$$\begin{vmatrix}
1 & \dots & 1 \\
p_0 & \dots & p_{d+1} \\
p_0^2 - r_0^2 & \dots & p_{d+1}^2 - r_{d+1}^2
\end{vmatrix}$$

Complexity and algorithm for weighted VD and DT

Number of faces
$$=\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Upper Bound Th.)

Construction can be done in time
$$\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2}\rfloor}\right)$$
 (Convex hull)

Main predicate

power_test
$$(b_0, \dots, b_{d+1}) = \text{sign}$$
 $\begin{vmatrix} 1 & \dots & 1 \\ p_0 & \dots & p_{d+1} \\ p_0^2 - r_0^2 & \dots & p_{d+1}^2 - r_{d+1}^2 \end{vmatrix}$

Complexity and algorithm for weighted VD and DT

Number of faces
$$=\Theta\left(n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$
 (Upper Bound Th.)

Construction can be done in time
$$\Theta\left(n\log n + n^{\lfloor \frac{d+1}{2}\rfloor}\right)$$
 (Convex hull)

Main predicate

power_test
$$(b_0, \dots, b_{d+1}) = \text{sign} \begin{vmatrix} 1 & \dots & 1 \\ p_0 & \dots & p_{d+1} \\ p_0^2 - r_0^2 & \dots & p_{d+1}^2 - r_{d+1}^2 \end{vmatrix}$$

Power diagrams are maximization diagrams

Cell of b_i in the power diagram Vor(B)

$$V(b_i) = \{x \in \mathbb{R}^d : \pi(x, b_i) \le \pi(x, b_j) . \forall j \ne i\}$$
$$= \{x \in \mathbb{R}^d : 2p_i x - s_i = \max_{j \in [1, \dots n]} \{2p_j x - s_j\}\}$$

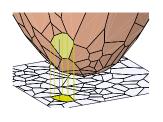
Vor(B) is the maximization diagram of the set of affine functions

$$\{f_i(x) = 2p_i x - s_i, i = 1, \dots, n\}$$

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}

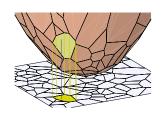


- Voronoi diagrams and power diagrams are affine diagrams.
- ullet Any affine diagram of \mathbb{R}^d is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}

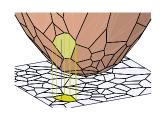


- Voronoi diagrams and power diagrams are affine diagrams.
- ullet Any affine diagram of \mathbb{R}^d is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

Affine diagrams (regular subdivisions)

Affine diagrams are defined as the maximization diagrams of a finite set of affine functions

They are equivalently defined as the vertical projections of polyhedra intersection of a finite number of upper half-spaces of \mathbb{R}^{d+1}



- Voronoi diagrams and power diagrams are affine diagrams.
- ullet Any affine diagram of \mathbb{R}^d is the power diagram of a set of balls.
- Delaunay and weighted Delaunay triangulations are regular triangulations
- Any regular triangulation is a weighted Delaunay triangulation

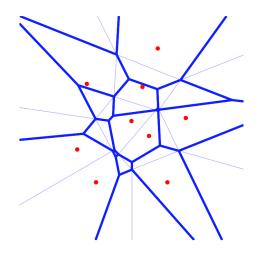
Examples of affine diagrams

- The intersection of a power diagram with an affine subspace (Exercise)
- ② A Voronoi diagram defined with a quadratic distance function

$$||x - a||_Q = (x - a)^t Q(x - a)$$
 $Q = Q^t$

1 k order Voronoi diagrams

k-order Voronoi Diagrams



Let P be a set of sites.

Each cell in the k-order Voronoi diagram $\operatorname{Vor}_k(P)$ is the locus of points in \mathbb{R}^d that have the same subset of P as k-nearest neighbors.

k-order Voronoi diagrams are power diagrams

Let S_1, S_2, \ldots denote the subsets of k points of P.

The k-order Voronoi diagram is the minimization diagram of $\delta(x,S_i)$:

$$\delta(x, S_i) = \frac{1}{k} \sum_{p \in S_i} (x - p)^2$$

$$= x^2 - \frac{2}{k} \sum_{p \in S_i} p \cdot x + \frac{1}{k} \sum_{p \in S_i} p^2$$

$$= \pi(b_i, x)$$

where b_i is the ball

- **①** centered at $c_i = \frac{1}{k} \sum_{p \in S_i} p$
- 2 with $s_i=\pi(o,b_i)=c_i^2-r_i^2=\frac{1}{k}\ \sum_{p\in S_i}p^2$
- 3 and radius $r_i^2 = c_i^2 \frac{1}{k} \sum_{p \in \mathbb{S}_i} p^2$.

Combinatorial complexity of k-order Voronoi diagrams

Theorem

If P be a set of n points in \mathbb{R}^d , the number of vertices and faces in all the Voronoi diagrams ${\rm Vor}_j(P)$

of orders $j \leq k$ is:

$$O\left(k^{\lceil \frac{d+1}{2} \rceil} \ n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$

Proof

uses

- \blacktriangleright bijection between k-sets and cells in k-order Voronoi diagrams
- the sampling theorem (from randomization theory)

Combinatorial complexity of k-order Voronoi diagrams

Theorem

If P be a set of n points in \mathbb{R}^d , the number of vertices and faces in all the Voronoi diagrams $\mathrm{Vor}_j(P)$ of orders $j \leq k$ is:

$$O\left(k^{\lceil \frac{d+1}{2} \rceil} \ n^{\lfloor \frac{d+1}{2} \rfloor}\right)$$

Proof

uses:

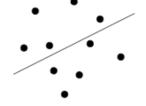
- ▶ bijection between *k*-sets and cells in *k*-order Voronoi diagrams
- the sampling theorem (from randomization theory)

k-sets and k-order Voronoi diagrams

P a set of n points in \mathbb{R}^d

k-sets

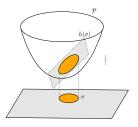
A k-set of P is a subset P' of P with size k that can be separated from $P\setminus P'$ by a hyperplane



k-order Voronoi diagrams

k points of P have a cell in $Vor_k(P)$ iff there exists a ball that contains those points and only those

 \Rightarrow each cell of $\mathrm{Vor}_k(P)$ corresponds to a k-set of $\phi(P)$



k-sets and k-order Voronoi diagrams

P a set of n points in \mathbb{R}^d

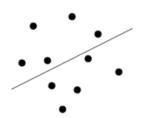
k-sets

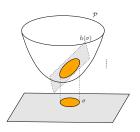
A k-set of P is a subset P' of P with size k that can be separated from $P\setminus P'$ by a hyperplane

k-order Voronoi diagrams

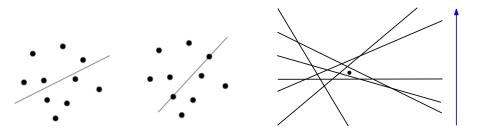
k points of P have a cell in ${\sf Vor}_k(P)$ iff there exists a ball that contains those points and only those

 \Rightarrow each cell of $\mathrm{Vor}_k(P)$ corresponds to a k-set of $\phi(P)$



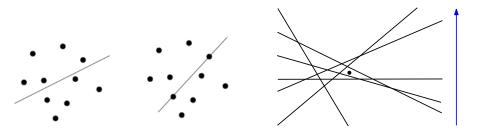


k-sets and k-levels in arrangements of hyperplanes



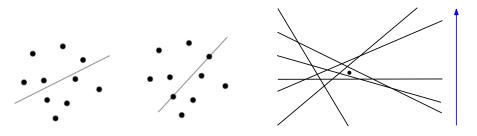
- For a set of points $P \in \mathbb{R}^d$, we consider the arrangement of the dual hyperplanes $\mathcal{A}(P^*)$
- h defines a k set $P' \Rightarrow h$ separates P' (below h) from $P \setminus P'$ (above h) $\Rightarrow h^*$ is below the k hyperplanes of P'^* and above those of $P^* \setminus P'^*$
- k-sets of P are in 1-1 correspondance with the cells of $\mathcal{A}(P^*)$ of level k, i.e. with k hyperplanes of P^* above it.

k-sets and k-levels in arrangements of hyperplanes



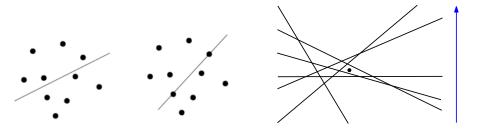
- \bullet For a set of points $P\in\mathbb{R}^d$, we consider the arrangement of the dual hyperplanes $\mathcal{A}(P^*)$
- h defines a k set $P' \Rightarrow h$ separates P' (below h) from $P \setminus P'$ (above h) $\Rightarrow h^*$ is below the k hyperplanes of P'^* and above those of $P^* \setminus P'^*$
- k-sets of P are in 1-1 correspondance with the cells of $\mathcal{A}(P^*)$ of level k, i.e. with k hyperplanes of P^* above it.

k-sets and k-levels in arrangements of hyperplanes



- \bullet For a set of points $P\in\mathbb{R}^d$, we consider the arrangement of the dual hyperplanes $\mathcal{A}(P^*)$
- h defines a k set $P' \Rightarrow h$ separates P' (below h) from $P \setminus P'$ (above h) $\Rightarrow h^*$ is below the k hyperplanes of P'^* and above those of $P^* \setminus P'^*$
- k-sets of P are in 1-1 correspondance with the cells of $\mathcal{A}(P^*)$ of level k, i.e. with k hyperplanes of P^* above it.

Bounding the number of k-sets



$$c_k(P)$$
: Number of k -sets of P = Number of cells of level k in $\mathcal{A}(P^*)$

$$c_{\leq k}(P) = \sum_{l \leq k} c_l(P)$$

$$c'_{\leq k}(P)$$
: Number of vertices of $\mathcal{A}(P^*)$ with level at most k

$$c_{\leq k}(n) = \max_{|P|=n} c_{\leq k}(P) \ c'_{\leq k}(n) = \max_{|P|=n} c'_{\leq k}(P)$$

Hyp. in general position : each vertex $\in d$ hyperplanes incident to 2^d cells

Vertices of level k are incident to cells with level $\in [k, k+d]$

Cells of level k have incident vertices with level $\in [k-d,k]$

$$c_{\leq k}(n) = O\left(c'_{\leq k}(n)\right)$$

Regions, conflicts and the sampling theorem

O a set of n objects.

 $\mathcal{F}(O)$ set of configurations defined by O

- each configuration is defined by a subset of b objects
- each configuration is in conflict with a subset of O

```
\mathcal{F}_j(O) set of configurations in conflict with j objects |\mathcal{F}_{\leq k}(O)| number of configurations defined by O in conflict with at most k objects of O
```

 $f_0(r) = \operatorname{Exp}(|\mathcal{F}_0(R|))$ expected number of configurations defined and without conflict on a random r-sample of O.

```
The sampling theorem [Clarkson & Shor 1992] For 2 \le k \le \frac{n}{b+1}, |\mathcal{F}_{\le k}(O)| \le 4 \ (b+1)^b \ k^b \ f_0(\left\lfloor \frac{n}{k} \right\rfloor)
```

Regions, conflicts and the sampling theorem

O a set of n objects.

 $\mathcal{F}(O)$ set of configurations defined by O

- each configuration is defined by a subset of b objects
- each configuration is in conflict with a subset of O

 $\mathcal{F}_i(O)$ set of configurations in conflict with j objects $|\mathcal{F}_{\leq k}(O)|$ number of configurations defined by O in conflict with at most k objects of O

 $f_0(r) = \mathsf{Exp}(|\mathcal{F}_0(R)|)$ expected number of configurations defined and without conflict on a random r-sample of O.

The sampling theorem [Clarkson & Shor 1992]

For
$$2 \le k \le \frac{n}{b+1}$$
,

For
$$2 \le k \le \frac{n}{b+1}$$
, $|\mathcal{F}_{\le k}(O)| \le 4 (b+1)^b k^b f_0(\left\lfloor \frac{n}{k} \right\rfloor)$

Proof of the sampling theorem

$$f_0(r) = \sum_{j} |\mathcal{F}_j(O)| \frac{\binom{n-b-j}{r-b}}{\binom{n}{r}} \ge |\mathcal{F}_{\le k}(O)| \frac{\binom{n-b-k}{r-b}}{\binom{n}{r}}$$

then,we prove that for $r = \frac{n}{h}$

$$\frac{\binom{n-b-k}{r-b}}{\binom{n}{r}} \ge \frac{1}{4(b+1)^b k^b}$$

$$\frac{\binom{n-b-k}{r-b}}{\binom{n}{r}} = \underbrace{\frac{r!}{(r-b)!} \frac{(n-b)!}{n!}}_{\geq \frac{1}{(b+1)^b k^b}} \underbrace{\frac{(n-r)!}{(n-r-k)!} \frac{(n-b-k)!}{(n-b)!}}_{\geq \frac{1}{4}}$$

Proof of the sampling theorem

end

$$\frac{(n-r)!}{(n-r-k)!} \frac{(n-b-k)!}{(n-b)!} = \prod_{j=1}^{k} \frac{n-r-k+j}{n-b-k+j} \ge \left(\frac{n-r-k+1}{n-b-k+1}\right)^{k}$$

$$\ge \left(\frac{n-n/k-k+1}{n-k}\right)^{k}$$

$$\ge (1-1/k)^{k} \ge 1/4 \text{ pour } (2 \le k),$$

$$\begin{split} \frac{r!}{(r-b)!} \frac{(n-b)!}{n!} &= \prod_{l=0}^{b-1} \frac{r-l}{n-l} \ge \prod_{l=1}^{b} \frac{r+1-b}{n} \\ &\ge \prod_{l=1}^{b} \frac{n/k-b}{n} \\ &\ge 1/k^b (1-\frac{bk}{n})^b \ge \frac{1}{k^b (b+1)^b} \ \ \text{pour} \ (k \le \frac{n}{b+1}). \end{split}$$

Bounding the number of k-sets

 $c_k(P)$: Number of k-sets of P = Number of cells of level k in $\mathcal{A}(P^*)$.

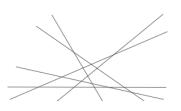
 $c_{\leq k}(P) = \sum_{l < k} c_l(P)$

 $c'_{\leq k}(P)$: Number of vertices of $\mathcal{A}(P^*)$ with level at most k.

Objects O: n hyperplanes of \mathbb{R}^d

Configurations: vertices in $\mathcal{A}(O)$, b=d

Conflict between v and $h: v \in h^+$



Sampling th:
$$c'_{\leq k}(P) \leq 4(d+1)^d k^d f_0\left(\left\lfloor \frac{n}{k} \right\rfloor\right)$$

 Upper bound th: $f_0(\left\lfloor \frac{n}{k} \right\rfloor) = O\left(\frac{n^{\left\lfloor \frac{d}{2} \right\rfloor}}{\left\lfloor \frac{1}{2} \right\rfloor}\right)$ $\Rightarrow c'_{\leq k}(n) = O\left(k^{\left\lceil \frac{d}{2} \right\rceil} n^{\left\lfloor \frac{d}{2} \right\rfloor}\right)$

Combinatorial complexities

ullet Number of vertices of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^d

Number of cells of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^d

Total number of $j \leq k$ sets for a set of n points in \mathbb{R}^d

$$\left(k^{\left\lceil\frac{d}{2}\right\rceil}n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)$$

 \bullet Total number of faces in the Voronoi diagrams of order $j \leq k$ for a set of n points in \mathbb{R}^d

$$\left(k^{\left\lceil \frac{d+1}{2}\right\rceil}n^{\left\lfloor \frac{d+1}{2}\right\rfloor}\right)$$

Combinatorial complexities

ullet Number of vertices of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^d

Number of cells of level $\leq k$ in an arrangement of n hyperplanes in \mathbb{R}^d

Total number of $j \leq k$ sets for a set of n points in \mathbb{R}^d

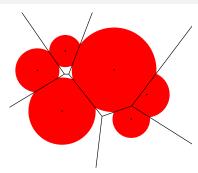
$$\left(k^{\left\lceil \frac{d}{2}\right\rceil}n^{\left\lfloor \frac{d}{2}\right\rfloor}\right)$$

 \bullet Total number of faces in the Voronoi diagrams of order $j \leq k$ for a set of n points in \mathbb{R}^d

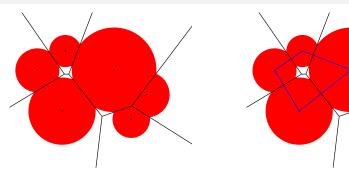
$$\left(k^{\left\lceil \frac{d+1}{2}\right\rceil}n^{\left\lfloor \frac{d+1}{2}\right\rfloor}\right)$$

Union of balls

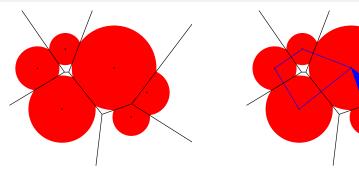
- What is the combinatorial complexity of the boundary of the union U of n balls of \mathbb{R}^d ?
- Compare with the complexity of the arrangement of the bounding hyperspheres
- ullet How can we compute U ?
- What is the image of U in the space of spheres ?



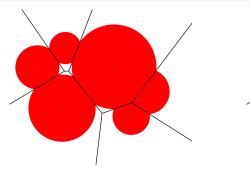
- $U = \bigcup_{b \in B} b \cap V(b)$ and $\partial U \cap \partial b = V(b) \cap \partial b$.
- The nerve of $\mathcal C$ is the restriction of $\operatorname{Del}(B)$ to U, i.e. the subcomplex $\operatorname{Del}_{|U}(B)$ of $\operatorname{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, b \cap V(b)$ is convex and thus contractible
- $C = \{b \cap V(b), b \in B\}$ is a good covering of U
- ullet The nerve of ${\mathcal C}$ is homotopy equivalent to U (Nerve theorem)

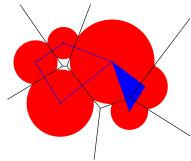


- $U = \bigcup_{b \in B} b \cap V(b)$ and $\partial U \cap \partial b = V(b) \cap \partial b$.
- The nerve of \mathcal{C} is the restriction of Del(B) to U, i.e. the subcomplex $\mathrm{Del}_{|U}(B)$ of $\mathrm{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, b \cap V(b)$ is convex and thus contractible
- $\mathcal{C} = \{b \cap V(b), b \in B\}$ is a good covering of U
- The nerve of \mathcal{C} is homotopy equivalent to U (Nerve theorem)

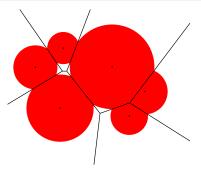


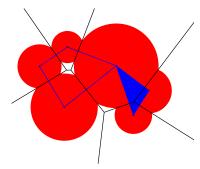
- $U = \bigcup_{b \in B} b \cap V(b)$ and $\partial U \cap \partial b = V(b) \cap \partial b$.
- The nerve of \mathcal{C} is the restriction of Del(B) to U, i.e. the subcomplex $Del_{|U}(B)$ of Del(B) whose faces have a circumcenter in U
- $\forall b, b \cap V(b)$ is convex and thus contractible
- $\mathcal{C} = \{b \cap V(b), b \in B\}$ is a good covering of U
- The nerve of \mathcal{C} is homotopy equivalent to U (Nerve theorem)





- $U = \bigcup_{b \in B} b \cap V(b)$ and $\partial U \cap \partial b = V(b) \cap \partial b$.
- The nerve of \mathcal{C} is the restriction of Del(B) to U, i.e. the subcomplex $\mathrm{Del}_{|U}(B)$ of $\mathrm{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, b \cap V(b)$ is convex and thus contractible
- $\mathcal{C} = \{b \cap V(b), b \in B\}$ is a good covering of U
- The nerve of \mathcal{C} is homotopy equivalent to U (Nerve theorem)





- $U = \bigcup_{b \in B} b \cap V(b)$ and $\partial U \cap \partial b = V(b) \cap \partial b$.
- ullet The nerve of $\mathcal C$ is the restriction of $\mathrm{Del}(B)$ to U, i.e. the subcomplex $\mathrm{Del}_{|U}(B)$ of $\mathrm{Del}(B)$ whose faces have a circumcenter in U
- $\forall b, \ b \cap V(b)$ is convex and thus contractible
- $C = \{b \cap V(b), b \in B\}$ is a good covering of U
- The nerve of $\mathcal C$ is homotopy equivalent to U

(Nerve theorem)

Cech complex versus $Del_{|U}(B)$

- ullet Both complexes are homotopy equivalent to U
- \bullet The size of $\operatorname{Cech}(B)$ is $\Theta(n^d)$
- The size of $\mathrm{Del}_{|U}(B)$ is $\Theta(n^{\lceil \frac{d}{2} \rceil})$

Filtration of a simplicial complex

 $oldsymbol{0}$ A filtration of K is a sequence of subcomplexes of K

$$\emptyset = K^0 \subset K^1 \subset \dots \subset K^m = K$$

such that: $K^{i+1} = K^i \cup \sigma^{i+1}$, where σ^{i+1} is a simplex of K

② Alternatively a filtration of K can be seen as an ordering $\sigma_1, \ldots \sigma_m$ of the simplices of K such that the set K^i of the first i simplices is a subcomplex of K

The ordering should be consistent with the dimension of the simplices

Filtration plays a central role in topological persistence (see F. Chazal's lectures)

Filtration of a simplicial complex

 $oldsymbol{0}$ A filtration of K is a sequence of subcomplexes of K

$$\emptyset = K^0 \subset K^1 \subset \dots \subset K^m = K$$

such that: $K^{i+1} = K^i \cup \sigma^{i+1}$, where σ^{i+1} is a simplex of K

② Alternatively a filtration of K can be seen as an ordering $\sigma_1, \ldots \sigma_m$ of the simplices of K such that the set K^i of the first i simplices is a subcomplex of K

The ordering should be consistent with the dimension of the simplices

Filtration plays a central role in topological persistence (see F. Chazal's lectures)

α -filtration of Delaunay complexes

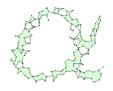
P a finite set of points of \mathbb{R}^d

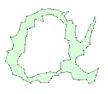
$$U(\alpha) = \bigcup_{p \in P} B(p, \alpha)$$

$$\alpha$$
-complex = $\operatorname{Del}_{|U(\alpha)}(P)$

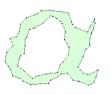
The filtration $\{ \mathrm{Del}_{|U(\alpha)}(P), \ \alpha \in \mathbb{R}^+ \}$ is called the α -filtration of $\mathrm{Del}(P)$

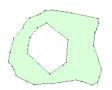
Shape reconstruction using α -complexes (2d)



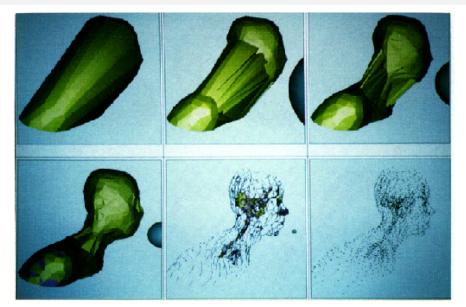


Alpha Controls the desired level of detail.



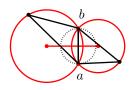


Shape reconstruction using α -complexes (3d)

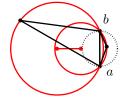


Constructing the α -filtration of Del(P)

 $\sigma \in \mathrm{Del}(P)$ is said to be Gabriel iff $\sigma \cap \sigma^* \neq \emptyset$



A Gabriel edge



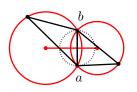
A non Gabriel edge

Algorithm

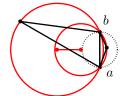
```
for each d-simplex \sigma \in \mathrm{Del}(P): \alpha_{min}(\sigma) = r(\sigma) for k = d - 1, ..., 0, for each k-face \sigma \in \mathrm{Del}(P) \alpha_{med}(\sigma) = \min_{\sigma \in \mathrm{coface}(\sigma)} \alpha_{min}(\sigma) if \sigma is Gabriel then \alpha_{min}(\sigma) = r(\sigma)
```

Constructing the α -filtration of Del(P)

 $\sigma \in \mathrm{Del}(P)$ is said to be Gabriel iff $\sigma \cap \sigma^* \neq \emptyset$



A Gabriel edge



A non Gabriel edge

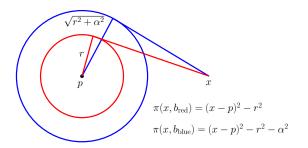
Algorithm

```
for each d-simplex \sigma \in \mathrm{Del}(P): \alpha_{min}(\sigma) = r(\sigma) for k = d-1,...,0, for each k-face \sigma \in \mathrm{Del}(P) \alpha_{med}(\sigma) = \min_{\sigma \in \mathrm{coface}(\sigma)} \alpha_{min}(\sigma) if \sigma is Gabriel then \alpha_{min}(\sigma) = r(\sigma) else \alpha_{min}(\sigma) = \alpha_{med}(\sigma)
```

α -filtration of weighted Delaunay complexes

$$B = \{b_i = (p_i, r_i)\}_{i=1,...,n}$$

$$W(\alpha) = \bigcup_{i=1}^{n} B\left(p_i, \sqrt{r_i^2 + \alpha^2}\right)$$



$$\alpha$$
-complex = $\mathrm{Del}_{W(\alpha)}(B)$

Filtration: $\{ \mathrm{Del}_{W(\alpha)}(B), \ \alpha \in \mathbb{R}^+ \}$