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Voronoi diagrams in nature
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The solar system (Descartes)
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Growth of merystem
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Euclidean Voronoi diagrams

Voronoi cell V(pi) = {x : ‖x− pi‖ ≤ ‖x− pj‖, ∀j}

Voronoi diagram (P) = { collection of all cells V(pi), pi ∈ P }
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Voronoi diagrams and polytopes

Polytope

The intersection of a finite collection of half-spaces : V =
⋂

i∈I h+i

Each Voronoi cell is a polytope

The Voronoi diagram has the structure of a cell complex

The Voronoi diagram of P is the projection of a polytope of Rd+1
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Voronoi diagrams and polyhedra

Vor(p1, . . . , pn) is the minimization diagram
of the n functions δi(x) = (x− pi)

2

arg min(δi) = arg max(hi)
where hpi(x) = 2 pi · x− p2

i

The minimization diagram of the δi is also
the maximization diagram of the affine
functions hpi(x)

The faces of Vor(P) are the projections of
the faces of V(P) =

⋂
i h+

pi

h+
pi = {x : xd+1 > 2pi · x− p2

i }

pi

z = (x− pi)
2

Note !
the graph of hpi(x) is the hyperplane tangent

to Q : xd+1 = x2 at (x, x2)
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Voronoi diagrams and polytopes

Lifting map
The faces of Vor(P) are the projection of the faces of the polytope

V(P) =
⋂

i h+pi

where hpi is the hyperplane tangent to paraboloid Q at the lifted
point (pi, p2

i )

Corollaries
I The size of Vor(P) is the same as the size of V(P)

I Computing Vor(P) reduces to computing V(P)
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Polytopes (convex polyhedra)

Two ways of defining polytopes

Convex hull of a finite set of points : V = conv(P)

Intersection of a finite set of half-spaces : H = ∩h∈H h+i
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Facial structure of a polytope

Supporting hyperplane h :
H ∩ P 6= ∅
P on one side of h

Faces : P ∩ h, h supp. hyp.

Dimension of a face :
the dim. of its affine hull
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General position

Points in general position

I P is in general position iff no subset of k + 2 points lie in a k-flat

⇒ If P is in general position, all faces of conv(P) are simplices

Hyperplanes in general position

I H is in general position iff the intersection of any subset of d − k
hyperplanes intersect in a k-flat

⇒ any k-face is the intersection of d − k hyperplanes
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Duality between points and hyperplanes

hyperplane of Rd h : xd = a · x′ − b −→ point h∗ = (a, b) ∈ Rd

point p = (p′, pd) ∈ Rd −→ hyperplane p∗ ⊂ Rd

= {(a, b) ∈ Rd : b = p′ · a− pd}

Duality

I preserves incidences :

p ∈ h ⇐⇒ pd = a · p′ − b⇐⇒ b = p′ · a− pd ⇐⇒ h∗ ∈ p∗

p ∈ h+ ⇐⇒ pd > a · p′ − b⇐⇒ b > p′ · a− pd ⇐⇒ h∗ ∈ p∗+

I is an involution and thus is bijective : h∗∗ = h and p∗∗ = p
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Duality between polytopes

Let h1, . . . , hn be n hyperplanes of Rd and let H = ∩h+i

ss

h1
h2 *

h3

h∗
3

h∗
2

h∗
1

A vertex s of H is t̄he intersection of k ≥ d hyperplanes h1, . . . , hk lying above
all the other hyperplanes

=⇒ s∗ is a hyperplane that 1. contains h∗1 , . . . , h
∗
k

2. supports H∗= conv−(h∗1 , . . . , h
∗
k )

General position
s is the intersection of d hyperplanes ⇒ s∗ supports a (d− 1)-simplex de H∗
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More generally and under the general position assumption,

Let f be a (d − k)-face of H and aff(f ) = ∩k
i=1hi

p ∈ f ⇔ h∗i ∈ p∗ for i = 1, . . . , k

h∗i ∈ p∗+ for i = k + 1, . . . , n

⇔ p∗support. hyp. of H∗ = conv(h∗1 , . . . , h
∗
n )

p∗ 3 h∗1 , . . . , h
∗
k

⇔ f ∗ = conv(h∗1 , . . . , h
∗
k ) is a (k − 1)− face of H∗

Duality between H and H∗
The correspondence between the faces of H and H∗ is involutive
and therefore bijective
It reverses inclusions : ∀f , g ∈ H, f ⊂ g ⇒ g∗ ⊂ f ∗
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Algorithmic consequences

Depending on the application, the primal or the dual setting may
be more appropriate

We will bound the combinatorial complexity of the intersection of n
upper half-spaces

We will compute the convex hull of n points

By duality, the results extend to the dual case
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Euler formula for 3-polytopes

The numbers of vertices s, edges a and facets f of a polytope of R3

satisfy
s− a + f = 2

Schlegel diagram

s = s′
a′ = a + 1
f ′ = f + 1

a′ = a + 1
f ′ = f

s′ = s + 1
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Euler formula for 3-polytopes : s− a + f = 2

Incidences edges-facets

2a ≥ 3f =⇒ a ≤ 3s− 6
f ≤ 2s− 4

with equality when all facets are triangles
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Beyond the 3rd dimension

Upper bound theorem [McMullen 1970]
If H is the intersection of n half-spaces of Rd

nb faces of H = Θ(nb d
2c)

Hyperplanes in general position

I any k-face is the intersection of d − k hyperplanes
defining H

I all vertices of H are incident to d edges and have distinct xd

I the convex hull of k < d edges incident to a vertex p
is a k-face of H
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Proof of the upper bound theorem

Bounding the number of vertices

1 ≥ d d
2e edges incident to a vertex p are in h+

p : xd ≥ xd(p) or in h−p
⇒ p is a xd-max or xd-min vertex of at least one d d

2 e-face of H
⇒ # vertices of H ≤ 2×# d d

2 e-faces of H

2 A k-face is the intersection of d − k hyperplanes defining H

⇒ # k-faces =

(
n

d − k

)
= O(nd−k)

⇒ # d d
2 e-faces = O(nb

d
2 c)

Bounding the total number of faces
The number of faces incident to p depends on d but not on n
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Representation of a convex hull

Adjacency graph (AG) of the facets

In general position, all the facets are (d − 1)-simplexes

Vertex
Face* v face

Face
Vertex* vertex[d]
Face* neighbor[d]

i

f

neighbor(ccw(i))

cw(i)

neighbor(i) ccw(i)
neighbor(cw(i))

Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 20 / 43



Incremental algorithm

Pi : set of the i points that have been
inserted first

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

s

t

f = [p1, ..., pd] is a red facet iff its supporting hyperplane separates pi

from conv(Pi)

⇐⇒ orient(p1, ..., pd, pi)× orient(p1, ..., pd,O) < 0

orient(p0, p1, ..., pd) =

∣∣∣∣ 1 1 ... 1
p0 p1 ... pd

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 1 ... 1

x01 x11 ... xd1
...

... ...
...

x0d x1d ... xdd

∣∣∣∣∣∣∣∣∣
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Update of conv(Pi)

red facet = facet whose supporting hyperplane separates
o and pi+1

horizon : (d − 2)-faces shared by a blue and a red facet

Update conv(Pi) :
1 find the red facets
2 remove them and create the

new facets
[pi+1, g], ∀g ∈ horizon

O

pi

conv(Ei)

e

s

t

Complexity
proportional to the number of red facets
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Complexity analysis

update proportional to the number of
red facets

# new facets = |conv(i, d − 1)|
= O(ib

d−1
2 c)

fast locate : insert the points in
lexicographic order and search
a 1st red facet in star(pi−1)

(which necessarily exists)

O

pi

conv(Ei)

e

s

t

T(n, d) = O(n log n) +
∑n

i=1 ib
d−1

2 c)

= O(n log n + nb d+1
2 c)

Worst-case optimal in even dimensions
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Lower bound

xi

pi = (xi, x
2
i )

y = x2 conv({pi}) =⇒ tri({xi})

the orientation test reduces to 3
comparisons

orient(pi, pj, pk) =

∣∣∣∣ xi − xj xi − xk

x2
i − x2

j x2
i − x2

k

∣∣∣∣
= (xi − xj)(xj − xk)(xk − xi)

=⇒ Lower bound : Ω(n log n)

Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 24 / 43



Lower bound for the incremental algorithm

No incremental algorithm can compute the convex hull of n points of R3

in less than Ω(n2)
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Randomized incremental algorithm

o : a point inside conv(P)

Pi : the set of the first i inserted points

conv(Pi) : convex hull at step i
O

pi

conv(Ei)

e

Conflict graph
bipartite graph {pj} × {facets of conv(Pi)}

pj † f ⇐⇒ j > i (pj not yet inserted) ∧ f ∩ opj 6= ∅
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Randomized analysis

Hyp. : points are inserted in random order

Notations R : random sample of size r of P
F(R) = { subsets of d points of R}
F0(R) = { elements of F(R) with 0 conflict in R}

(i.e. ∈ conv(R))
F1(R) = { elements of F(R) with 1 conflict in R}
Ci(r,P) = E(|Fi(R)|)

(expectation over all random samples R ⊂ P of size r)

Lemma

Ci(r,P) = O(rb d
2c), i = 1, 2
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Proof of the lemma : C1(r,P) = C0(r,P) = O(rb d
2c)

R′ = R \ {p}

f ∈ F0(R′) if f ∈ F1(R) and p † f (proba = 1
r )

or f ∈ F0(R) and R′ 3 the d vertices of f (proba = r−d
r )

Taking the expectation,

C0(r − 1,R) =
1
r
|F1(R)|+ r − d

r
|F0(R)|

C0(r − 1,P) =
1
r

C1(r,P) +
r − d

r
C0(r,P)

C1(r,P) = d C0(r,P)− r (C0(r,P)− C0(r − 1,P))

≤ d C0(r,P)

= O(rb d
2c)
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Randomized analysis 1
Updating the convex hull + memory space

Expected number N(i) of facets created at step i

N(i) =
∑

f∈F(P)

proba(f ∈ F0(Pi))×
d
i

=
d
i

O
(

ib d
2c
)

= O(nb d
2c−1)

Expected total number of created facets = O(nb d
2c)

O(n) if d = 2, 3
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Randomized analysis2
Updating the conflict graph

Cost proportional to the number of faces of conv(Pi) in conflict with pi+1
and some pj, j > i

N(i, j) = expected number of faces of conv(Pi) in conflict with pi+1 and pj, j > i

P+
i = Pi ∪ {pi+1} ∪ {pj} : a random subset of i + 2 points of P

N(i, j) =
∑

f∈F(P)

proba(f ∈ F2(P+
i ))× 2

(i + 1)(i + 2)
=

2 C2(i + 1)

(i + 1)(i + 2)
= O(ib d

2c−2)

Expected total cost of updating the conflict graph
n∑

i=1

n∑
j=i+1

N(i, j) =

n∑
i=1

(n− i) O(ib d
2c−2) = O(n log n + nb d

2c)
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Theorem

The convex hull of n points of Rd can be computed in time
O(n log n + nb d

2c) using O(nb d
2c) space

The same bounds hold for computing the intersection of n
half-spaces of Rd

The randomized algorithm can be derandomized
[Chazelle 1992]

The same results hold for Voronoi diagrams provided that
d → d + 1
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Voronoi diagram and Delaunay triangulation

Finite set of points P ∈ Rd

The Delaunay complex is the nerve of the Voronoi diagram

It is not always embedded in Rd
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Empty circumballs

An (open) d-ball B circumscribing a
simplex σ ⊂ P is called empty if

1 vert(σ) ⊂ ∂B
2 B ∩ P = ∅

Del(P) is the collection of simplices
admitting an empty circumball
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Point sets in general position wrt spheres

P = {p1, p2 . . . pn} is said to be in general position wrt spheres if
6 ∃ d + 2 points of P lying on a same (d − 1)-sphere

Theorem [Delaunay 1936]
If P is in general position wrt spheres, the natural mapping

f : vert(DelP)→ P

provides a realization of Del(P) called the Delaunay triangulation of P.
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Proof of Delaunay’s theorem 1

σ

h(σ)

P
Linearization

S(x) = x2 − 2c · x + s, s = c2 − r2

S(x) < 0⇔
{

z < 2c · x− s (h−S )
z = x2 (P)

⇔ x̂ = (x, x2) ∈ h−S
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Proof of Delaunay’s theorem 2

Proof of Delaunay’s th.

P general position wrt spheres
⇔ P̂ in general position

σ a simplex, Sσ its circumscribing
sphere

σ ∈ Del(P)⇔ Sσ empty

⇔ ∀i, p̂i ∈ h+Sσ

⇔ σ̂ is a face of conv−(P̂)

Del(P) = proj(conv−(P̂))
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Duality

V(P) = ∩i h+pi
D(P) = conv−(P̂)
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Voronoi diagrams, Delaunay triangulations and
polytopes

If P is in general position wrt spheres :

V(P) = h+p1
∩ . . . ∩ h+pn

duality−→ D(P) = conv−({p̂1, . . . , p̂n})

↑ ↓

Voronoi Diagram of P nerve−→ Delaunay Complex of P
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Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation diagram of
n points of Rd is the same as the combinatorial complexity of a convex
hull of n points of Rd+1

Θ(nd d
2e) Quadratic in R3
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Constructing Del(P), P = {p1, ..., pn} ⊂ Rd

Algorithm

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1:
pi → p̂i = (pi, p2

i )
2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Complexity : Θ(n log n + nb
d+1

2 c)
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Direct algorithm : insertion of a new point pi

1. Location : find all the d-simplices that conflict with pi

i.e. whose circumscribing ball contains pi

2. Update : construct the new d-simplices

T

pi

pi

pi
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Updating the adjacency graph

We look at the d-simplices to be removed
and at their neighbors

Each d-simplex is considered ≤ d(d+1)
2

times

Update cost = O(# created and deleted simplices )
= O(# created simplices)
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Exercise : computing the DT of an ε-net

Definition Let Ω be a bounded subset of Rd and P a finite point set
in Ω. P is called an (ε, η)-net of Ω if

1 Covering : ∀p ∈ Ω, ∃p ∈ P, ‖p− x‖ ≤ ε
2 Packing : ∀p, q ∈ P, ‖p− q‖ ≥ η

Questions
1 Show that (ε, ε)-nets exist

2 Show that any simplex with all its vertices at distance > ε from ∂Ω
has a circumradius ≤ ε

3 Show that the complexity of Del(P) is O(n) for fixed d

4 Improve the construction of Del(P)
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