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Voronoi diagrams in nature
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The solar system (Descartes)
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Growth of merystem
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Euclidean Voronoi diagrams

Voronoi cell Vpi) ={x:|lx —pill < llx—pjl, ¥}

Voronoi diagram (P) = { collection of all cells V(p;), p; € P }
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Voronoi diagrams and polytopes

Polytope
The intersection of a finite collection of half-spaces : V=, hi

1
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@ Each Voronoi cell is a polytope
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Voronoi diagrams and polytopes

Polytope
The intersection of a finite collection of half-spaces : V=, hi

1

@ Each Voronoi cell is a polytope

@ The Voronoi diagram has the structure of a cell complex
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Voronoi diagrams and polytopes

Polytope
The intersection of a finite collection of half-spaces : V=, hi

1

@ Each Voronoi cell is a polytope
@ The Voronoi diagram has the structure of a cell complex

@ The Voronoi diagram of P is the projection of a polytope of R4*!
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Voronoi diagrams and polyhedra

@ Vor(pi,...,ps) is the minimization diagram
of the n functions &;(x) = (x — p;)?
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Voronoi diagrams and polyhedra

@ Vor(pi,...,ps) is the minimization diagram
of the n functions &;(x) = (x — p;)?

@ argmin(d;) = arg max(h;)
where hy, (x) = 2p; - x — p?
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Voronoi diagrams and polyhedra

@ Vor(pi,...,ps) is the minimization diagram
of the n functions &;(x) = (x — p;)?

@ argmin(d;) = arg max(h;)
where hy, (x) = 2p; - x — p?

@ The minimization diagram of the ¢; is also
the maximization diagram of the affine
functions #,, (x)
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Voronoi diagrams and polyhedra

@ Vor(pi,...,ps) is the minimization diagram
of the n functions &;(x) = (x — p;)?

@ argmin(d;) = arg max(h;)
where hy, (x) = 2p; - x — p?

@ The minimization diagram of the ¢; is also
the maximization diagram of the affine
functions #,, (x)

@ The faces of Vor(P) are the projections of
the faces of V(P) =N, k)

h;? = {x:xd+1 >2pi'x*Pi2}
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Voronoi diagrams and polyhedra

@ Vor(pi,...,ps) is the minimization diagram
of the n functions &;(x) = (x — p;)?

@ argmin(d;) = arg max(h;)
where hy, (x) = 2p; - x — p?

@ The minimization diagram of the ¢; is also
the maximization diagram of the affine
functions #,, (x)

@ The faces of Vor(P) are the projections of
the faces of V(P) =N, k)

h;? = {x:xd+1 >2pi'x*Pi2}

Note !

the graph of 4, (x) is the hyperplane tangent
10 Q: xyp1 =x* at (x,x?)
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Voronoi diagrams and polytopes

Lifting map
The faces of Vor(P) are the projection of the faces of the polytope

V(P) =) h;—:t

where hy, is the hyperplane tangent to paraboloid Q at the lifted
point (p;, p?)
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Voronoi diagrams and polytopes

Lifting map
The faces of Vor(P) are the projection of the faces of the polytope

V(P) :mi h;—:t

where hy, is the hyperplane tangent to paraboloid Q at the lifted
point (p;, p?)

Corollaries
» The size of Vor(P) is the same as the size of V(P)

» Computing Vor(P) reduces to computing V(P)
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Polytopes (convex polyhedra)

Two ways of defining polytopes

@ Convex hull of a finite set of points :  V = conv(P)

@ Intersection of a finite set of half-spaces :  H = Nyep i}
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Facial structure of a polytope

Supporting hyperplane 4 :
HNP#0
P on one side of &
Faces : P N h, h supp. hyp.

Dimension of a face :
the dim. of its affine hull
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General position

Points in general position

» P is in general position iff no subset of k + 2 points lie in a k-flat
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General position

Points in general position
» Pis in general position iff no subset of k 4+ 2 points lie in a k-flat
= If P is in general position, all faces of conv(P) are simplices
Hyperplanes in general position

» H is in general position iff the intersection of any subset of d — &
hyperplanes intersect in a k-flat
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General position

Points in general position

» Pis in general position iff no subset of k 4+ 2 points lie in a k-flat

= If P is in general position, all faces of conv(P) are simplices

Hyperplanes in general position

» H is in general position iff the intersection of any subset of d — &
hyperplanes intersect in a k-flat

= any k-face is the intersection of d — k hyperplanes
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Duality between points and hyperplanes

hyperplane of R h:xs=a-x¥ —b — point h* = (a,b) € R?

point p = (p’,ps) € R? — hyperplane p* Cc R?
={(a,b) eR':b=p"-a—pa}
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Duality between points and hyperplanes

hyperplane of R h:xs=a-x¥ —b — point h* = (a,b) € R?

point p = (p’,ps) € R? — hyperplane p* Cc R?
={(a,b) eR':b=p"-a—pa}

Duality

» preserves incidences :
pEh < pij=a-p—b<=b=p -a—p; = h*cp”
peht < pi>a-p—b<s=b>p -a—p;<=h*cpt

» is an involution and thus is bijective : i** = hand p** =p
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Duality between polytopes
Let iy, ..., h, be n hyperplanes of RY and let H = Nh;"

}13

hs
h]

ha *
., .
K
/
A vertex s of H is the intersection of k > d hyperplanes ki, ..., i lying above

all the other hyperplanes

= s* is a hyperplane that 1. contains #j,..., A}
2. supports  H*=conv—(h},...,h;)

General position
s is the intersection of d hyperplanes = s* supports a (d — 1)-simplex de H*
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More generally and under the general position assumption,
Letf bea (d —k)-faceof H and  aff(f) = N,k

pEf & hiep fori=1,... )k
hfep ™ for i=k+1,....n

< pTsupport. hyp. of H* = conv(hj,..., h;)
A=Y T

& ff=conv(hy,...,h) is a (k—1) —face of H*
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More generally and under the general position assumption,
Letf bea (d —k)-faceof H and  aff(f) = N,k

pEf & hiep fori=1,... )k
hfep ™ for i=k+1,....n

< pTsupport. hyp. of H* = conv(hj,..., h;)
A=Y T

& ff=conv(hy,...,h) is a (k—1) —face of H*

Duality between ‘H and H*

@ The correspondence between the faces of 4 and H* is involutive
and therefore bijective

@ It reversesinclusions :Vf,gcH, fCg = g*Cf*
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Algorithmic consequences

@ Depending on the application, the primal or the dual setting may
be more appropriate

@ We will bound the combinatorial complexity of the intersection of n
upper half-spaces

@ We will compute the convex hull of n points

@ By duality, the results extend to the dual case
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Euler formula for 3-polytopes
satisfy

The numbers of vertices s, edges a and facets f of a polytope of R?
Schlegel diagram

s—a+f=2

A A
T

q—s+a
F=5r
Computational Geometry Learning

Voronoi, Delaunay & Polytopes

MPRI, Lecture 2
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Euler formula for 3-polytopes : s —a +f =2

Incidences edges-facets

a<35—6

>
azy = 5,

with equality when all facets are triangles
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Beyond the 3rd dimension

Upper bound theorem [McMullen 1970]
If H is the intersection of »n half-spaces of R¢

nb faces of H = @(nL%lJ)
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Beyond the 3rd dimension
Upper bound theorem [McMullen 1970]
If H is the intersection of »n half-spaces of R¢

nb faces of H = @(nL%lJ)

Hyperplanes in general position

» any k-face is the intersection of d — k hyperplanes
defining #

» all vertices of H are incident to d edges and have distinct x,

» the convex hullof k< d edgesincidentto a vertex p
is a k-face of H
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Proof of the upper bound theorem

Bounding the number of vertices

@ > [4] edges incident to a vertex p are in i} : xq > xq(p) OFin h;
= pis ax,-max or x,-min vertex of at least one [4]-face of H
= # vertices of H < 2x# [4]-faces of
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Proof of the upper bound theorem

Bounding the number of vertices

@ > [4] edges incident to a vertex p are in i} : xq > xq(p) OFin h;
= pis ax,-max or x,-min vertex of at least one [4]-face of H
= # vertices of H < 2x# [4]-faces of H

@ A k-face is the intersection of d — k hyperplanes defining

n —k
= # k-faces = ( d—k) =0

= #[4]-faces = O(n'%))
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Proof of the upper bound theorem

Bounding the number of vertices
@ > 4] edges incident to a vertex p are in ht :xa > xq(p) Orinh,
= pis ax,-max or x,-min vertex of at least one [4]-face of H
= # vertices of H < 2x# [4]-faces of H

@ A k-face is the intersection of d — k hyperplanes defining

n —k
= # k-faces = ( d—k) =0

= #[4]-faces = O(n'%))

Bounding the total number of faces
The number of faces incident to p depends on d but not on »
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Representation of a convex hull

Adjacency graph (AG) of the facets

In general position, all the facets are (d — 1)-simplexes

Vertex
Face* v_face

neighbor (ew (1))

Face
Vertex*  vertex|d]
Face* l’lelghb()r[d] neighbor (cew (i) )
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Computational Geometry Learning Voronoi, Delaunay & Polytopes

Incremental algorithm

P; . set of the i points that have been
inserted first

conv(P;) : convex hull at step i

f=1p1,..-,pa4] is a red facet iff its supporting hyperplane separates p;
from conv(7P;)

<= orient(py,...,pq,pi) X orient(py,...,ps,0) <0

1 1 1

1 1 1 ... 1 Xot  X11 .- X4l
orient(po. pry-oPa) = | b py | T

Xod Xld - Xdd
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Update of conv(7P;)

red facet = facet whose supporting hyperplane separates
o and p;4

horizon : (d — 2)-faces shared by a blue and a red facet

Update conv(P;) : . 7"
@ find the red facets

@ remove them and create the
new facets

[pi+1, 8], Vg € horizon ,
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Update of conv(7P;)

red facet = facet whose supporting hyperplane separates
o and p;4

horizon : (d — 2)-faces shared by a blue and a red facet

Update conv(P;) : . 7"
@ find the red facets

@ remove them and create the
new facets

[pi+1, 8], Vg € horizon ,

Complexity
proportional to the number of red facets J
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Complexity analysis

@ update proportional to the number of "
red facets 5

@ # new facets = |conv(i,d — 1)|
= o(il'T"))

@ fast locate : insert the points in
lexicographic order and search
a 1st red facet in star(p;_)

(which necessarily exists)
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Complexity analysis

@ update proportional to the number of »
red facets s

@ # new facets = |conv(i,d — 1)|
= o(il'T"))

@ fast locate : insert the points in
lexicographic order and search
a 1st red facet in star(p;_)

(which necessarily exists)

T(n,d) = O(nlogn) + Zl":li = )
:O(nlogn+nL J)

Worst-case optimal in even dimensions
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Lower bound

y=a conv({pi}) = tri({x:})

the orientation test reduces to 3
comparisons

pi = (zi,2?)

. Xi — Xj Xi — Xk
orient(p;, pi, pr) =
(Pl7p]7p ) xizisz X%*X%

= (6 —x) (5 — x) ( — x1)

= Lower bound : Q(nlogn)
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Lower bound for the incremental algorithm

No incremental algorithm can compute the convex hull of n points of R?
in less than Q(n?)
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Randomized incremental algorithm

o : a point inside conv(P)
P; : the set of the first i inserted points

conv(P;) : convex hull at step i
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Randomized incremental algorithm

o : a point inside conv(P)
P; : the set of the first i inserted points

conv(P;) : convex hull at step i

Conflict graph
bipartite graph {p;} x {facets of conv(P;)}

pitf < j>i (pjnotyetinserted) A fnop #0
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Randomized analysis

Hyp. : points are inserted in random order
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Randomized analysis

Hyp. : points are inserted in random order

Notations R : random sample of size r of P

F(R) = { subsets of d points of R}
Fo(R) = { elements of F(R) with 0 conflict in R}
(i.e. € conv(R))

Fi(R) = { elements of F(R) with 1 conflict in R}

Ci(r, P) = E(|Fi(R)])
(expectation over all random samples R C P of size r)
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Randomized analysis

Hyp. : points are inserted in random order

Notations R : random sample of size r of P

F(R) = { subsets of d points of R}
Fo(R) = { elements of F(R) with 0 conflict in R}
(i.e. € conv(R))

Fi(R) = { elements of F(R) with 1 conflict in R}

Ci(r, P) = E(|Fi(R)])
(expectation over all random samples R C P of size r)

Lemma
Ci(r,P)=o0(rL2]), i=1,2
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d
2

Proof of the lemma : Ci(r,P) = Co(r,P) = O(rL J)
R' =R\ {p}

feFR)if feF (R andptf (proba = 1)
or f € Fy(R) and R’ > the d vertices of f  (proba = =4)

Taking the expectation,

Colr—1R) = IR+ |Fo(m)
Co(r—1,P) = %Cl(r,PH—r:dCo(r,P)
Ci(r,P) = dCo(r,P)—r (Co(r,P)— Co(r—1,P))
S dCQ(F,P)
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Randomized analysis 1

Updating the convex hull + memory space

Expected number N(i) of facets created at step i

N(@) = Z proba(f € Fo(P;)) x %1

fEF(P)

- ? 0 (,HJ)
ol
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Randomized analysis 1

Updating the convex hull + memory space

Expected number N(i) of facets created at step i

N(@) = Z proba(f € Fo(P;)) x %1

JEF(P)
d | d
o(l4-1)

Expected total number of created facets = O(nl%))

Oon)if d=2,3
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Randomized analysis2
Updating the conflict graph

Cost proportional to the number of faces of conv(7;) in conflict with p;
and some p;, j > i

N(i,j) = expected number of faces of conv(7;) in conflict with p;, and p;, j > i

Pt =P;U{pi+1} U{p;} : arandom subset of i + 2 points of P

L 2 _ 2060+ e
N(laJ)—fe%;)proba(fer(Pi*))>< E S RS = o(il1]=2)

Expectedntotanl cost of upndating the conflict graph
DD NGH=) (n—i) 0(il11-2) = o(n1ogn + nl2])

i=1 j=i+1 i=1
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Theorem

@ The convex hull of n points of RY can be computed in time
d d
O(nlogn + an) using o(an) space

@ The same bounds hold for computing the intersection of n
half-spaces of R¢

@ The randomized algorithm can be derandomized
[Chazelle 1992]

@ The same results hold for Voronoi diagrams provided that
d—d+1
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Voronoi diagram and Delaunay triangulation

Finite set of points P € R?

@ The Delaunay complex is the nerve of the Voronoi diagram

@ It is not always embedded in R?

Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 32/43



Empty circumballs

An (open) d-ball B circumscribing a
simplex o C P is called empty if

Q vert(o) C OB
QBNP=0

Del(P) is the collection of simplices
admitting an empty circumball
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Point sets in general position wrt spheres

P = {p1,p2...pn} is said to be in general position wrt spheres if
Ad + 2 points of P lying on a same (d — 1)-sphere
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Point sets in general position wrt spheres

P = {p1,p2...pn} is said to be in general position wrt spheres if
Ad + 2 points of P lying on a same (d — 1)-sphere

Theorem [Delaunay 1936]
If P is in general position wrt spheres, the natural mapping

f : vert(DelP) — P

provides a realization of Del(P) called the Delaunay triangulation of P.

v
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Proof of Delaunay’s theorem 1

Computational Geometry Learning

Linearization

S(x)=x*—2c-x+s, s=c*—1r

<2-x—s (hy)
ﬂ@<0@{§:2 &)

X

& &= (x,x*) € hy
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Proof of Delaunay’s theorem 2

Proof of Delaunay’s th.

P general position wrt spheres

s N < P in general position
W
\\\
. \\\\ \/ ; o a simplex, S, its circumscribing
convex hul e 1 sphere

o € Del(P) & S, empty

S Vi, pi € h;;

& ¢ is a face of conv—(P)
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Proof of Delaunay’s theorem 2

Proof of Delaunay’s th.

P general position wrt spheres
< P in general position

L)

Lower N -
o il aw

Delaunay

tnangutatian {f o _E— - _' =

o a simplex, S, its circumscribing
sphere

o € Del(P) & S, empty

S Vi, pi € h;;

& ¢ is a face of conv—(P)

Del(P) = proj(conv~(P)) J
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Duality

Delaunay
triangulation
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Voronoi diagrams, Delaunay triangulations and
polytopes

If P is in general position wrt spheres :

duality
—

V(P)=h N...0h D(P) =conv™({p1,...,Pn})

T \

nerve

Voronoi Diagram of P —  Delaunay Complex of P

Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 38/43



Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation diagram of

n points of R? is the same as the combinatorial complexity of a convex
hull of n points of R4*!

Quadratic in R?

Computational Geometry Learning Voronoi, Delaunay & Polytopes MPRI, Lecture 2 39/43



Constructing Del(P), P = {pi,....pn} CR?

Algorithm

1 Lift the points of P onto the paraboloid x;,; = x* of R4*!:
pi = pi = (pi,p})

2 Compute conv({p;})

3 Project the lower hull conv™=({p;}) onto R¢

d+1 |

Complexity : ©(nlogn +nl= 1)
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Direct algorithm : insertion of a new point p;

1. Location : find all the d-simplices that conflict with p;
i.e. whose circumscribing ball contains p;

2. Update : construct the new d-simplices
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Updating the adjacency graph

We look at the d-simplices to be removed
~ ! A and at their neighbors

Each d-simplex is considered < 441

R times

Update cost = O(# created and deleted simplices )
= O(# created simplices)
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Exercise : computing the DT of an e-net

Definition Let 2 be a bounded subset of R? and P a finite point set
in Q. P is called an (e, n)-net of Q if

@ Covering:VpeQ, IpeP, |p—x|<e

@ Packing : Vp,g e P,|p—qll = n
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Exercise : computing the DT of an e-net

Definition Let 2 be a bounded subset of R? and P a finite point set
in Q. P is called an (e, n)-net of Q if

@ Covering:VpeQ, IpeP, |p—x|<e

@ Packing : Vp,g € P,|lp—q|| > n

Questions
@ Show that (¢, ¢)-nets exist

@ Show that any simplex with all its vertices at distance > ¢ from 92
has a circumradius < ¢

© Show that the complexity of Del(P) is O(n) for fixed d

© Improve the construction of Del(P)
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