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Reconstructing surfaces from point clouds

One can reconstruct a surface from 106 points within 1mn [CGAL]

MPRI Computational Geometry Learning Lectures at MPRI 3 / 14



CGAL-mesh

GeometryFactory, Acute3D

CGALmesh Achievements

Meshing 3D multi-domains
Input from segmented 3D medical images [IRCAD]

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 21 / 36
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Geometric data analysis
Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis : Data lie close to a structure of
“small” intrinsic dimension

Problem : Infer the structure from the data
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Image manifolds

An image with 10 million pixels
→ a point in a space of 10 million dimensions!

camera : 3 dof
light : 2 dof

The image-points lie close to a structure of intrinsic dimension 5
embedded in this huge ambient space
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Motion capture

Typically N = 100, D = 1003, d ≤ 15
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Dimensionality reductionIsomap results: hands 
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Conformation spaces of molecules e.g. C8H16

 

Figure 1.  Conformation Space of Cyclo-Octane.  The set of conformations of cyclo-octane can 
be represented as a surface in a high dimensional space.  On the left, we show various 
conformations of cyclo-octane.  In the center, these conformations are represented by the 3D 
coordinates of their atoms.  On the right, a dimension reduction algorithm is used to obtain a 
lower dimensional visualization of the data. 

 

 

Figure 2. Decomposing Cyclo-Octane.  The cyclo-octane conformation space has an interesting 
decomposition.  The local geometry of a self-intersection consists of a cylinder (top left) and a 
Mobius strip (top right), while the self-intersection is a ring traversing the middle of each object 
(shown in red).  Globally, cyclo-octane conformations can be separated into a sphere (bottom 
left) and a Klein bottle (bottom right). 
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Each conformation is represented as a point in R72 (R24 when
neglecting the H atoms)

The intrinsic dimension of the conformation space is 2

The geometry of C8H16 is highly nonlinear

MPRI Computational Geometry Learning Lectures at MPRI 9 / 14



Issues in high-dimensional geometry

Dimensionality severely restricts our intuition and ability to
visualize data
⇒ need for automated and provably correct methods methods

Complexity of data structures and algorithms rapidly grow as the
dimensionality increases

⇒ no subdivision of the ambient space is affordable

⇒ data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data

Inherent defects : sparsity, noise, outliers
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Course overview : some keywords

Computational geometry and topology
Triangulations, simplicial complexes
Algorithms in high dimensions

Shape reconstruction
Geometric inference
Topological data analysis
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Algorithmic geometry of triangulations [JDB]

1 Simplicial complexes in metric spaces (26/09)

2 Delaunay-type complexes (03/10)

3 Weighted Delaunay and alpha complexes (10/10)

4 Thickness and relaxation (17/10)

5 Reconstruction of submanifolds (24/10)

Geometric inference [FC]

6 Distance functions, sampling, stability of critical points (31/10)

7 Noise and outliers, distance to a measure (07/11)

8 Computational homology (14/11)

9 Topological persistence (21/11)

10 Multi-scale inference and applications (28/11)
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Further reading

Theses at Geometrica
Persistent Homology : Steve Oudot (HDR, 26/11)
Distance to a measure : Q. Mérigot (HDR, 17/11)
Triangulation of manifolds : A. Ghosh (2012)
Data structures for computational topology : C. Maria (2014)

Course Notes
www-sop.inria.fr/geometrica/courses/supports/CGL-poly.pdf

Colloquium J. Morgenstern www-sop.inria.fr/colloquium

Vin de Silva : Point-clouds, sensor networks, and persistence:
algebraic topology in the 21st century 26/3/2009
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Projects

European project Computational Geometric Learning (CGL)
cgl.uni-jena.de/Home/WebHome

ANR TopData
Geometry meets statistics

ERC Sdvanced Grant GUDHI
Geometry Understanding in Higher Dimensions

On the industrial side
Californian Startup : www.ayasdi.com
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