Computational Geometry Learning

Jean-Daniel Boissonnat Frédéric Chazal

Geometrica, INRIA

http://www-sop.inria.fr/geometrica

Lectures at MPRI

Computational Geometry Learning

Jean-Daniel Boissonnat Frédéric Chazal

Geometrica, INRIA

http://www-sop.inria.fr/geometrica

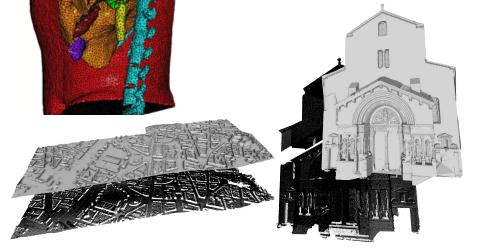
Lectures at MPRI

Reconstructing surfaces from point clouds

One can reconstruct a surface from 10^6 points within 1mn

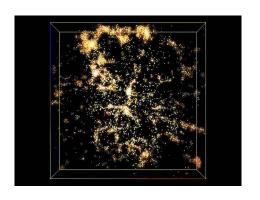
[CGAL]

CGAL-mesh GeometryFactory, Acute3D



Geometric data analysis

Images, text, speech, neural signals, GPS traces,...



Geometrisation: Data = points + distances between points

Hypothesis: Data lie close to a structure of

"small" intrinsic dimension

Problem: Infer the structure from the data

Image manifolds

An image with 10 million pixels

→ a point in a space of 10 million dimensions!

camera: 3 dof

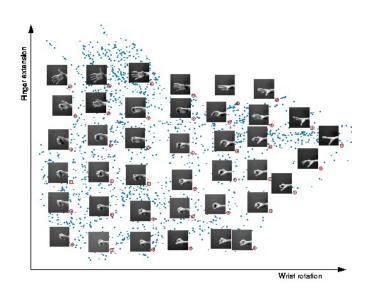
light: 2 dof

The image-points lie close to a structure of intrinsic dimension 5 embedded in this huge ambient space

Motion capture

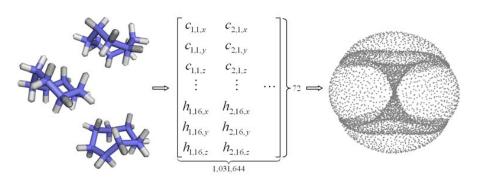
Typically N = 100, $D = 100^3$, $d \le 15$

Dimensionality reduction



Conformation spaces of molecules

e.g. C_8H_{16}



- Each conformation is represented as a point in \mathbb{R}^{72} (\mathbb{R}^{24} when neglecting the H atoms)
- The intrinsic dimension of the conformation space is 2
- The geometry of C_8H_{16} is highly nonlinear

Issues in high-dimensional geometry

- Dimensionality severely restricts our intuition and ability to visualize data
 - ⇒ need for automated and provably correct methods methods
- Complexity of data structures and algorithms rapidly grow as the dimensionality increases
 - ⇒ no subdivision of the ambient space is affordable
 - ⇒ data structures and algorithms should be sensitive to the intrinsic dimension (usually unknown) of the data
- Inherent defects: sparsity, noise, outliers

Course overview: some keywords

- Computational geometry and topology
- Triangulations, simplicial complexes
- Algorithms in high dimensions
- Shape reconstruction
- Geometric inference
- Topological data analysis

Algorithmic geometry of triangulations [JDB]

- 1 Simplicial complexes in metric spaces (26/09)
- 2 Delaunay-type complexes (03/10)
- 3 Weighted Delaunay and alpha complexes (10/10)
- 4 Thickness and relaxation (17/10)
- 5 Reconstruction of submanifolds (24/10)

Geometric inference [FC]

- 6 Distance functions, sampling, stability of critical points (31/10)
- 7 Noise and outliers, distance to a measure (07/11)
- 8 Computational homology (14/11)
- 9 Topological persistence (21/11)
- 10 Multi-scale inference and applications (28/11)

Further reading

Theses at Geometrica

- Persistent Homology: Steve Oudot (HDR, 26/11)
- Distance to a measure : Q. Mérigot (HDR, 17/11)
- Triangulation of manifolds : A. Ghosh (2012)
- Data structures for computational topology: C. Maria (2014)

Course Notes

www-sop.inria.fr/geometrica/courses/supports/CGL-poly.pdf

Colloquium J. Morgenstern

www-sop.inria.fr/colloquium

Vin de Silva: Point-clouds, sensor networks, and persistence: algebraic topology in the 21st century 26/3/2009

Projects

- European project Computational Geometric Learning (CGL)
 cgl.uni-jena.de/Home/WebHome
- ANR TopData
 Geometry meets statistics
- ERC Sdvanced Grant GUDHI
 Geometry Understanding in Higher Dimensions
- On the industrial side
 Californian Startup: www.ayasdi.com