EXERCISES

1. Power diagrams

Exercice 1. Delaunay predicate

Let \mathcal{S} be a hypersphere of \mathbb{R}^{d} passing through $d+1$ points p_{0}, \ldots, p_{d}. Show that a point p_{d+1} of \mathbb{R}^{d} lies on \mathcal{S}, in the interior of the ball $B_{\mathcal{S}}$ bounded by \mathcal{S} or outside of $B_{\mathcal{S}}$ depending whether the determinant of the $(d+2) \times(d+2)$ matrix

$$
\text { in_sphere }\left(p_{0}, \ldots, p_{d+1}\right)=\left|\begin{array}{ccc}
1 & \ldots & 1 \\
p_{0} & \ldots & p_{d+1} \\
p_{0}^{2} & \ldots & p_{d+1}^{2}
\end{array}\right|
$$

is 0 , negative or positive.

Exercice 2. k-order diagrams

1. Recall the definitions of k-order Voronoi and power diagrams.
2. Show that a k-order Voronoi diagram is a power diagram and recall (or propose) an algorithm to construct a $(k+1)$-order Voronoi diagram from a k-order Voronoi diagram.

We now focus on the $(n-1)$-order Voronoi diagram of a set P of n points.
3. This diagram is also called farthest Voronoi diagram. Justify this name.
4. Prove the following properties of the farthest Voronoi diagram :

- p_{i} is a vertex of the convex hull of P if and only if its farthest Voronoi region is non-empty
- the farthest Voronoi diagram is a tree

5. Show that the center of the smallest sphere enclosing P is either a vertex of the farthest Voronoi diagram or the intersection of an edge (bisector of two sites A and B) of the farthest Voronoi diagram and $[A B]$.

Exercice 3. Möbius diagrams

1. Recall the definitions of affine and Möbius diagrams.
2. Show that the intersection of a power diagram with a hyperplane is a power diagram.
3. Prove the following lemma (also called linearization lemma) : Given a set of weighted points $\left\{p_{i}\right\}_{i}$ in \mathbb{R}^{d}, we can associate to each p_{i} a hypersphere Σ_{i} of R^{d+1} so that the faces of the Möbius diagram of $\left\{p_{i}\right\}_{i}$ are obtained by projecting vertically the faces of the restriction of the power diagram of the paraboloid $\mathcal{P}: x_{d+1}=x^{2}$.

2. α-Shapes, Union of balls

Exercice 4. We consider a set $B=\left\{b_{i}, i=1, \ldots, n\right\}$ of n balls of \mathbb{R}^{d} and use the following notations :

- ∂b_{i} denotes the sphere bounding b_{i},
- $U(B)$ denotes the union of balls in B,
- $\partial U(B)$ denotes the boundary of $U(B)$,
- $\operatorname{Vor}(B)$ denotes the power diagram of B,
- $V\left(b_{i}\right)$ denotes the cell of b_{i} in $\operatorname{Vor}(B)$

1. Prove the following equalities

$$
\begin{align*}
\forall b_{i} \in B, V\left(b_{i}\right) \cap b_{i} & =V\left(b_{i}\right) \cap U(B), \tag{1}\\
\forall b_{i} \in B, V\left(b_{i}\right) \cap \partial b_{i} & =V\left(b_{i}\right) \cap \partial U(B), \tag{2}\\
U(B) & =\cup_{i}\left(V\left(b_{i}\right) \cap b_{i}\right), \tag{3}\\
\partial U(B) & =\cup_{i}\left(V\left(b_{i}\right) \cap \partial b_{i}\right) . \tag{4}
\end{align*}
$$

2. Using the facts proved in the previous question, show that, in the space of dimension 2 , the union of n balls has a linear complexity, i.e. that that the number of vertices and arcs on $\partial U(B)$ is $O(n)$. Propose an algorithm to compute the union of n-balls in \mathbb{R}^{2} in $O(n \log n)$.

Hereafter, we denote by :
$-\operatorname{Reg}(B)$, the weighted Delaunay triangulation of B

- $\mathcal{W}_{\alpha}(B)$, the α-shape of B for a given value of the parameter α
- $\mathcal{W}_{0}(B)$, the α-shape of B for the value $\alpha=0$

For any subset $T \subset B$ with cardinality less than $(d+1)$, we note $\sigma(T)$ the simplex whose vertices are the centers of ball in T, and by $f(T)$ the intersection (which may be empty) of the spheres bounding the balls in $T: f(T)=\cap_{b_{i} \in T} \partial b_{i}$.
3. Recall the definition of the α-shape $\mathcal{W}_{\alpha}(B)$.
4. Show that a $(d-1)$-simplex $\sigma(T)$ of $\operatorname{Reg}(B)$ belongs to the boundary $\partial \mathcal{W}_{\alpha}(B)$ of $\mathcal{W}_{\alpha}(B)$ if and only if there is a ball with squared radius α orthogonal to any ball in T and further than orthogonal to any ball of $B \backslash T$.
hint : Consider the pencil $L(T)$ of balls that are orthogonal to all the balls in T.
5. Equation 3 defines a cover of the union of balls $U(B)$. Show that $\mathcal{W}_{0}(B)$ is a realization of the nerve of this cover. i.e. that a simplex $\sigma(T)$ of $\operatorname{Reg}(B)$ belongs to $\mathcal{W}_{0}(B)$ if and only if the intersection $\cap_{b \in T} V(b) \cap b$ is non empty.
6. Show that a simplex $\sigma(T)$ of $\operatorname{Reg}(B)$ belongs to the boundary $\partial \mathcal{W}_{0}(B)$ if and only if $f(T) \cup \partial U(B)$ is non-empty.

