EXERCISES

1. Power diagrams

Exercice 1. Delaunay predicate

Let S be a hypersphere of \mathbb{R}^d passing through d+1 points p_0, \ldots, p_d . Show that a point p_{d+1} of \mathbb{R}^d lies on S, in the interior of the ball B_S bounded by S or outside of B_S depending whether the determinant of the $(d+2) \times (d+2)$ matrix

in_sphere
$$(p_0, \dots, p_{d+1}) = \begin{vmatrix} 1 & \dots & 1 \\ p_0 & \dots & p_{d+1} \\ p_0^2 & \dots & p_{d+1}^2 \end{vmatrix}$$

is 0, negative or positive.

Exercice 2. k-order diagrams

- 1. Recall the definitions of k-order Voronoi and power diagrams.
- 2. Show that a k-order Voronoi diagram is a power diagram and recall (or propose) an algorithm to construct a (k + 1)-order Voronoi diagram from a k-order Voronoi diagram.

We now focus on the (n-1)-order Voronoi diagram of a set P of n points.

- 3. This diagram is also called *farthest* Voronoi diagram. Justify this name.
- 4. Prove the following properties of the farthest Voronoi diagram :
 - $-p_i$ is a vertex of the convex hull of P if and only if its farthest Voronoi region is non-empty
 - the farthest Voronoi diagram is a tree
- 5. Show that the center of the smallest sphere enclosing P is either a vertex of the farthest Voronoi diagram or the intersection of an edge (bisector of two sites A and B) of the farthest Voronoi diagram and [AB].

Exercice 3. Möbius diagrams

- 1. Recall the definitions of affine and Möbius diagrams.
- 2. Show that the intersection of a power diagram with a hyperplane is a power diagram.
- 3. Prove the following lemma (also called *linearization lemma*) : Given a set of weighted points $\{p_i\}_i$ in \mathbb{R}^d , we can associate to each p_i a hypersphere Σ_i of \mathbb{R}^{d+1} so that the faces of the Möbius diagram of $\{p_i\}_i$ are obtained by projecting vertically the faces of the restriction of the power diagram of the paraboloid $\mathcal{P}: x_{d+1} = x^2$.

2. α -Shapes, Union of Balls

Exercice 4. We consider a set $B = \{b_i, i = 1, ..., n\}$ of n balls of \mathbb{R}^d and use the following notations :

- ∂b_i denotes the sphere bounding b_i ,
- U(B) denotes the union of balls in B,
- $\partial U(B)$ denotes the boundary of U(B),
- $\operatorname{Vor}(B)$ denotes the power diagram of B,
- $-V(b_i)$ denotes the cell of b_i in Vor(B)
- 1. Prove the following equalities

$$\forall b_i \in B, V(b_i) \cap b_i = V(b_i) \cap U(B), \tag{1}$$

$$\forall b_i \in B, V(b_i) \cap \partial b_i = V(b_i) \cap \partial U(B), \tag{2}$$

$$U(B) = \bigcup_i (V(b_i) \cap b_i), \tag{3}$$

$$\partial U(B) = \bigcup_i (V(b_i) \cap \partial b_i). \tag{4}$$

2. Using the facts proved in the previous question, show that, in the space of dimension 2, the union of n balls has a linear complexity, i.e. that the number of vertices and arcs on $\partial U(B)$ is O(n). Propose an algorithm to compute the union of n-balls in \mathbb{R}^2 in $O(n \log n)$.

Hereafter, we denote by :

- $\operatorname{Reg}(B)$, the weighted Delaunay triangulation of B
- $-\mathcal{W}_{\alpha}(B)$, the α -shape of B for a given value of the parameter α
- $\mathcal{W}_0(B)$, the α -shape of B for the value $\alpha = 0$

For any subset $T \subset B$ with cardinality less than (d+1), we note $\sigma(T)$ the simplex whose vertices are the centers of ball in T, and by f(T) the intersection (which may be empty) of the spheres bounding the balls in $T : f(T) = \bigcap_{b_i \in T} \partial b_i$.

- 3. Recall the definition of the α -shape $\mathcal{W}_{\alpha}(B)$.
- 4. Show that a (d-1)-simplex $\sigma(T)$ of $\operatorname{Reg}(B)$ belongs to the boundary $\partial \mathcal{W}_{\alpha}(B)$ of $\mathcal{W}_{\alpha}(B)$ if and only if there is a ball with squared radius α orthogonal to any ball in T and further than orthogonal to any ball of $B \setminus T$.

hint : Consider the pencil L(T) of balls that are orthogonal to all the balls in T.

- 5. Equation 3 defines a cover of the union of balls U(B). Show that $\mathcal{W}_0(B)$ is a realization of the nerve of this cover. i.e. that a simplex $\sigma(T)$ of $\operatorname{Reg}(B)$ belongs to $\mathcal{W}_0(B)$ if and only if the intersection $\bigcap_{b \in T} V(b) \cap b$ is non empty.
- 6. Show that a simplex $\sigma(T)$ of $\operatorname{Reg}(B)$ belongs to the boundary $\partial \mathcal{W}_0(B)$ if and only if $f(T) \cup \partial U(B)$ is non-empty.

