Manifold Reconstruction

Jean-Daniel Boissonnat
Geometrica, INRIA
http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis January 26-30, 2015

Geometric data analysis

Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points
Hypothesis: Data lie close to a structure of "small" intrinsic dimension

Problem: Infer the structure from the data

Submanifolds of \mathbb{R}^{d}

A compact subset $\mathbb{M} \subset \mathbb{R}^{d}$ is a submanifold without boundary of (intrinsic) dimension $k<d$, if any $p \in \mathbb{M}$ has an open (topological) k-ball as a neighborhood in \mathbb{M}

Intuitively, a submanifold of dimension k is a subset of \mathbb{R}^{d} that looks locally like an open set of an affine space of dimension k

A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold

Triangulation of a submanifold

We call triangulation of a submanifold $\mathbb{M} \subset \mathbb{R}^{d}$ a (geometric) simplicial complex $\hat{\mathbb{M}}$ such that

- \hat{M} is embedded in \mathbb{R}^{d}
- its vertices are on \mathbb{M}
- it is homeomorphic to \mathbb{M}

Submanifold reconstruction
The problem is to construct a triangulation $\hat{\mathbb{M}}$ of some unknown
submanifold \mathbb{M} given a finite set of points $P \subset \mathbb{M}$

Triangulation of a submanifold

We call triangulation of a submanifold $\mathbb{M} \subset \mathbb{R}^{d}$ a (geometric) simplicial complex $\hat{\mathbb{M}}$ such that

- \hat{M} is embedded in \mathbb{R}^{d}
- its vertices are on \mathbb{M}
- it is homeomorphic to \mathbb{M}

Submanifold reconstruction
The problem is to construct a triangulation $\hat{\mathbb{M}}$ of some unknown submanifold \mathbb{M} given a finite set of points $P \subset \mathbb{M}$

Issues in high-dimensional geometry

- Dimensionality severely restricts our intuition and ability to visualize data
\Rightarrow need for automated and provably correct methods methods
- Complexity of data structures and algorithms rapidly grow as the dimensionality increases
\Rightarrow no subdivision of the ambient space is affordable
\Rightarrow data structures and algorithms should be sensitive to the intrinsic dimension (usually unknown) of the data
- Inherent defects : sparsity, noise, outliers

Issues in high-dimensional geometry

- Dimensionality severely restricts our intuition and ability to visualize data
\Rightarrow need for automated and provably correct methods methods
- Complexity of data structures and algorithms rapidly grow as the dimensionality increases
\Rightarrow no subdivision of the ambient space is affordable
\Rightarrow data structures and algorithms should be sensitive to the intrinsic dimension (usually unknown) of the data
- Inherent defects : sparsity, noise, outliers

Issues in high-dimensional geometry

- Dimensionality severely restricts our intuition and ability to visualize data
\Rightarrow need for automated and provably correct methods methods
- Complexity of data structures and algorithms rapidly grow as the dimensionality increases
\Rightarrow no subdivision of the ambient space is affordable
\Rightarrow data structures and algorithms should be sensitive to the intrinsic dimension (usually unknown) of the data
- Inherent defects : sparsity, noise, outliers

Looking for small and faithful simplicial complexes

Need to compromise

- Size of the complex
- can we have $\operatorname{dim} \hat{\mathbb{M}}=\operatorname{dim} \mathbb{M}$?
- Efficiency of the construction algorithms and of the representations
- can we avoid the exponential dependence on d ?
- can we minimize the number of simplices ?
- Quality of the approximation
- Homotopy type \& homology
- Homeomorphism
(RIPS complex, persistence)
(Delaunay-type complexes)

Sampling and distance functions

Distance to a compact $K: \quad d_{K}: x \rightarrow \inf _{p \in K}\|x-p\|$

Stability
If the data points C are close (Hausdorff) to the geometric structure K, the topology and the geometry of the offsets $K_{r}=d^{-1}([0, r])$ and $C_{r}=d^{-1}([0, r])$ are close

Distance functions and triangulations

Nerve theorem (Leray)
The nerve of the balls (Cech complex) and the union of balls have the same homotopy type

Questions

+ The homotopy type of a compact set X can be computed from the Čech complex of a sample of X
+ The same is true for the α-complex
- The Čech and the α-complexes are huge ($O\left(n^{d}\right)$ and $O\left(n^{\lceil d / 2\rceil}\right)$) and very difficult to compute
- Both complexes are not in general homeomorphic to X (i.e. not a triangulation of X)
- The Čech complex cannot be realized in general in the same space as X

Čech and Rips complexes

The Rips complex is easier to compute but still very big, and less precise in approximating the topology

An example where no offset has the right topology !

Persistent homology at rescue!

The curses of Delaunay triangulations in higher dimensions

- Their complexity depends exponentially on the ambient dimension. Robustness issues become very tricky
- Higher dimensional Delaunay triangulations are not thick even if the vertices are well-spaced
- The restricted Delaunay triangulation is no longer a good approximation of the manifold even under strong sampling conditions (for $d>2$)

3D Delaunay Triangulations are not thick even if the vertices are well-spaced

- Each square face can be circumscribed by an empty sphere
- This remains true if the grid points are slightly perturbed therefore creating thin simplices

Badly-shaped simplices

Badly-shaped simplices lead to bad geometric approximations

which in turn may lead to topological defects in $\operatorname{Del}_{\mathcal{M}^{M}}(\mathrm{P})$

Tangent space approximation

\mathbb{M} is a smooth k-dimensional manifold $(k>2)$ embedded in \mathbb{R}^{d}

Bad news

[Oudot 2005]
The Delaunay triangulation restricted to \mathbb{M} may be a bad approximation of the manifold even if the sample is dense

Whitney's angle bound and tangent space approximation

Lemma
If σ is a j-simplex whose vertices all lie within a distance η from a hyperplane $H \subset \mathbb{R}^{d}$, then

$$
\sin \angle(\operatorname{aff}(\sigma), H) \leq \frac{2 j \eta}{D(\sigma)}
$$

Corollary
If σ is a j-simplex, $j \leq k, \quad$ vert $(\sigma) \subset \mathbb{M}, \quad \Delta(\sigma) \leq \delta \operatorname{rch}(\mathbb{M})$

$$
\forall p \in \sigma, \quad \sin \angle\left(\operatorname{aff}(\sigma), T_{p}\right) \leq \frac{\delta}{\Theta(\sigma)}
$$

($\eta \leq \frac{\Delta(\sigma)^{2}}{2 \operatorname{rch}(\mathbb{M})}$ by the Chord Lemma)

The assumptions

- \mathbb{M} is a differentiable submanifold of positive reach of \mathbb{R}^{d}
- The dimension k of \mathbb{M} is small
- P is an ε-net of \mathbb{M}, i.e.
- $\forall x \in \mathbb{M}, \exists p \in \mathrm{P}, \quad\|x-p\| \leq \varepsilon \operatorname{rch}(\mathbb{M})$
- $\forall p, q \in \mathrm{P},\|p-q\| \geq \bar{\eta} \varepsilon$
- ε is small enough

The tangential Delaunay complex

[B. \& Ghosh 2010]

(1) Construct the star of $p \in \mathrm{P}$ in the Delaunay triangulation $\operatorname{Del}_{T_{p}}(\mathrm{P})$ of P restricted to T_{p}
(2) $\operatorname{Del}_{T \mathbb{M}}(\mathrm{P})=\bigcup_{p \in \mathrm{P}} \operatorname{star}(p)$

$+\operatorname{Del}_{T \mathbb{M}}(\mathrm{P}) \subset \operatorname{Del}(\mathrm{P})$
$+\operatorname{star}(p), \operatorname{Del}_{T_{p}}(\mathrm{P})$ and therefore $\operatorname{Del}_{T \mathbb{M}}(\mathrm{P})$ can be computed without computing $\operatorname{Del}(\mathrm{P})$

- $\operatorname{Del}_{T \mathbb{M}}(\mathrm{P})$ is not necessarily a triangulated manifold

Construction of $\operatorname{Del}_{T_{\rho}}(\mathrm{P})$

Given a d-flat $H \subset \mathbb{R}, \operatorname{Vor}(\mathrm{P}) \cap H$ is a weighted Voronoi diagram in H

$$
\begin{aligned}
& \left\|x-p_{i}\right\|^{2} \leq\left\|x-p_{j}\right\|^{2} \\
& \Leftrightarrow \quad\left\|x-p_{i}^{\prime}\right\|^{2}+\left\|p_{i}-p_{i}^{\prime}\right\|^{2} \leq\left\|x-p_{j}^{\prime}\right\|^{2}+\left\|p_{j}-p_{j}^{\prime}\right\|^{2}
\end{aligned}
$$

Corollary: construction of $\mathrm{Del}_{T_{p}}$

$$
\hbar_{p}\left(p_{i}\right)=\left(p^{\prime},-\left\|p_{i}-p_{i}^{\prime}\right\|^{2}\right)
$$

(1) project P onto T_{p} which requires $O(D n)$ time
(3) construci $\operatorname{star}\left(\psi_{p}\left(p_{i}\right)\right)$ in $\operatorname{Del}\left(\psi_{p}\left(p_{i}\right)\right) \subset T_{p}$

Construction of $\operatorname{Del}_{T_{p}}(\mathrm{P})$

Given a d-flat $H \subset \mathbb{R}, \operatorname{Vor}(\mathrm{P}) \cap H$ is a weighted Voronoi diagram in H

$$
\begin{aligned}
& \left\|x-p_{i}\right\|^{2} \leq\left\|x-p_{j}\right\|^{2} \\
& \Leftrightarrow \quad\left\|x-p_{i}^{\prime}\right\|^{2}+\left\|p_{i}-p_{i}^{\prime}\right\|^{2} \leq\left\|x-p_{j}^{\prime}\right\|^{2}+\left\|p_{j}-p_{j}^{\prime}\right\|^{2}
\end{aligned}
$$

Corollary: construction of $\operatorname{Del}_{T_{p}}$

$$
\psi_{p}\left(p_{i}\right)=\left(p_{i}^{\prime},-\left\|p_{i}-p_{i}^{\prime}\right\|^{2}\right)
$$

(weighted point)
(1) project P onto T_{p} which requires $O(D n)$ time
(2) construct $\operatorname{star}\left(\psi_{p}\left(p_{i}\right)\right)$ in $\operatorname{Del}\left(\psi_{p}\left(p_{i}\right)\right) \subset T_{p_{i}}$
(3) $\operatorname{star}\left(p_{i}\right) \approx \operatorname{star}\left(\psi_{p}\left(p_{i}\right)\right.$ (isomorphic)

Inconsistencies in the tangential complex

A simplex is not in the star of all its vertices

- $\tau \in \operatorname{star}\left(p_{i}\right) \quad \Leftrightarrow \quad T_{p_{i}} \cap \operatorname{Vor}(\tau) \neq \emptyset \quad \Leftrightarrow \quad B\left(c_{p_{i}}(\tau) \cap \mathrm{P}=\emptyset\right.$
- $\tau \notin \operatorname{star}\left(p_{j}\right) \quad \Leftrightarrow \quad T_{p_{j}} \cap \operatorname{Vor}(\tau)=\emptyset \quad \Leftrightarrow \quad B\left(c_{p_{j}}(\tau) \cap \mathrm{P} \ni p\right.$

Inconsistent thick simplices are not well-protected

If τ is small and thick, then

- $T_{p_{i}} \approx T_{p_{j}} \approx \operatorname{aff}(\tau)$
\Leftarrow sample density
- $\left\|c_{p_{i}}-c_{p_{j}}\right\|$ small $\Rightarrow B_{i j}:=B_{p_{i}}(\tau) \backslash B_{p_{j}}(\tau)$ small $\quad \Leftarrow$ thickness
- $\exists p \in \mathrm{P} \cap B_{i j}$

Inconsistent thick simplices are not well protected

Bound on $\Delta(\tau)$
(i) $\operatorname{Vor}(p) \cap T_{p} \subseteq B(p, \alpha \operatorname{rch}(\mathbb{M}))$ where α is the smallest positive root of $\alpha\left(1-\tan \left(\arcsin \frac{\alpha}{2}\right)\right)=\varepsilon(\alpha \approx \varepsilon)$
(ii) $\forall \tau \in \operatorname{star}(p), R_{p}(\tau) \leq \alpha \operatorname{rch}(\mathbb{M})$
(iii) $\forall \tau \in \operatorname{Del}_{T \mathbb{M}}(\mathrm{P}), \Delta(\tau) \leq 2 \alpha \operatorname{rch}(\mathbb{M})$.

Proof of (i)

By contradiction:

$$
\begin{aligned}
& \exists x \in \operatorname{Vor}(p) \cap T_{p} \text { s.t. }\|p-x\|>\alpha \operatorname{rch}(\mathbb{M}) \\
& y: y \in[x p] \text { and }\|y-p\|=\alpha \operatorname{rch}(\mathbb{M}) \\
& \text { by convexity, } y \in \operatorname{int} \operatorname{Vor}(p) \cap T_{p} .
\end{aligned}
$$

$y^{\prime}: y^{\prime} \in \mathbb{M}$, whose closest point on T_{p} is y
$\theta:=\angle\left(p y^{\prime}, T_{p}\right)$

By the Chord Lemma, $\sin \theta \leq \frac{\left\|p-y^{\prime}\right\|}{2 \operatorname{rch}(\mathbb{M})}=\frac{\|p-y\|}{2 \operatorname{rch}(\mathbb{M}) \cos \theta} \quad \Rightarrow \quad \sin 2 \theta \leq \alpha$.

$$
\left\|y-y^{\prime}\right\|=\|p-y\| \tan \omega \leq \alpha \operatorname{rch}(\mathbb{M}) \tan \left(\arcsin \frac{\alpha}{2}\right)
$$

Since P is an ε-sample, $\exists t \in \mathrm{P}$, s.t. $\left\|y^{\prime}-t\right\| \leq \varepsilon \operatorname{rch}(M)$. Hence

$$
\begin{align*}
\|y-t\| & \leq\left\|y-y^{\prime}\right\|+\left\|y^{\prime}-t\right\| \leq\left(\alpha \tan \left(\arcsin \frac{\alpha}{2}\right)+\varepsilon\right) \operatorname{rch}(\mathbb{M}) \\
& =\alpha \operatorname{rch}(\mathbb{M})=\|y-p\| \tag{1}
\end{align*}
$$

Hence $y \notin \operatorname{int} \operatorname{Vor}(p)$, which contradicts our assumption and proves (i).

Inconsistent thick simplices are not well protected

If τ is an inconsistent k-simplex and $\omega=\angle\left(\operatorname{aff}(\tau), T_{p_{i}}\right)$, then

$$
\sin \omega \leq \frac{\Delta(\tau)}{\Theta(\tau) \operatorname{rch}(M)} \Rightarrow\left\|c_{p_{i}}-c_{p_{j}}\right\| \leq 2 R(\tau) \tan \omega \approx \frac{4 \varepsilon^{2} \operatorname{rch}(\mathbb{M})}{\Theta(\tau)}
$$

$$
p_{l} \in B\left(c_{p_{i}}, R_{p_{i}}(\tau)+\delta\right) \backslash B\left(c_{p_{i}}, R_{p_{i}}(\tau)\right) \text { where } \delta=\frac{4 \varepsilon^{2} \operatorname{rch}(\mathbb{M})}{\Theta(\tau)}
$$

Reconstruction of smooth submanifolds

(1) For each vertex v, compute the star $\operatorname{star}(p)$ of p in $\operatorname{Del}_{p}(\mathrm{P})$
(2) Remove inconsistencies among the stars by perturbing either the points or by weighting the points
(3) Stitch the stars to obtain a triangulation of P

Algorithm hypotheses

Known quantities in red

- $\mathbb{M}=$ a differentiable submanifold of positive reach of dim. $k \subset \mathbb{R}^{d}$
- $\mathrm{P}=$ an (ε, δ)-sample of \mathbb{M}
- $\varepsilon \leq \varepsilon_{0}$
- $\varepsilon / \delta \leq \eta_{0}$
- we can estimate the tangent space T_{p} at any $p \in \mathrm{P}$

Manifold reconstruction algorithm via perturbation

Picking regions : pick p^{\prime} in $B(p, \rho)$

Sampling parameters of a perturbed point set
If \mathbf{P} is an $(\varepsilon, \bar{\eta})$-net, $\quad \mathbf{P}^{\prime}$ is an $\left(\varepsilon^{\prime}, \bar{\eta}^{\prime}\right)$-net, where

$$
\varepsilon^{\prime}=\varepsilon(1+\bar{\rho}) \text { and } \bar{\eta}^{\prime}=\frac{\bar{\eta}-2 \bar{\rho}}{1+\bar{\rho}}
$$

Notation : $\bar{x}=\frac{x}{\varepsilon}$

The LLL framework

Random variables : P^{\prime} a set of random points $\left\{p^{\prime}, p^{\prime} \in B(p, \rho), p \in \mathrm{P}\right\}$
Events: Type 1: σ^{\prime} s.t. $\Theta\left(\sigma^{\prime}\right)<\Theta_{0}$
Type 2 : $\phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}, q^{\prime}, l^{\prime}\right)$ s.t. (Bad configuration)

1. σ^{\prime} is an inconsistent k-simplex
2. $p^{\prime}, q^{\prime} \in \sigma^{\prime}$
3. $\sigma^{\prime} \in \operatorname{star}\left(p^{\prime}\right)$
4. $\sigma^{\prime} \notin \operatorname{star}\left(q^{\prime}\right)$
5. $l^{\prime} \in \mathrm{P}^{\prime} \backslash \sigma^{\prime} \wedge l^{\prime} \in B_{q}\left(\sigma^{\prime}\right) \quad$ (the ball centered on T_{q} that $\mathrm{cc} \sigma^{\prime}$)

Algorithm

input: $\mathrm{P}, \rho, \Theta_{0}$
while an event ϕ^{\prime} occurs do
resample the points of ϕ^{\prime}
update $\operatorname{Del}\left(\mathrm{P}^{\prime}\right)$
output: P^{\prime} and $\operatorname{Del}_{T \mathbb{M}}\left(\mathrm{P}^{\prime}\right)$

Summary

- Termination
- If $\frac{\bar{\eta}}{2} \geq \bar{\rho} \geq f\left(\Theta_{0}\right)$, the algorithm terminates and returns a complex $\hat{\mathbb{M}}$ that has no inconsistent configurations
- Complexity
- No d-dimensional data structure \Rightarrow linear in d
- exponential in k
- Approximation
- $\hat{\mathbb{M}}$ is a PL simplicial k-manifold
- $\hat{\mathbb{M}} \subset \operatorname{tub}(\mathbb{M}, \varepsilon)$
- $\hat{\mathbb{M}}$ is homeomorphic to \mathbb{M}

$\hat{\mathbb{M}}$ is a PL simplicial k-manifold

Lemma Let P be an ε-sample of a manifold \mathbb{M} and let $p \in \mathrm{P}$. The link of any vertex p in $\hat{\mathbb{M}}$ is a topological $(k-1)$-sphere

Proof :

1. Since $\hat{\mathbb{M}}$ contains no inconsistencies, the star of any vertex p in $\hat{\mathbb{M}}$ is identical to $\operatorname{star}(p)$, the star of p in $\operatorname{Del}_{p}(\mathrm{P})$
2. $\operatorname{Del}_{p}(\mathrm{P}) \subset \mathbb{R}^{d} \approx \operatorname{Del}\left(\psi_{p}(\mathrm{P})\right) \subset T_{p} \Rightarrow \operatorname{star}(p) \approx \operatorname{star}_{p}(p)$
3. $\operatorname{star}_{p}(p)$ is a k-dimensional triangulated topological ball (general position)
4. p cannot belong to the boundary of $\operatorname{star}_{p}(p)$
(the Voronoi cell of $p=\psi_{p}(p)$ in $\operatorname{Vor}\left(\psi_{p}(\mathrm{P})\right)$ is bounded)

Applications and extensions

ERC Advanced Grant GUDHI

- Anisotropic mesh generation
- Discrete metric sets (see the previous lecture on the witness complex)
- Stratified manifolds
- Non euclidean embedding space (e.g. statistical manifolds)

