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Geometric data analysis

Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis : Data lie close to a structure of
“small” intrinsic dimension

Problem : Infer the structure from the data
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Submanifolds of R4

A compact subset M ¢ R¢ is a submanifold without boundary of

(intrinsic) dimension k < d, if any p € Ml has an open (topological)
k-ball as a neighborhood in M

RN

Intuitively, a submanifold of dimension & is a subset of R? that looks
locally like an open set of an affine space of dimension k

A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold
'
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Triangulation of a submanifold

We call triangulation of a submanifold M C R¢ a (geometric) simplicial
complex M such that

@ M is embedded in RY
@ its vertices are on M
@ it is homeomorphic to M
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Triangulation of a submanifold

We call triangulation of a submanifold M C R¢ a (geometric) simplicial
complex M such that

@ M is embedded in RY
@ its vertices are on M
@ it is homeomorphic to M

Submanifold reconstruction

The problem is to construct a triangulation M of some unknown
submanifold M given a finite set of points P C M
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Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data
= need for automated and provably correct methods methods
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Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data
= need for automated and provably correct methods methods

@ Complexity of data structures and algorithms rapidly grow as the
dimensionality increases
= no subdivision of the ambient space is affordable

= data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data
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Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data
= need for automated and provably correct methods methods

@ Complexity of data structures and algorithms rapidly grow as the
dimensionality increases
= no subdivision of the ambient space is affordable
= data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data

@ Inherent defects : sparsity, noise, outliers
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Looking for small and faithful simplicial complexes

Need to compromise

@ Size of the complex

» can we have dimM = dim M ?

@ Efficiency of the construction algorithms and of the
representations

» can we avoid the exponential dependence ond ?
» can we minimize the number of simplices ?

@ Quality of the approximation

» Homotopy type & homology (RIPS complex, persistence)
» Homeomorphism (Delaunay-type complexes)
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Sampling and distance functions [Niyogi et al.], [Chazal et al.]

Distance to a compact K : di : x — infyeg [[x — p|

Stability

If the data points C are close (Hausdorff) to the geometric structure K,
the topology and the geometry of the offsets K, = 4~'([0, ]) and
C, =d!([0,r]) are close
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Distance functions and triangulations

Nerve theorem (Leray)

The nerve of the balls (Cech complex) and the union of balls have the
same homotopy type
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Questions

+ The homotopy type of a compact set X can be computed from the
Cech complex of a sample of X

+ The same is true for the a-complex

— The Cech and the a-complexes are huge (0(n) and O(nl4/21))
and very difficult to compute

— Both complexes are not in general homeomorphic to X
(i.e. not a triangulation of X)

— The Cech complex cannot be realized in general in the same
space as X
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Cech and Rips complexes

The Rips complex is easier to compute but still very big, and less
precise in approximating the topology
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An example where no offset has the right topology !

Persistent homology at rescue !
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The curses of Delaunay triangulations in higher
dimensions

@ Their complexity depends exponentially on the ambient
dimension. Robustness issues become very tricky

@ Higher dimensional Delaunay triangulations are not thick even if
the vertices are well-spaced

@ The restricted Delaunay triangulation is no longer a good

approximation of the manifold even under strong sampling
conditions (for d > 2)
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3D Delaunay Triangulations are not thick
even if the vertices are well-spaced

Ier
ARsazead!
R

@ Each square face can be circumscribed by an empty sphere

@ This remains true if the grid points are slightly perturbed
therefore creating thin simplices
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Badly-shaped simplices

Badly-shaped simplices lead to bad geometric approximations

which in turn may lead to topological defects in Del| v(P) [Oudot]

see also [Cairns], [Whitehead], [Munkres], [Whitney]
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Tangent space approximation

M is a smooth k-dimensional manifold (k > 2) embedded in R4

Bad news

The Delaunay triangulation restricted to M may be a bad
approximation of the manifold even if the sample is dense

[Oudot 2005]
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Whitney’s angle bound and tangent space
approximation

Lemma [Whitney 1957]

If o is a j-simplex whose vertices all lie within a distance n from a
hyperplane H c R?, then

sin Z(aff (0),H) < ——
o

Corollary
If o is aj-simplex, j <k, vert(o) CM, A(c)<drch(M)

. J
Vpeo, sin/(aff(0),T,) < o00)

(n < AL by the Chord Lemma)
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The assumptions

@ M is a differentiable submanifold of positive reach of R?
@ The dimension k of M is small

@ Pisance-netof M, i.e.
» VxeM, 3 peP, |x—p| <erch(M)

> vp7q€ Pa HP—‘IH 27?5

@ ¢ is small enough
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The tangential Delaunay complex [B. & Ghosh 2010]

@ Construct the star of p € P in the Delaunay triangulation Dely), (P)
of P restricted to 7,

© Delyy(P) = U,ep star(p)
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+ Delyv(P) C Del(P)

+ star(p), Delr, (P) and therefore Delr(P) can be computed without
computing Del(P)

— Dely(P) is not necessarily a triangulated manifold
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Construction of Delz, (P)

Given a d-flat H C R, Vor(P) N H is a weighted Voronoi diagram in H

lx = pill* < [lx = pylI?
& x—=pillP + llpi = pill> < llx = pjI* + llps — pj1I°
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Construction of Delz, (P)

Given a d-flat H C R, Vor(P) N H is a weighted Voronoi diagram in H

lx = pill* < [lx = pylI?
& x—=pillP + llpi = pill> < llx = pjI* + llps — pj1I°

Corollary: construction of Dely,
Up(pi) = (p}, —llpi = PilI) (weighted point)
@ project P onto 7, which requires O(Dn) time
@ construct star(y,(p;)) in Del(¢y,(pi)) C T),

© star(p;) ~ star(¢y,(p;))  (isomorphic )

v
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Inconsistencies in the tangential complex

A simplex is not in the star of all its vertices

B(cp,(T)NP =10

@ 7 estar(p;) <& Ty, NVor(r) #
= B(cp(T)NP3p

o 7 ¢star(p;)) <« T, N Vor(r)
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Inconsistent thick simplices are not well-protected

€ aff(Vor(r))

M

If 7 is small and thick, then

@ T, ~ T, ~ aff(r) < sample density
@ |[cy, — ¢yl small = By := B,(7) \ By(7) small <« thickness
@ dp e PN B,‘j
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Inconsistent thick simplices are not well protected
Bound on A(7)

(i) Vor(p) N T, C B(p,arch(M)) where « is the smallest positive root
of a(1 — tan(arcsin 5)) = € (@ ~ ¢)
(i) V7 € star(p), Ry(7) < arch(M)

(iii) V7 € Delrm(P), A(7) < 2arch(M).
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Proof of (i)

By contradiction:
Ix € Vor(p) NT, s.t. ||p — x|| > arch(M)

y:y € [xp] and [ly — p[| = arch(M)
by convexity, y € intVor(p) N 7.

y' 1y’ € M, whose closest point on 7, is y
0:=Z(py',Tp)

By the Chord Lemma, sin0 < J2oxll = b2l = in2g < a.
Iy =¥l = llp — ¥l tanw < errch(M) tan(arcsin §)
Since P is an e-sample, 3t € P, s.t. ||y’ — t|| < erch(M). Hence

lly =¥l +1ly" = 7l < (o tan(arcsin %) + ¢) rch(M)

IN

lly — 1
= arch(M) = [ly —p|. Q)

Hence y ¢ intVor(p), which contradicts our assumption and proves (i).
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Inconsistent thick simplices are not well protected

If 7 is an inconsistent k-simplex and w = Z(aff(7), T},), then

_ A(T) 4e? rch(M)
< — |l <2R(T)t ~ ——~
sinw < () rch(M) = ey, cij < 2R(7)tanw o0
4? rch(M)

pr € B<Cpi7R]7i(T) + 5) \B(cpiaRpi(T)) where ¢ = (1)
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Reconstruction of smooth submanifolds

@ For each vertex v, compute the star star(p) of p in Del,(P)

© Remove inconsistencies among the stars by perturbing
either the points or by weighting the points

© Stitch the stars to obtain a triangulation of P

T\{‘/ﬁ-ﬁ
B -
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Algorithm hypotheses

Known quantities in red

@ M = a differentiable submanifold of positive reach of dim. k ¢ R?
@ P =an (g,0)-sample of M

@ =< ¢

@ /5 <o

@ we can estimate the tangent space 7, atany p € P
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Manifold reconstruction algorithm via perturbation

Picking regions : pick p’ in B(p, p)

Sampling parameters of a perturbed point set
If Pis an (e,77)-net, P’isan (¢/,7’)-net, where

7—2p

e =e(l+p) and 7 =
(1+p) =T,

Notation : x =2

S
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The LLL framework

Random variables : P" a set of random points {p’, p’ € B(p,p),p € P}

Events:  Type 1: ¢’ s.t. O(c’) < Oy
Type 2: ¢' = (¢/,p',4',1') s.t. (Bad configuration)

. o’ is an inconsistent k-simplex

p.qd €0

. o’ € star(p’)

. o’ & star(q)

A eP'\d AN I'eBy(c') (theballcentered on T, that cc o’)

arowND =

Winter School 4 Manifold Reconstruction Sophia Antipolis 29/33



Algorithm

input: P, p, ©g

while an event ¢’ occurs do
resample the points of ¢’
update Del(P’)

output: P’ and Delyy(P’)
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Summary

@ Termination
» If 2> p > f(Oy), the algorithm terminates and returns
a complex M that has no inconsistent configurations

@ Complexity
» No d-dimensional data structure = linear in d
» exponential in k

@ Approximation
» M is a PL simplicial k-manifold
» M C tub(M, )
» M is homeomorphic to M
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M is a PL simplicial k~-manifold

Lemma Let P be an e-sample of a manifold M and let p € P. The link of
any vertex p in M is a topological (k — 1)-sphere

Proof :

1. Since M contains no inconsistencies, the star of any vertex p in M is identical to
star(p), the star of p in Del, (P)

2. Del,(P) C R? = Del(y,(P)) C T, = star(p) = star,(p)
3. star,(p) is a k-dimensional triangulated topological ball (general position)

4. p cannot belong to the boundary of star,(p)
(the Voronoi cell of p = 1,(p) in Vor(y,(P)) is bounded)
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Applications and extensions
ERC Advanced Grant GUDHI

@ Anisotropic mesh generation

@ Discrete metric sets (see the previous lecture on the witness
complex)

@ Stratified manifolds

@ Non euclidean embedding space (e.g. statistical manifolds)
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