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Geometric data analysis
Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis : Data lie close to a structure of
“small” intrinsic dimension

Problem : Infer the structure from the data
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Submanifolds of Rd

A compact subset M ⊂ Rd is a submanifold without boundary of
(intrinsic) dimension k < d, if any p ∈M has an open (topological)
k-ball as a neighborhood in M
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Intuitively, a submanifold of dimension k is a subset of Rd that looks
locally like an open set of an affine space of dimension k

A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold

More generally, manifolds are defined in an intrinsic way,
independently of any embedding in Rd
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Triangulation of a submanifold

We call triangulation of a submanifold M ⊂ Rd a (geometric) simplicial
complex M̂ such that

M̂ is embedded in Rd

its vertices are on M
it is homeomorphic to M

Submanifold reconstruction

The problem is to construct a triangulation M̂ of some unknown
submanifold M given a finite set of points P ⊂M
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Issues in high-dimensional geometry

Dimensionality severely restricts our intuition and ability to
visualize data
⇒ need for automated and provably correct methods methods

Complexity of data structures and algorithms rapidly grow as the
dimensionality increases

⇒ no subdivision of the ambient space is affordable

⇒ data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data

Inherent defects : sparsity, noise, outliers
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Looking for small and faithful simplicial complexes

Need to compromise

Size of the complex

I can we have dim M̂ = dimM ?

Efficiency of the construction algorithms and of the
representations

I can we avoid the exponential dependence on d ?
I can we minimize the number of simplices ?

Quality of the approximation

I Homotopy type & homology (RIPS complex, persistence)
I Homeomorphism (Delaunay-type complexes)
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Sampling and distance functions [Niyogi et al.], [Chazal et al.]

Distance to a compact K : dK : x→ infp∈K ‖x− p‖

Geometric inference from noisy data
Pb: infering topological and geometric properties from point cloud data sets sampled
“around” unknown low-dimensional shapes.

Sc. challenges:
- dealing with noise
- well founded math. models
- algorithmic complexity issues
(curse of dimensionality)

The distance function framework:
When the data C are close (Hausdorff dist.) to the geometric structure K to infer...

• distance function dK : x → infp∈K �x − p�
• Replace K and C by dK and dC

• Stability results for the topology/geometry of the offsets
Kr = d−1

K ([0, r]) and Cr = d−1
C ([0, r])

Stability
If the data points C are close (Hausdorff) to the geometric structure K,
the topology and the geometry of the offsets Kr = d−1([0, r]) and
Cr = d−1([0, r]) are close
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Distance functions and triangulations
Computational Topology (Jeff Erickson) Examples of Cell Complexes

Corollary 15.1. For any points set P and radius �, the Aleksandrov-Čech complex AČ�(P) is homotopy-
equivalent to the union of balls of radius � centered at points in P.

Aleksandrov-Čech complexes and unions of balls for two different radii. 2-simplices are yellow; 3-simplices are green.

15.1.2 Vietoris-Rips Complexes: Flags and Shadows

The proximity graph N�(P) is the geometric graph whose vertices are the points P and whose edges join
all pairs of points at distance at most 2�; in other words, N�(P) is the 1-skeleton of the Aleksandrov-Čech
complex. The Vietoris-Rips complex VR�(P) is the flag complex or clique complex of the proximity
graph N�(P). A set of k+ 1 points in P defines a k-simplex in VR�(P) if and only if every pair defines an
edge in N�(P), or equivalently, if the set has diameter at most 2�. Again, the Vietoris-Rips complex is an
abstract simplicial complex.

The Vietoris-Rips complex was used by Leopold Vietoris [57] in the early days of homology theory as
a means of creating finite simplicial models of metric spaces.2 The complex was rediscovered by Eliayu
Rips in the 1980s and popularized by Mikhail Gromov [35] as a means of building simplicial models for
group actions. ‘Rips complexes’ are now a standard tool in geometric and combinatorial group theory.

The triangle inequality immediately implies the nesting relationship AČ�(P) ⊆ VR�(P) ⊆ AČ2�(P)
for any �, where ⊆ indicates containment as abstract simplicial complexes. The upper radius 2� can be
reduced to

�
3�/2 if the underlying metric space is Euclidean [21], but for arbitrary metric spaces, these

bounds cannot be improved.
One big advantage of Vietoris-Rips complexes is that they determined entirely by their underlying

proximity graphs; thus, they can be applied in contexts like sensor-network modeling where the
underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
the lengths of the edges of the proximity complex to reconstruct the Aleksandrov-Čech complex.

On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.

2Vietoris actually defined a slightly different complex. Let U = {U1, U2, . . .} be a set of open sets that cover some topological
space X . The Vietoris complex of U is the abstract simplicial complex whose vertices are points in X , and whose simplices
are finite subsets of X that lie in some common set Ui . Thus, the Vietoris complex of an open cover is the dual of its
Aleskandrov-Čech nerve. Dowker [25] proved that these two simplicial complexes have isomorphic homology groups.

2

Nerve theorem (Leray)
The nerve of the balls (Cech complex) and the union of balls have the
same homotopy type
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Questions

+ The homotopy type of a compact set X can be computed from the
C̆ech complex of a sample of X

+ The same is true for the α-complex

– The C̆ech and the α-complexes are huge (O(nd) and O(ndd/2e))
and very difficult to compute

– Both complexes are not in general homeomorphic to X
(i.e. not a triangulation of X)

– The C̆ech complex cannot be realized in general in the same
space as X
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C̆ech and Rips complexes

The Rips complex is easier to compute but still very big, and less
precise in approximating the topology

CHAPTER 2. SHAPE RECONSTRUCTION

Čech complex

The Čech complex C(P, α) is the abstract simplicial complex whose k-simplices correspond to
subsets of k + 1 points that can be enclosed in a ball of radius α,

C(P, α) = {σ | ∅ �= σ ⊂ P, Rad(σ) ≤ α}.

Equivalently, a k-simplex {p0, . . . , pk} belongs to the Čech complex if and only if the k +
1 closed Euclidean balls B(pi, α) have non-empty common intersection. Hence, the Čech
complex is the nerve of the collection of balls {B(p, α) | p ∈ P}. Since balls are convex, the
Nerve theorem implies that the Čech complex C(P, α) is homotopy equivalent to the union of
these balls, that is, |C(P, α)| � Pα (see Figure 2.2, left and right).

Rips complex

The Vietoris-Rips complex is a variant of the Čech complex which is easier to compute. The
Vietoris-Rips complex, R(P, α) is the abstract simplicial complex whose k-simplices corre-
spond to subsets of k + 1 points in P with diameter at most 2α,

R(P, α) = {σ | ∅ �= σ ⊂ P, Diam(σ) ≤ 2α}.

For simplicity, we refer to R(P, α) as the Rips complex. Recall that the flag complex of a
graph G, denoted Flag G, is the maximal simplicial complex whose 1-skeleton is G. The Rips
complex is an example of a flag complex. More precisely, this is the largest simplicial complex
sharing with the Čech complex the same 1-skeleton, R(P, α) = Flag

�
C(P, α)(1)

�
. Generally,

R(P, α) and C(P, α) do not share the same topology. It follows that the Rips complex R(P, α)
is generally not homotopy equivalent to the α-offset Pα (see Figure 2.2).

α ϑd α

Figure 2.2: Left: The Čech complex with parameter α. It comprises six triangles and is ho-
motopy equivalent to a circle. Middle: Rips complex with parameter α. It contains two more
triangles and is homeomorphic to a 2-sphere. Its shadow is a topological disk. Right: Čech
complex with parameter ϑd α. It contains all faces of the 5-simplex and is homeomorphic to a
5-ball.

22
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An example where no offset has the right topology !

Persistent homology at rescue !
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The curses of Delaunay triangulations in higher
dimensions

Their complexity depends exponentially on the ambient
dimension. Robustness issues become very tricky

Higher dimensional Delaunay triangulations are not thick even if
the vertices are well-spaced

The restricted Delaunay triangulation is no longer a good
approximation of the manifold even under strong sampling
conditions (for d > 2)
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3D Delaunay Triangulations are not thick
even if the vertices are well-spaced

! !
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Each square face can be circumscribed by an empty sphere
This remains true if the grid points are slightly perturbed
therefore creating thin simplices
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Badly-shaped simplices
Badly-shaped simplices lead to bad geometric approximations

which in turn may lead to topological defects in Del|M(P) [Oudot]

see also [Cairns], [Whitehead], [Munkres], [Whitney]
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Tangent space approximation

M is a smooth k-dimensional manifold (k > 2) embedded in Rd

Bad news [Oudot 2005]

The Delaunay triangulation restricted to M may be a bad
approximation of the manifold even if the sample is dense
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Figure 3: Left: tetrahedron [u, v, w, p0] and its dual Voronoi edge. Right: after perturbation of S.

c0 is the center of a Delaunay ball of radius greater than 1, we can assume that δ is small enough
for the points of L0 to remain on S. Let c = (1

2 , 1
2 , δ

2 , ∆ + δ
2) be at the top of the bump. Since

the points of L0 are located in hyperplane t = ∆ in the vicinity of [u, v, w, p0], c is equidistant to
u, v, w, p0, and closer to these points than to any other point of L0. This implies that the open ball
Bc = B(c, ‖c− u‖) contains no point of L0 and has u, v, w, p0 on its bounding sphere. Hence, Bc is
a Delaunay ball circumscribing [u, v, w, p0], and c belongs to the Voronoi edge dual to [u, v, w, p0].
Moreover, since u, v, w and (0, 0, 0, ∆) are cocircular, ∂Bc passes also through (0, 0, 0, ∆).

We deform S further by creating another small bump, at point (0, 0, 0, ∆) this time, so as to
move this point by δ into the t-dimension, outward the hypercube. Let p = (0, 0, 0, ∆ + δ) be the
top of the bump — see Figure 3 (right). A quick computation shows that ‖c− p‖ = ‖c− u‖, which
implies that p ∈ ∂Bc. Here again, by choosing δ sufficiently small, we can make sure that the radius
of curvature of the bump is at least ∆

2 , which means that the reach of the deformed hypersurface
is still ∆

2 = 1
µ . We can also make sure that the bump of p is disjoint from the bump of c since

‖c− p‖ > 1√
2
, and that the points of L0 \ {p0} remain3 on S. It follows that Bc is empty of points

of L, where L is defined by L = L0 ∪{p}\{p0}. Since ∂Bc contains u, v, w, p, Bc is a Delaunay ball
circumscribing [u, v, w, p]. Equivalently, c belongs to the Voronoi edge e dual to [u, v, w, p]. Note
also that L is an (ε − δ)-sparse (2ε + δ)-sample of S.

Since [u, v, w, p] is included in hyperplane z = 0, its dual Voronoi edge e is aligned with (0, 0, 1, 0),
as illustrated in Figure 3 (right). This edge is incident to four Voronoi 2-faces, which are dual to the
four facets of [u, v, w, p]. These 2-faces can be seen as extrusions, into the z-dimension (0, 0, 1, 0),
of the edges of the Voronoi diagram of {u, v, w, p} inside hyperplane z = 0. Among these Voronoi
edges, two lie above the plane t = ∆ + δ

2 , and two lie below. As a result, in R4, two Voronoi

2-faces incident to e lie above hyperplane t = ∆ + δ
2 . These two Voronoi 2-faces do not intersect

S, except at c and possibly at the bump of p. Now, the circumradii of the facets of [u, v, w, p] are

at most ‖c − u‖ =
√

1+δ2√
2

< µ rch(S), thus, inside hyperplane z = 0, Amenta and Bern’s normal

lemma [1, Lemma 7] states that the edges of the Voronoi diagram of {u, v, w, p} make angles of at

most arcsin µ
√

3
1−µ < π

3 with vector (0, 0, 0, 1). As a consequence, any Voronoi 2-face f incident to e

3They lie at least ε away from p0, and hence at least ε − δ away from (0, 0, 0, ∆).

9
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Whitney’s angle bound and tangent space
approximation

Lemma [Whitney 1957]

If σ is a j-simplex whose vertices all lie within a distance η from a
hyperplane H ⊂ Rd, then

sin∠(aff (σ),H) ≤ 2j η
D(σ)

Corollary
If σ is a j-simplex, j ≤ k, vert (σ) ⊂M, ∆(σ) ≤ δ rch(M)

∀p ∈ σ, sin∠(aff(σ),Tp) ≤ δ

Θ(σ)

(η ≤ ∆(σ)2

2 rch(M)
by the Chord Lemma)
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The assumptions

M is a differentiable submanifold of positive reach of Rd

The dimension k of M is small

P is an ε-net of M, i.e.

I ∀x ∈M, ∃ p ∈ P, ‖x− p‖ ≤ ε rch(M)

I ∀p, q ∈ P, ‖p− q‖ ≥ η̄ ε

ε is small enough
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The tangential Delaunay complex [B. & Ghosh 2010]

p
Tp

M

1 Construct the star of p ∈ P in the Delaunay triangulation DelTp(P)
of P restricted to Tp

2 DelTM(P) =
⋃

p∈P star(p)
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+ DelTM(P) ⊂ Del(P)

+ star(p), DelTp(P) and therefore DelTM(P) can be computed without
computing Del(P)

– DelTM(P) is not necessarily a triangulated manifold
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Construction of DelTp(P)

Given a d-flat H ⊂ R, Vor(P) ∩ H is a weighted Voronoi diagram in H

pi

pj

x

p′i

p′j

H

‖x− pi‖2 ≤ ‖x− pj‖2

⇔ ‖x− p′i‖2 + ‖pi − p′i‖2 ≤ ‖x− p′j‖2 + ‖pj − p′j‖2

Corollary: construction of DelTp

ψp(pi) = (p′i,−‖pi − p′i‖2) (weighted point)

1 project P onto Tp which requires O(Dn) time

2 construct star(ψp(pi)) in Del(ψp(pi)) ⊂ Tpi

3 star(pi) ≈ star(ψp(pi)) (isomorphic )
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Inconsistencies in the tangential complex

A simplex is not in the star of all its vertices

τ ∈ star(pi) ⇔ Tpi ∩ Vor(τ) 6= ∅ ⇔ B(cpi(τ) ∩ P = ∅
τ 6∈ star(pj) ⇔ Tpj ∩ Vor(τ) = ∅ ⇔ B(cpj(τ) ∩ P 3 p
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Inconsistent thick simplices are not well-protected

Inconsistent simplex

τ is said to be inconsistent iff
∃pi , pj ∈ τ s. t. Vor(τ) ∩ Tpi �= ∅ and Vor(τ) ∩ Tpj = ∅

pi

pj
τ

Bpj(τ )

Bpi(τ )

p

Tpi

∈ Vor(τ )

∈ aff(Vor(τ ))

cpi(τ )

Tpj

cpj(τ )

M

iφ

Arijit Ghosh PhD defenseIf τ is small and thick, then

Tpi ≈ Tpj ≈ aff(τ) ⇐ sample density

‖cpi − cpj‖ small ⇒ Bij := Bpi(τ) \ Bpj(τ) small ⇐ thickness

∃p ∈ P ∩ Bij
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Inconsistent thick simplices are not well protected
Bound on ∆(τ)

(i) Vor(p) ∩ Tp ⊆ B(p, α rch(M)) where α is the smallest positive root
of α (1− tan(arcsin α

2 )) = ε (α ≈ ε)

(ii) ∀τ ∈ star(p), Rp(τ) ≤ α rch(M)

(iii) ∀τ ∈ DelTM(P), ∆(τ) ≤ 2α rch(M).
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Proof of (i)

p

y

y′

θ

By contradiction:

∃x ∈ Vor(p) ∩ Tp s.t. ‖p− x‖ > α rch(M)

y : y ∈ [xp] and ‖y− p‖ = α rch(M)
by convexity, y ∈ intVor(p) ∩ Tp.

y′ : y′ ∈ M, whose closest point on Tp is y
θ := ∠(py′, Tp)

By the Chord Lemma, sin θ ≤ ‖p−y′‖
2rch(M)

= ‖p−y‖
2rch(M) cos θ ⇒ sin 2θ ≤ α.

‖y− y′‖ = ‖p− y‖ tanω ≤ α rch(M) tan(arcsin α
2 )

Since P is an ε-sample, ∃t ∈ P, s.t. ‖y′ − t‖ ≤ ε rch(M). Hence

‖y− t‖ ≤ ‖y− y′‖+ ‖y′ − t‖ ≤ (α tan(arcsin
α

2
) + ε) rch(M)

= α rch(M) = ‖y− p‖. (1)

Hence y 6∈ intVor(p), which contradicts our assumption and proves (i).

Winter School 4 Manifold Reconstruction Sophia Antipolis 24 / 33



Inconsistent thick simplices are not well protected

If τ is an inconsistent k-simplex and ω = ∠(aff(τ),Tpi), then

sinω ≤ ∆(τ)

Θ(τ) rch(M)
⇒ ‖cpi − cpj‖ ≤ 2 R(τ) tanω ≈ 4ε2 rch(M)

Θ(τ)

Tpi

cpi

c(τ )
pi

τR(τ )

ω

pl

pl ∈ B(cpi ,Rpi(τ) + δ) \ B(cpi ,Rpi(τ)) where δ = 4ε2 rch(M)
Θ(τ)
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Reconstruction of smooth submanifolds

1 For each vertex v, compute the star star(p) of p in Delp(P)

2 Remove inconsistencies among the stars by perturbing
either the points or by weighting the points

3 Stitch the stars to obtain a triangulation of P

v

Figure 3. A two-dimensional link triangulation, represented as a collec-
tion of two-dimensional stars.

Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-

v

H

v

Hv

(a) (b)

Hv

v

h

P

(c)

Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.
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Star flipping is a variant of star splaying that adds two more

ideas. First, the representation and the algorithm are recursive on

the dimensionality. For example, in a three-dimensional triangula-

tion, the star of a vertex v is represented by v’s link, which is a two-

dimensional triangulation. This two-dimensional triangulation is

represented by a set of two-dimensional stars, as illustrated in Fig-

ure 3. These stars are not required to agree with each other either.

Each two-dimensional star is represented by a one-dimensional link

triangulation (recall Figure 2). The one-dimensional triangulations

are called link rings, and unlike their higher-dimensional counter-

parts, they are always internally consistent.

Second, the workhorse of star flipping is the classic flip algo-

rithm, at every level of the recursion. To make a star locally con-

vex, star flipping tries to apply classic flipping within the link trian-

gulation. Only if classic flipping gets stuck before restoring local

convexity to a star does star flipping call itself recursively.

Star flipping, described in Section 5, seems likely to run faster

than star splaying if the input triangulation is close to Delaunay,

because it takes better advantage of the input triangulation.

3 Stars, Rays, and Cones

Star splaying is founded on several observations about the relation-

ships between stars, rays, polyhedral cones, convex hulls, and De-

launay triangulations.

Consider the convex hull H of a set V of vertices in Ed+1. (Com-

puting H is a standard way to compute a Delaunay triangulation in

Ed; see below.) Suppose that V is generic: no d + 2 points of V lie

on a common hyperplane. Then H is a simplicial polytope—every

facet of H is a d-simplex. Let ∂H denote the boundary triangula-

tion of H. For consistency, facets are d-simplices and ridges are

(d − 1)-simplices throughout this paper, whether in Ed+1 or in Ed.

Imagine wishing to compute not all of H, but just the star of one

vertex v of H—specifically, v’s star in ∂H, leaving out H proper.

See Figure 4(a). Define the set of rays that originate at v and pass

through other vertices of V , namely R = { "vw : w ∈ V\{v}}. Let Hv

be the convex hull of the rays R, illustrated in Figure 4(b). Hv is

a polyhedral cone with vertex v and H ⊂ Hv. The star of v wraps

around the tip of Hv like a paper shell around an ice cream cone.

The star is combinatorially equivalent to the cone’s boundary: the

face lattice for the proper faces of Hv is isomorphic to the face lat-

tice for the star of v. In the isomorphism, the rays on the boundary

of Hv are in one-to-one correspondence with the edges in v’s star

and the vertices in v’s link.

Let h be a hyperplane that separates v from all the other vertices

in V , illustrated in Figure 4(c). The cross-section P = Hv∩h = H∩h
is a d-polytope, namely the convex hull of the intersection points

{"r ∩ h : r ∈ R}. The face lattice of P’s boundary is isomorphic to
the face lattice of v’s link.

The central observation is that these three problems are essen-

tially equivalent: computing the star or link of v in the boundary

of the (d + 1)-dimensional convex hull H, computing the (d + 1)-
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of the points where the rays intersect the cross-sectional hyperplane.
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geometers employ for the last problem apply immediately to the
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of Hv are in one-to-one correspondence with the edges in v’s star
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Figure 4. (a) The star of v in a convex polyhedron H. (b) The convex
hull Hv of rays, a polyhedral cone whose boundary is combinatorially
equivalent to v’s star. (c) A cross-section of the cone is the convex hull
of the points where the rays intersect the cross-sectional hyperplane.

dimensional convex hull Hv of rays, and computing the d-dimen-

sional convex hull P of points. The wealth of ideas computational

geometers employ for the last problem apply immediately to the

first problem.

One way to compute H is to use a d-dimensional convex hull

algorithm to compute the star of each vertex in V individually.

Naively applied, this method is strikingly slow—its best-case run-

ning time is in Θ(n2), where n is the number of vertices in V . But

if the candidates for inclusion in the link of each vertex could be

pruned to a small number—say, a constant number of vertices in

each link—then the method becomes strikingly attractive, as it en-

tails just a linear number of constant-time convex hull computa-

tions.

At first glance, one inconvenience of this method appears to be

finding a corner-cutting hyperplane h. This step is not only unnec-

essary; it is unwise, because computing the intersections of the rays

in R with h introduces avoidable roundoff errors. Many algorithms

for computing convex hulls of point sets in Ed can be adapted to

compute convex hulls of rays originating at a common point v in

Ed+1, simply by replacing the orientation tests on d+1 points in Ed

with orientation tests on d + 2 points in Ed+1 (wherein v is always

one of those points).

The standard incremental insertion method for updating a convex

hull is the beneath-beyond method of Kallay [17], which adds one

new vertex (or ray) at a time and maintains after each addition the

convex hull of the vertices (or rays) processed so far. Let C be the

convex hull at a fixed moment in time between vertex insertions.

Let f be a facet of C. A point p is said to be beyond f if p and C

lie on opposite sides of the affine hull of f . The beneath-beyond

algorithm adds a vertex w and transforms C into conv(C ∪ w) by
finding and deleting every facet ofC that w is beyond, then creating

new facets that attach w to every ridge ofC that adjoins exactly one

surviving facet.

This idea works whether C is a convex hull of points or a convex

hull of rays with a common origin v. The latter circumstance is il-

lustrated in Figure 5. There is one important algorithmic difference

between these two circumstances: a ray can lie beyond every facet

of the cone C, meaning that the convex hull of the rays is Ed+1.
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Algorithm hypotheses

Known quantities in red

M = a differentiable submanifold of positive reach of dim. k ⊂ Rd

P = an (ε, δ)-sample of M
ε ≤ ε0

ε/δ ≤ η0

we can estimate the tangent space Tp at any p ∈ P
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Manifold reconstruction algorithm via perturbation

Picking regions : pick p′ in B(p, ρ)

Sampling parameters of a perturbed point set

If P is an (ε, η̄)-net, P′ is an (ε′, η̄′)-net, where

ε′ = ε(1 + ρ̄) and η̄′ =
η̄ − 2ρ̄
1 + ρ̄

Notation : x̄ = x
ε
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The LLL framework

Random variables : P′ a set of random points {p′, p′ ∈ B(p, ρ), p ∈ P}

Events: Type 1 : σ′ s.t. Θ(σ′) < Θ0

Type 2 : φ′ = (σ′, p′, q′, l′) s.t. (Bad configuration)

1. σ′ is an inconsistent k-simplex
2. p′, q′ ∈ σ′
3. σ′ ∈ star(p′)
4. σ′ 6∈ star(q′)
5. l′ ∈ P′ \ σ′ ∧ l′ ∈ Bq(σ′) (the ball centered on Tq that cc σ′)
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Algorithm

input: P, ρ, Θ0

while an event φ′ occurs do

resample the points of φ′

update Del(P′)

output: P′ and DelTM(P′)
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Summary

Termination
I If η̄

2 ≥ ρ̄ ≥ f (Θ0), the algorithm terminates and returns
a complex M̂ that has no inconsistent configurations

Complexity
I No d-dimensional data structure⇒ linear in d
I exponential in k

Approximation
I M̂ is a PL simplicial k-manifold
I M̂ ⊂ tub(M, ε)
I M̂ is homeomorphic to M
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M̂ is a PL simplicial k-manifold

Lemma Let P be an ε-sample of a manifold M and let p ∈ P. The link of
any vertex p in M̂ is a topological (k − 1)-sphere

Proof :
1. Since M̂ contains no inconsistencies, the star of any vertex p in M̂ is identical to
star(p), the star of p in Delp(P)

2. Delp(P) ⊂ Rd ≈ Del(ψp(P)) ⊂ Tp ⇒ star(p) ≈ starp(p)

3. starp(p) is a k-dimensional triangulated topological ball (general position)

4. p cannot belong to the boundary of starp(p)

(the Voronoi cell of p = ψp(p) in Vor(ψp(P)) is bounded)

Winter School 4 Manifold Reconstruction Sophia Antipolis 32 / 33



Applications and extensions
ERC Advanced Grant GUDHI

Anisotropic mesh generation

Discrete metric sets (see the previous lecture on the witness
complex)

Stratified manifolds

Non euclidean embedding space (e.g. statistical manifolds)
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