## Thick Triangulations

Jean-Daniel Boissonnat Geometrica, INRIA
http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis January 26-30, 2015

## Some optimality properties of Delaunay triangulations

Among all possible triangulations of $\mathcal{P}, \operatorname{Del}(\mathcal{P})$
(1) (2d) maximizes the smallest angle
(2) (2d) Linear interpolation of $\left\{\left(p_{i}, f\left(p_{i}\right)\right)\right\}$ that minimizes
$R(T)=\sum_{i} \int_{T_{i}}\left(\left(\frac{\partial \phi_{i}}{\partial x}\right)^{2}+\left(\frac{\partial \phi_{i}}{\partial y}\right)^{2}\right) d x d y$
$\phi_{i}=$ linear interpolation of the $f\left(p_{j}\right)$ over triangle $T_{i} \in T$
(3) minimizes the radius of the maximal smallest ball enclosing a simplex )


## Some optimality properties of Delaunay triangulations

Among all possible triangulations of $\mathcal{P}, \operatorname{Del}(\mathcal{P})$
(1) (2d) maximizes the smallest angle
(2) (2d) Linear interpolation of $\left\{\left(p_{i}, f\left(p_{i}\right)\right)\right\}$ that minimizes
$R(T)=\sum_{i} \int_{T_{i}}\left(\left(\frac{\partial \phi_{i}}{\partial x}\right)^{2}+\left(\frac{\partial \phi_{i}}{\partial y}\right)^{2}\right) d x d y$
(Dirichlet energy)
$\phi_{i}=$ linear interpolation of the $f\left(p_{j}\right)$ over triangle $T_{i} \in T$
(3) minimizes the radius of the maximal smallest ball enclosing a simplex )


## Some optimality properties of Delaunay triangulations

Among all possible triangulations of $\mathcal{P}, \operatorname{Del}(\mathcal{P})$
(1) (2d) maximizes the smallest angle
(2) (2d) Linear interpolation of $\left\{\left(p_{i}, f\left(p_{i}\right)\right)\right\}$ that minimizes
$R(T)=\sum_{i} \int_{T_{i}}\left(\left(\frac{\partial \phi_{i}}{\partial x}\right)^{2}+\left(\frac{\partial \phi_{i}}{\partial y}\right)^{2}\right) d x d y$
(Dirichlet energy)
$\phi_{i}=$ linear interpolation of the $f\left(p_{j}\right)$ over triangle $T_{i} \in T$
(3) minimizes the radius of the maximal smallest ball enclosing a simplex )


## Optimizing the angular vector $(d=2)$

Angular vector of a triangulation $T(\mathcal{P})$

$$
\operatorname{ang}(T(\mathcal{P}))=\left(\alpha_{1}, \ldots, \alpha_{3 t}\right), \quad \alpha_{1} \leq \ldots \leq \alpha_{3 t}
$$

Optimality Any triangulation of a given point set $\mathcal{P}$ whose angular vector is maximal (for the lexicographic order) is a Delaunay triangulation of $\mathcal{P}$

Good for matrix conditioning in FE methods

## Local characterization of Delaunay complexes



Pair of regular simplices

$$
\begin{aligned}
& \sigma_{2}\left(q_{1}\right) \geq 0 \quad \text { and } \quad \sigma_{1}\left(q_{2}\right) \geq 0 \\
& \Leftrightarrow \hat{c}_{1} \in h_{\sigma_{2}}^{+} \text {and } \hat{c}_{2} \in h_{\sigma_{1}}^{+}
\end{aligned}
$$

Theorem A triangulation $T(P)$ such that all pairs of simplexes are regular is a Delaunay triangulation $\operatorname{Del}(P)$

Proof The PL function whose graph $G$ is obtained by lifting the triangles is locally convex and has a convex support


## Local characterization of Delaunay complexes



Pair of regular simplices

$$
\begin{aligned}
& \sigma_{2}\left(q_{1}\right) \geq 0 \quad \text { and } \sigma_{1}\left(q_{2}\right) \geq 0 \\
& \Leftrightarrow \hat{c}_{1} \in h_{\sigma_{2}}^{+} \text {and } \hat{c}_{2} \in h_{\sigma_{1}}^{+}
\end{aligned}
$$

Theorem A triangulation $T(P)$ such that all pairs of simplexes are regular is a Delaunay triangulation $\operatorname{Del}(P)$

Proof The PL function whose graph $G$ is obtained by lifting the triangles is locally convex and has a convex support

$$
\Rightarrow \quad G=\operatorname{conv}^{-}(\hat{Q}) \quad \Rightarrow \quad T(Q)=\operatorname{Del}(Q)
$$

## Local characterization of Delaunay complexes



$$
\begin{aligned}
& \text { Pair of regular simplices } \\
& \sigma_{2}\left(q_{1}\right) \geq 0 \text { and } \sigma_{1}\left(q_{2}\right) \geq 0 \\
& \Leftrightarrow \hat{c}_{1} \in h_{\sigma_{2}}^{+} \text {and } \hat{c}_{2} \in h_{\sigma_{1}}^{+}
\end{aligned}
$$

Theorem A triangulation $T(P)$ such that all pairs of simplexes are regular is a Delaunay triangulation $\operatorname{Del}(P)$

Proof The PL function whose graph $G$ is obtained by lifting the triangles is locally convex and has a convex support

$$
\Rightarrow \quad G=\operatorname{conv}^{-}(\hat{Q}) \quad \Rightarrow \quad T(Q)=\operatorname{Del}(Q)
$$

## Constructive proof using flips



## Constructive proof using flips



While $\exists$ a non regular pair $\left(t_{3}, t_{4}\right)$ $/^{*} t_{3} \cup t_{4}$ is convex */ replace $\left(t_{3}, t_{4}\right)$ by $\left(t_{1}, t_{2}\right)$

$$
\begin{aligned}
& \text { Regularize } \Leftrightarrow \text { improve ang }(T(\mathcal{P})) \\
& \text { ang }\left(t_{1}, t_{2}\right) \geq \text { ang }\left(t_{3}, t_{4}\right) \\
& \qquad a_{1}=a_{3}+a_{4}, d_{2}=d_{3}+d_{4}, \\
& \quad c_{1} \geq d_{3}, \quad b_{1} \geq d_{4}, \quad b_{2} \geq a_{4}, \quad c_{2} \geq a_{3}
\end{aligned}
$$

- The algorithm terminates since the number of triangulations of $\mathcal{P}$ is finite and $\operatorname{ang}(T(\mathcal{P}))$ cannot decrease
- The obtained triangulation is a Delaunay triangulation of $\mathcal{P}$ since all its edges are regular


## Constructive proof using flips



While $\exists$ a non regular pair $\left(t_{3}, t_{4}\right)$ $/{ }^{*} t_{3} \cup t_{4}$ is convex */ replace $\left(t_{3}, t_{4}\right)$ by $\left(t_{1}, t_{2}\right)$

Regularize $\Leftrightarrow$ improve ang $(T(\mathcal{P}))$

$$
\operatorname{ang}\left(t_{1}, t_{2}\right) \geq \operatorname{ang}\left(t_{3}, t_{4}\right)
$$

$$
a_{1}=a_{3}+a_{4}, d_{2}=d_{3}+d_{4},
$$

$$
c_{1} \geq d_{3}, \quad b_{1} \geq d_{4}, \quad b_{2} \geq a_{4}, \quad c_{2} \geq a_{3}
$$

- The algorithm terminates since the number of triangulations of $\mathcal{P}$ is finite and $\operatorname{ang}(T(\mathcal{P}))$ cannot decrease
- The obtained triangulation is a Delaunay triangulation of $\mathcal{P}$ since all its edges are regular


## Flat simplices may exist in higher dimensional DT



- Each square face can be circumscribed by an empty sphere
- This remains true if the grid points are slightly perturbed therefore creating flat tetrahedra


## The long quest for thick triangulations

Differential Topology
[Cairns], [Whitehead], [Whitney], [Munkres]

## Differential Geometry

[Cheeger et al.]

Geometric Function Theory

## Simplex quality

## Altitudes



If $\sigma_{q}$, the face opposite $q$ in $\sigma$ is protected, The altitude of $q$ in $\sigma$ is

$$
D(q, \sigma)=d\left(q, \operatorname{aff}\left(\sigma_{q}\right)\right)
$$

where $\sigma_{q}$ is the face opposite $q$.

Definition (Thickness
[Cairns, Whitney, Whitehead et al.] )
The thickness of a $j$-simplex $\sigma$ with diameter $\Delta(\sigma)$ is


## Simplex quality

## Altitudes


$D(q, \sigma)$ If $\sigma_{q}$, the face opposite $q$ in $\sigma$ is protected, The altitude of $q$ in $\sigma$ is

$$
D(q, \sigma)=d\left(q, \operatorname{aff}\left(\sigma_{q}\right)\right)
$$

where $\sigma_{q}$ is the face opposite $q$.

## Definition (Thickness

[Cairns, Whitney, Whitehead et al.] )
The thickness of a $j$-simplex $\sigma$ with diameter $\Delta(\sigma)$ is

$$
\Theta(\sigma)= \begin{cases}1 & \text { if } j=0 \\ \min _{p \in \sigma} \frac{D(p, \sigma)}{j \Delta(\sigma)} & \text { otherwise } .\end{cases}
$$

## Protection


$\delta$-protection We say that a Delaunay simplex $\sigma \subset L$ is $\delta$-protected if

$$
\left\|c_{\sigma}-q\right\|>\left\|c_{\sigma}-p\right\|+\delta \quad \forall p \in \sigma \text { and } \forall q \in L \backslash \sigma
$$

## Protection implies thickness

Let P be a $(\varepsilon, \bar{\eta})$-net, i.e.

- $\forall x \in \Omega, \quad d(x, P) \leq \varepsilon$
- $\forall p, q \in P, \quad\|p-q\| \geq \bar{\eta} \varepsilon$
if all $d$-simplices of $\operatorname{Del}(P)$ are $\bar{\delta} \varepsilon$-protected, then the thickness of all Delaunay simplices (of all dimensions) is lower bounded

$$
\Theta(\sigma)>\Theta_{0}=\frac{\bar{\delta}(\bar{\eta}+\bar{\delta})}{8 d}
$$

(except possibly near the boundary of $\operatorname{conv}(\mathrm{P})$ )

## Protection implies thickness

## Proof : Case 1


$\sigma d$-simplex of $\operatorname{Del}(P)$

$$
\begin{aligned}
& \sigma=q * \tau \quad \sigma^{\prime} \supset \tau \wedge q \notin \sigma^{\prime} \\
& H=\operatorname{aff}(\tau) \\
& q^{*} \in B^{\prime} \Rightarrow\left\|q q^{*}\right\|>\delta
\end{aligned}
$$

Fig in plane $c c^{\prime} q$
$c$ and $c^{\prime}$ are on the same side of $H$

## Protection implies thickness

## Proof : Case 2



Fig in plane $c c^{\prime} q$ $H$ separates $c$ and $c^{\prime}$
$\sigma d$-simplex of $\operatorname{Del}(P)$

$$
\begin{aligned}
& \sigma=q * \tau \\
& H=\operatorname{aff}(\tau) \\
& \gamma=\angle q a b, \quad \alpha=\angle q a c, \quad \beta=\angle c a b \\
& \text { wlog } \gamma \geq \angle q b a \\
& \gamma=\alpha+\beta \geq \frac{\pi}{2} \quad \text { (otherwise easy) } \\
& \cos \alpha=\frac{\|a-q\|}{2 r} \geq \frac{\delta}{2 \varepsilon} \\
& \cos \beta=\frac{\|a-b\|}{2 r} \geq \frac{\eta}{2 \varepsilon} \\
& \left\|q q^{*}\right\|=\|a q\| \sin \gamma>\delta \sin \gamma \\
& >\frac{\delta}{4 \varepsilon}(\eta+\delta) \\
& \Delta(\sigma) \leq 2 \varepsilon
\end{aligned}
$$

## The Lovász Local Lemma

Motivation

Given: A set of (bad) events $A_{1}, \ldots, A_{N}$, each happens with $\operatorname{proba}\left(A_{i}\right) \leq p<1$

Question : what is the probability that none of the events occur?

The case of independent events $\operatorname{proba}\left(\neg A_{1} \wedge \ldots \wedge \neg A_{N}\right) \geq(1-p)^{N}>0$

What if we allow a limited amount of dependency among the events?

## The Lovász Local Lemma

Motivation

Given: A set of (bad) events $A_{1}, \ldots, A_{N}$, each happens with $\operatorname{proba}\left(A_{i}\right) \leq p<1$

Question : what is the probability that none of the events occur?

The case of independent events

$$
\operatorname{proba}\left(\neg A_{1} \wedge \ldots \wedge \neg A_{N}\right) \geq(1-p)^{N}>0
$$

What if we allow a limited amount of dependency among the events?

## The Lovász Local Lemma

Motivation

Given: A set of (bad) events $A_{1}, \ldots, A_{N}$, each happens with $\operatorname{proba}\left(A_{i}\right) \leq p<1$

Question : what is the probability that none of the events occur?

The case of independent events

$$
\operatorname{proba}\left(\neg A_{1} \wedge \ldots \wedge \neg A_{N}\right) \geq(1-p)^{N}>0
$$

What if we allow a limited amount of dependency among the events?

## LLL : symmetric version

## [Lovász \& Erdös 1975]

## Under the assumptions

(1) $\operatorname{proba}\left(A_{i}\right) \leq p<1$
(2) $A_{i}$ depends of $\leq \Gamma$ other events $A_{j}$
(3) $\operatorname{proba}\left(A_{i}\right) \leq \frac{1}{e(\Gamma+1)} \quad e=2.718 \ldots$
then

$$
\operatorname{proba}\left(\neg A_{1} \wedge \ldots \wedge \neg A_{N}\right)>0
$$

## Moser and Tardos' constructive proof of the LLL [2010]

$\mathcal{P}$ a finite set of mutually independent random variables
$\mathcal{A}$ a finite set of events that are determined by the values of $S \subseteq \mathcal{P}$
Two events are independent iff they share no variable

for all $P \in \mathcal{P}$ do
$v_{P} \leftarrow$ a random evaluation of $P ;$
while $\exists A \in \mathcal{A}: A$ happens when $\left(P=v_{P}, P \in \mathcal{P}\right)$ do
return $\left(v_{P}\right)_{P \in \mathcal{P}}$;

## Moser and Tardos' constructive proof of the LLL [2010]

$\mathcal{P}$ a finite set of mutually independent random variables
$\mathcal{A}$ a finite set of events that are determined by the values of $S \subseteq \mathcal{P}$
Two events are independent iff they share no variable

## Algorithm

for all $P \in \mathcal{P}$ do
$v_{P} \leftarrow$ a random evaluation of $P ;$
while $\exists A \in \mathcal{A}: A$ happens when $\left(P=v_{P}, P \in \mathcal{P}\right)$ do pick an arbitrary happening event $A \in \mathcal{A}$; for all $P \in \operatorname{variables}(A)$ do
$v_{P} \leftarrow$ a new random evaluation of $P$;
return $\left(v_{P}\right)_{P \in \mathcal{P}}$;

## Moser and Tardos' theorem

if
(1) $\operatorname{proba}\left(A_{i}\right) \leq p<1$
(2) $A_{i}$ depends of $\leq \Gamma$ other events $A_{j}$
(3) $\operatorname{proba}\left(A_{i}\right) \leq \frac{1}{e(\Gamma+1)} \quad e=2.718 \ldots$
then $\exists$ an assignment of values to the variables $\mathcal{P}$ such that no event in $\mathcal{A}$ happens

The randomized algorithm resamples an event $A \in \mathcal{A}$ at most expected times before it finds such an evaluation

The expected total number of resampling steps is at most

## Home work

- Read the beautiful (rather simple) proof of Moser \& Tardos
- Learn about the parallel and the derandomized versions
- Listen to a talk by Aravind Srinivasan on further extensions
https://video.ias.edu/csdm/2014/0407-AravindSrinivasan


## Protecting Delaunay simplices via perturbation

Picking regions : pick $p^{\prime}$ in $B(p, \rho) \quad$ Hyp. $\quad \rho \leq \frac{\eta}{4}\left(\leq \frac{1}{2}\right)$

Sampling parameters of a perturbed point set
If $\boldsymbol{P}$ is an $(\varepsilon, \bar{\eta})$-net, $\quad \mathrm{P}^{\prime}$ is an $\left(\varepsilon^{\prime}, \eta^{\prime}\right)$-net, where


## Protecting Delaunay simplices via perturbation

Picking regions : pick $p^{\prime}$ in $B(p, \rho) \quad$ Hyp. $\quad \rho \leq \frac{\eta}{4}\left(\leq \frac{1}{2}\right)$

Sampling parameters of a perturbed point set
If $\mathbf{P}$ is an $(\varepsilon, \bar{\eta})$-net, $\quad \mathbf{P}^{\prime}$ is an $\left(\varepsilon^{\prime}, \bar{\eta}^{\prime}\right)$-net, where

$$
\varepsilon^{\prime}=\varepsilon(1+\bar{\rho}) \text { and } \bar{\eta}^{\prime}=\frac{\bar{\eta}-2 \bar{\rho}}{1+\bar{\rho}} \geq \frac{\bar{\eta}}{3}
$$

Notation : $\bar{x}=\frac{x}{\varepsilon}$

## The LLL framework

Random variables : $P^{\prime}$ a set of random points $\left\{p^{\prime}, p^{\prime} \in B(p, \rho), p \in \mathrm{P}\right\}$
Event: $\exists \phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}\right) \quad$ (Bad configuration)
$\sigma^{\prime}$ is a $d$ simplex with $R_{\sigma^{\prime}} \leq \varepsilon+\rho$
$p^{\prime} \in Z_{\delta}\left(\sigma^{\prime}\right) \quad Z_{\delta}\left(\sigma^{\prime}\right)=B\left(c_{\sigma^{\prime}}, R_{\sigma^{\prime}}+\delta\right) \backslash B\left(c_{\sigma^{\prime}}, R_{\sigma^{\prime}}\right)$

## Algorithm

Input: P, $\rho, \delta$
while an event $\phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}\right)$ occurs do
resample the points of $\phi^{\prime}$
undate Del(P')
Output: $\quad P^{\prime}$ and $\operatorname{Del}\left(P^{\prime}\right)$

## The LLL framework

Random variables : $P^{\prime}$ a set of random points $\left\{p^{\prime}, p^{\prime} \in B(p, \rho), p \in \mathrm{P}\right\}$
Event: $\exists \phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}\right) \quad$ (Bad configuration)
$\sigma^{\prime}$ is a $d$ simplex with $R_{\sigma^{\prime}} \leq \varepsilon+\rho$
$p^{\prime} \in Z_{\delta}\left(\sigma^{\prime}\right) \quad Z_{\delta}\left(\sigma^{\prime}\right)=B\left(c_{\sigma^{\prime}}, R_{\sigma^{\prime}}+\delta\right) \backslash B\left(c_{\sigma^{\prime}}, R_{\sigma^{\prime}}\right)$

Algorithm
Input: P, $\rho, \delta$
while an event $\phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}\right)$ occurs do
resample the points of $\phi^{\prime}$
update $\operatorname{Del}\left(\mathrm{P}^{\prime}\right)$
Output: $\quad P^{\prime}$ and $\operatorname{Del}\left(\mathrm{P}^{\prime}\right)$

## Bounding $\Gamma$

Lemma : An event is independent of all but at most $\Gamma$ other bad events where $\Gamma$ depends on $\bar{\eta}, \bar{\rho}, \bar{\delta}$ and $d$

## Proof :

- Let $\phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}\right)$ be a bad configuration.
- the number of events that may not be independent from an event $\left(\sigma^{\prime}, p^{\prime}\right)$ is at most the number of subsets of $(d+1)$ points in $B\left(c_{\sigma^{\prime}}, 3 R\right)$.
- Since $\mathrm{P}^{\prime}$ is $\eta^{\prime}$-sparse,



## Bounding $\Gamma$

Lemma : An event is independent of all but at most $\Gamma$ other bad events where $\Gamma$ depends on $\bar{\eta}, \bar{\rho}, \bar{\delta}$ and $d$

## Proof:

- Let $\phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}\right)$ be a bad configuration.

$$
\forall p^{\prime} \in \phi^{\prime}, \quad\left\|p^{\prime}-c_{\sigma^{\prime}}\right\| \leq R_{\sigma^{\prime}}+\delta=R=\varepsilon+\rho+\delta=\varepsilon(1+\bar{\rho}+\bar{\delta})
$$

- the number of events that may not be independent from an event $\left(\sigma^{\prime}, p^{\prime}\right)$ is at most the number of subsets of $(d+1)$ points in $B\left(c_{\sigma^{\prime}}, 3 R\right)$.
- Since $\mathrm{P}^{\prime}$ is $\eta^{\prime}$-sparse,



## Bounding $\Gamma$

Lemma : An event is independent of all but at most $\Gamma$ other bad events where $\Gamma$ depends on $\bar{\eta}, \bar{\rho}, \bar{\delta}$ and $d$

## Proof :

- Let $\phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}\right)$ be a bad configuration.

$$
\forall p^{\prime} \in \phi^{\prime}, \quad\left\|p^{\prime}-c_{\sigma^{\prime}}\right\| \leq R_{\sigma^{\prime}}+\delta=R=\varepsilon+\rho+\delta=\varepsilon(1+\bar{\rho}+\bar{\delta})
$$

- the number of events that may not be independent from an event ( $\sigma^{\prime}, p^{\prime}$ ) is at most the number of subsets of $(d+1)$ points in $B\left(c_{\sigma^{\prime}}, 3 R\right)$.
- Since $\mathrm{P}^{\prime}$ is $\eta^{\prime}$-sparse,



## Bounding $\Gamma$

Lemma : An event is independent of all but at most $\Gamma$ other bad events where $\Gamma$ depends on $\bar{\eta}, \bar{\rho}, \bar{\delta}$ and $d$

## Proof :

- Let $\phi^{\prime}=\left(\sigma^{\prime}, p^{\prime}\right)$ be a bad configuration.

$$
\forall p^{\prime} \in \phi^{\prime}, \quad\left\|p^{\prime}-c_{\sigma^{\prime}}\right\| \leq R_{\sigma^{\prime}}+\delta=R=\varepsilon+\rho+\delta=\varepsilon(1+\bar{\rho}+\bar{\delta})
$$

- the number of events that may not be independent from an event ( $\sigma^{\prime}, p^{\prime}$ ) is at most the number of subsets of $(d+1)$ points in $B\left(c_{\sigma^{\prime}}, 3 R\right)$.
- Since $\mathrm{P}^{\prime}$ is $\eta^{\prime}$-sparse,

$$
\Gamma=\left(\frac{3 R+\frac{\eta^{\prime}}{2}}{\frac{\eta^{\prime}}{2}}\right)^{d(d+2)}
$$

## Bounding proba $(\sigma, p)$ be a bad configuration



$$
\begin{aligned}
& S(c, R) \text { a hypersphere of } \mathbb{R}^{d} \\
& T_{\delta}=B(c, R+\delta) \backslash B(c, R) \\
& B_{\rho} \text { any } d \text {-ball of radius } \rho<R \\
& \operatorname{vol}_{d}\left(T_{\delta} \cap B_{\rho}\right) \leq U_{d-1}\left(\frac{\pi}{2} \rho\right)^{d-1} \delta,
\end{aligned}
$$

## Bounding proba $(\sigma, p)$ be a bad configuration



$$
S(c, R) \text { a hypersphere of } \mathbb{R}^{d}
$$

$$
T_{\delta}=B(c, R+\delta) \backslash B(c, R)
$$

$B_{\rho}$ any $d$-ball of radius $\rho<R$

$$
\operatorname{vol}_{d}\left(T_{\delta} \cap B_{\rho}\right) \leq U_{d-1}\left(\frac{\pi}{2} \rho\right)^{d-1} \delta,
$$

$$
\operatorname{proba}\left(p^{\prime} \in Z_{\delta}\left(\sigma^{\prime}\right)\right) \leq \varpi=\frac{U_{d-1}}{U_{d}} \frac{2}{\pi} \frac{\delta}{\rho}<\frac{2^{d+1} \delta}{\pi \rho}
$$

## Bound on the number of events

$\Sigma\left(p^{\prime}\right)$ : number of $d$-simplices that can possibly make a bad configuration with $p^{\prime} \in P^{\prime}$ for some perturbed set $P^{\prime}$

$$
\begin{aligned}
& R=\varepsilon+\rho+\delta \\
& \\
& \sum_{p^{\prime} \in P^{\prime}} \Sigma\left(p^{\prime}\right) \leq n \times\left|P^{\prime} \cap B\left(p^{\prime}, 2 R\right)\right| \leq N=n\left(\frac{2 R+\frac{\eta^{\prime}}{2}}{\frac{\eta^{\prime}}{2}}\right)^{d(d+1)}
\end{aligned}
$$

## Main result

## Under condition

$$
\frac{2^{d+1} e}{\pi}(\Gamma+1) \delta \leq \rho \leq \frac{\eta}{4}
$$

the algorithm terminates.

Guarantees on the output

- $d_{H}\left(P . P^{\prime}\right)<\rho$
- the $d$-simplices of $\operatorname{Del}\left(P^{\prime}\right)$ are $\delta$-protected
- and therefore have a positive thickness


## Main result

Under condition

$$
\frac{2^{d+1} e}{\pi}(\Gamma+1) \delta \leq \rho \leq \frac{\eta}{4}
$$

the algorithm terminates.

Guarantees on the output

- $d_{H}\left(P, P^{\prime}\right) \leq \rho$
- the $d$-simplices of $\operatorname{Del}\left(P^{\prime}\right)$ are $\delta$-protected
- and therefore have a positive thickness


## Complexity of the algorithm

- The number of resamplings executed by the algorithm is at most

$$
N / \Gamma \leq C n
$$

where $C$ depends on $\bar{\eta}, \bar{\rho}, \bar{\delta}$ and $d$

- Each resampling consists in perturbing $O(1)$ points
- Updating the Delaunay triangulation after each resampling takes $O(1)$ time
- The expected complexity is linear in the number of points

