Mesh Generation

Jean-Daniel Boissonnat
Geometrica, INRIA
http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis
January 26-30, 2015
Meshing surfaces and 3D domains

- visualization and graphics applications
- CAD and reverse engineering
- geometric modelling in medicine, geology, biology etc.
- autonomous exploration and mapping (SLAM)
- scientific computing: meshes for FEM
Grid methods
- Lorensen & Cline [87]: marching cube
- Lopez & Brodlie [03]: topological consistency
- Plantiga & Vegter [04]: certified topology using interval arithmetic

Morse theory
- Stander & Hart [97]
- B., Cohen-Steiner & Vegter [04]: certified topology

Delaunay refinement
- Hermeline [84]
- Ruppert [95]
- Shewchuk [02]
- Chew [93]
- B. & Oudot [03, 04]
- Cheng et al. [04]
Main issues

Sampling
- How do we choose points in the domain?
- What information do we need to know/measure about the domain?

Meshing
- How do we connect the points?
- Under what sampling conditions can we compute a good approximation of the domain?
Restricted Delaunay triangulation

Definition

The restricted Delaunay triangulation $\text{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\text{Vor}(\mathcal{P}) \cap X$.

If \mathcal{P} is an ε-sample, any ball centered on X that circumscribes a facet of $\text{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \text{rch}(\mathcal{M})$.
Definition

The restricted Delaunay triangulation $\text{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\text{Vor}(\mathcal{P}) \cap X$.

If P is an ε-sample, any ball centered on X that circumscribes a facet of $\text{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \text{rch}(M)$.
Definition

The restricted Delaunay triangulation $\text{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\text{Vor}(\mathcal{P}) \cap X$

If \mathcal{P} is an ε-sample, any ball centered on X that circumscribes a facet of $\text{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \text{rch}(\mathcal{M})$
Definition

The restricted Delaunay triangulation $\text{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\text{Vor}(\mathcal{P}) \cap X$.
A variant of the nerve theorem

Let \mathbb{M} be a compact manifold without boundary. If, for any face $f \in \text{Vor}(P)$ s.t. $f \cap \mathbb{M} \neq \emptyset$,

1. f intersects \mathbb{M} transversally
2. $f \cap \mathbb{M} = \emptyset$ or is a topological ball

then $\text{Del}_\mathbb{M}(P) \approx \mathbb{M}$
A variant of the nerve theorem [Edelsbrunner & Shah 1997]

Let \mathbb{M} be a compact manifold without boundary. If, for any face $f \in \text{Vor}(P)$ s.t. $f \cap \mathbb{M} \neq \emptyset$,

1. f intersects \mathbb{M} transversally
2. $f \cap \mathbb{M} = \emptyset$ or is a topological ball

then $\text{Del}_\mathbb{M}(P) \approx \mathbb{M}$
Proof of the closed ball property

Barycentric subdivision

of $\text{Vor}(P) \cap M$

of $\text{Del}_M(P)$
Good sampling, scale and dimension
Sampling conditions

[Federmeyer 1958], [Amenta & Bern 1998]

Medial axis of \mathcal{M}: $axis(\mathcal{M})$

set of points with at least two closest points on \mathcal{M}

Reach

$\forall x \in \mathcal{M}, \ rch(x) = \infimum$ of the radii of the medial balls tangent to \mathcal{M} at x

$rch(\mathcal{M}) = \inf_{x \in \mathcal{M}} rch(x)$

(ϵ, η)-net of \mathcal{M}

1. $\mathcal{P} \subset \mathcal{M}, \ \forall x \in \mathcal{M} : \ d(x, \mathcal{P}) \leq \epsilon \ rch(x)$
2. $\forall p, q \in \mathcal{P}, \ \|p - q\| \geq \eta \ \min(rch(p), rch(q))$
Sampling conditions

[Federer 1958], [Amenta & Bern 1998]

Medial axis of \mathbb{M}: axis(\mathbb{M})

set of points with at least two closest points on \mathbb{M}

Reach

$\forall x \in \mathbb{M}, \ rch(x) = \infimum \ of \ the \ radii \ of \ the \ medial \ balls \ tangent \ to \ \mathbb{M} \ at \ x$

$rch(\mathbb{M}) = \inf_{x \in \mathbb{M}} rch(x)$

(\epsilon, \eta)-net of \mathbb{M}

1. $\mathcal{P} \subset \mathbb{M}, \ \forall x \in \mathbb{M}: \ d(x, \mathcal{P}) \leq \epsilon \ rch(x)$
2. $\forall p, q \in \mathcal{P}, \ \|p - q\| \geq \eta \ \min(rch(p), rch(q))$
Restricted Delaunay triang. of (ε, η)-nets

[Amenta et al. 1998-], [B. & Oudot 2005]

If

- $S \subset \mathbb{R}^3$ is a compact surface of positive reach without boundary
- \mathcal{P} is an (ε, η)-net with $\varepsilon/\eta \leq \xi_0$ and ε small enough

then

- $\text{Del}_{|S}(\mathcal{S})$ provides good estimates of normals
- There exists a homeomorphism $\phi : \text{Del}_{|S}(\mathcal{P}) \rightarrow S$
- $\sup_x (\|\phi(x) - x\|) = O(\varepsilon^2)$
Surface mesh generation by Delaunay refinement

[Chew 1993, B. & Oudot 2003]

\[\phi : S \rightarrow \mathbb{R} = \text{Lipschitz function} \]
\[\forall x \in S, \ 0 < \phi_{\text{min}} \leq \phi(x) < \epsilon \text{rch}(x) \]

ORACLE: For a facet \(f \) of \(\text{Del}|_S(P) \),
return \(c_f, r_f \) and \(\phi(c_f) \)

A facet \(f \) is **bad** if \(r_f > \phi(c_f) \)

Algorithm

INIT compute an initial (small) sample \(P_0 \subset S \)

REPEAT
IF \(f \) is a bad facet
 insert_in_Del3D(c_f),
 update \(P \) and \(\text{Del}|_S(P) \)
UNTIL all facets are good
Surface mesh generation by Delaunay refinement

[Chew 1993, B. & Oudot 2003]

\(\phi : S \rightarrow \mathbb{R} = \) Lipschitz function
\[
\forall x \in S, \ 0 < \phi_{\min} \leq \phi(x) < \varepsilon \text{rch}(x)
\]

ORACLE : For a facet \(f \) of \(\text{Del}_{|S}(\mathcal{P}) \), return \(c_f, r_f \) and \(\phi(c_f) \)

A facet \(f \) is **bad** if \(r_f > \phi(c_f) \)

Algorithm

INIT compute an initial (small) sample \(\mathcal{P}_0 \subset S \)

REPEAT
\[\text{IF } f \text{ is a bad facet} \]
\[\text{insert_in_Del3D}(c_f) , \]
\[\text{update } \mathcal{P} \text{ and } \text{Del}_{|S}(\mathcal{P}) \]

UNTIL all facets are good
The meshing algorithm in action
The algorithm outputs a good sample

The output sample \mathcal{P} is sparse

$$\forall p \in \mathcal{P}, d(p, \mathcal{P} \setminus \{p\}) = \|p - q\| \geq \min(\phi(p), \phi(q)) \geq \phi(p) - \|p - q\|$$

$$\Rightarrow \|p - q\| \geq \frac{1}{2} \phi(p) \geq \frac{1}{2} \phi_0 > 0$$

the algorithm terminates

\mathcal{P} is a loose ε-sample of S

- Each facet has a S-radius $r_f \leq \phi(c_f) < \varepsilon \text{rch}(S)$

- $\text{Del}_S(\mathcal{P})$ has a vertex on each cc of S \hspace{1cm} (\text{INIT})
Size of the sample $= \Theta \left(\int_S \frac{dx}{\phi^2(x)} \right)$

Upper bound

$B_p = B(p, \frac{\phi(p)}{2})$, $p \in \mathcal{P}$

\[
\int_S \frac{dx}{\phi^2(x)} \geq \sum_p \int_{(B_p \cap S)} \frac{dx}{\phi^2(x)}
\]

\[
\geq \frac{4}{9} \sum_p \frac{\text{area}(B_p \cap S)}{\phi^2(p)}
\]

\[
\geq \sum_p C = C |\mathcal{P}|
\]

(the B_p are disjoint)

\[
\phi(x) \leq \phi(p) + ||p - x||
\]

\[
\leq \frac{3}{2} \phi(p)
\]

Lower bound

Use a covering instead of a packing
Size of the sample \(= \Theta \left(\int_S \frac{dx}{\phi^2(x)} \right) \)

Upper bound

\(B_p = B(p, \frac{\phi(p)}{2}) \), \(p \in \mathcal{P} \)

\[\int_S \frac{dx}{\phi^2(x)} \geq \sum_p \int_{(B_p \cap S)} \frac{dx}{\phi^2(x)} \]

\[\geq \frac{4}{9} \sum_p \frac{\text{area}(B_p \cap S)}{\phi^2(p)} \]

\[\geq \sum_p C = C |\mathcal{P}| \]

(the \(B_p \) are disjoint)

\[\phi(x) \leq \phi(p) + \|p - x\| \leq \frac{3}{2} \phi(p) \]

Lower bound

Use a covering instead of a packing
The full result

The Delaunay refinement algorithm produces

- a good (dense and sparse) sample
- a triangulated surface \hat{S}
 - homeomorphic to S
 - close to S (Hausdorff/Fréchet distance, approximation of normals)
Applications

- Implicit surfaces $f(x, y, z) = 0$
- Isosurfaces in a 3d image (Medical images)
- Triangulated surfaces (Remeshing)
- Point sets (Surface reconstruction)

see cgal.org, CGALmesh project
Results on smooth implicit surfaces
Meshing 3D domains
Input from segmented 3D medical images

[INSERM] [SIEMENS]
Comparison with the Marching Cube algorithm

Delaunay refinement

Marching cube
Meshing with sharp features
A polyhedral example
Meshing 3D multi-domains
Input from segmented 3D medical images [IRCAD]

<table>
<thead>
<tr>
<th>Size bound (mm)</th>
<th>vertices nb</th>
<th>facets nb</th>
<th>tetrahedra nb</th>
<th>CPU Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>3,743</td>
<td>3,735</td>
<td>19,886</td>
<td>0.880</td>
</tr>
<tr>
<td>8</td>
<td>27,459</td>
<td>19,109</td>
<td>159,120</td>
<td>6.97</td>
</tr>
<tr>
<td>4</td>
<td>199,328</td>
<td>76,341</td>
<td>1,209,720</td>
<td>54.1</td>
</tr>
<tr>
<td>2</td>
<td>1,533,660</td>
<td>311,420</td>
<td>9,542,295</td>
<td>431</td>
</tr>
</tbody>
</table>
Surface reconstruction from unorganized point sets

Courtesy of P. Alliez