Mesh Generation

Jean-Daniel Boissonnat Geometrica, INRIA
http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis January 26-30, 2015

Meshing surfaces and 3D domains

- visualization and graphics applications
- CAD and reverse engineering
- geometric modelling in medecine, geology, biology etc.
- autonomous exploration and mapping (SLAM)
- scientific computing : meshes for FEM

Mesh generation : from art to science

Grid methods

Lorensen \& Cline [87] : marching cube
Lopez \& Brodlie [03] : topological consistency
Plantiga \& Vegter [04] : certified topology using interval arithmetic
Morse theory
Stander \& Hart [97]
B., Cohen-Steiner \& Vegter [04] : certified topology

Delaunay refinement
Hermeline [84]
Chew [93]
Ruppert [95]
Shewchuk [02]
B. \& Oudot $[03,04]$

Cheng et al. [04]

Main issues

Sampling

- How do we choose points in the domain?
- What information do we need to know/measure about the domain?

Meshing

- How do we connect the points ?
- Under what sampling conditions can we compute a good approximation of the domain?

Restricted Delaunay triangulation

Definition

The restricted Delaunay triangulation $\operatorname{Del}_{X}(\mathcal{P})$ to $X \subset \mathbb{R}^{d}$ is the nerve of $\operatorname{Vor}(\mathrm{P}) \cap X$

If P is an ε-sample, any ball centered on X that circumscribes a facet of $\operatorname{Del}_{X}(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{rch}(\mathbb{M})$

Restricted Delaunay triangulation

Definition

The restricted Delaunay triangulation $\operatorname{Del}_{X}(\mathcal{P})$ to $X \subset \mathbb{R}^{d}$ is the nerve of $\operatorname{Vor}(\mathrm{P}) \cap X$

If P is an ε-sample, any ball centered on X that circumscribes a facet of $\operatorname{Del}_{X}(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{rch}(\mathbb{M})$

Restricted Delaunay triangulation

Definition

The restricted Delaunay triangulation $\operatorname{Del}_{X}(\mathcal{P})$ to $X \subset \mathbb{R}^{d}$ is the nerve of $\operatorname{Vor}(\mathrm{P}) \cap X$

If P is an ε-sample, any ball centered on X that circumscribes a facet of $\operatorname{Del}_{X}(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{rch}(\mathbb{M})$

Restricted Delaunay triangulation

Definition
The restricted Delaunay triangulation $\operatorname{Del}_{X}(\mathcal{P})$ to $X \subset \mathbb{R}^{d}$ is the nerve of $\operatorname{Vor}(\mathrm{P}) \cap X$

A variant of the nerve theorem

Let \mathbb{M} be a compact manifold without boundary. If, for any face $f \in \operatorname{Vor}(\mathrm{P}) \quad$ s.t. $\quad f \cap \mathbb{M} \neq \emptyset$,
(1) f intersects \mathbb{M} transversally
(2) $f \cap \mathbb{M}=\emptyset$ or is a topological ball

$$
\text { then } \operatorname{Del}_{\mathbb{M}}(\mathrm{P}) \approx \mathbb{M}
$$

A variant of the nerve theorem

Let \mathbb{M} be a compact manifold without boundary. If, for any face $f \in \operatorname{Vor}(\mathrm{P}) \quad$ s.t. $\quad f \cap \mathbb{M} \neq \emptyset$,
(1) f intersects \mathbb{M} transversally
(2) $f \cap \mathbb{M}=\emptyset$ or is a topological ball
then $\operatorname{Del}_{\mathbb{M}}(\mathrm{P}) \approx \mathbb{M}$

Proof of the closed ball property

Barycentric subdivision

$$
\text { of } \operatorname{Vor}(\mathrm{P}) \cap \mathbb{M}
$$

of $\operatorname{Del}_{\mathbb{M}}(\mathrm{P})$

Good sampling, scale and dimension

Sampling conditions

Reach

$\forall x \in \mathbb{M}, \operatorname{rch}(x)=$ infimum of the radii of the medial balls tangent to \mathbb{M} at x

```
rch(\mathbb{M})= \mp@subsup{\operatorname{inf}}{x\in\mathbb{M}}{}\operatorname{rch}(x)
```


Sampling conditions

Medial axis of $\mathbb{M}: \operatorname{axis}(\mathbb{M})$
set of points with at least two closest points on \mathbb{M}

Reach

$\forall x \in \mathbb{M}, \quad \operatorname{rch}(x)=$ infimum of the radii of the medial balls tangent to \mathbb{M} at x

```
rch(\mathbb{M})=\mp@subsup{\operatorname{inf}}{x\in\mathbb{M}}{}\operatorname{rch}(x)
```

$$
\begin{aligned}
& (\epsilon, \eta) \text {-net of } \mathbb{M} \\
& \text { 1. } \mathcal{P} \subset \mathbb{M}, \forall x \in \mathbb{M}: \quad d(x, \mathcal{P}) \leq \epsilon \operatorname{rch}(x) \\
& \text { 2. } \forall p, q \in \mathcal{P}, \quad\|p-q\| \geq \eta \min (\operatorname{rch}(p), \operatorname{rch}(q))
\end{aligned}
$$

Restricted Delaunay triang. of (ε, η)-nets

[Amenta et al. 1998-], [B. \& Oudot 2005]

If

- $\mathcal{S} \subset \mathbb{R}^{3}$ is a compact surface of positive reach without boundary
- \mathcal{P} is an (ε, η)-net with $\varepsilon / \eta \leq \xi_{0}$ and ε small enough
then
- $\operatorname{Del}_{\mid S}(\mathcal{S})$ provides good estimates of normals
- There exists a homeomorphism $\phi: \operatorname{Del}_{\mid S}(\mathcal{P}) \rightarrow \mathcal{S}$
- $\sup _{x}(\|\phi(x)-x\|)=O\left(\varepsilon^{2}\right)$

Surface mesh generation by Delaunay refinement

[Chew 1993, B. \& Oudot 2003]
$\begin{aligned} \phi & : S \rightarrow \mathbb{R}=\text { Lipschitz function } \\ & \forall x \in S, 0<\phi_{\min } \leq \phi(x)<\varepsilon \operatorname{rch}(x)\end{aligned}$
ORACLE : For a facet f of $\operatorname{Del}_{\mid S}(\mathcal{P})$, return c_{f}, r_{f} and $\phi\left(c_{f}\right)$

A facet f is bad if $r_{f}>\phi\left(c_{f}\right)$

Surface mesh generation by Delaunay refinement

[Chew 1993, B. \& Oudot 2003]
$\phi: S \rightarrow \mathbb{R}=$ Lipschitz function
$\forall x \in S, 0<\phi_{\text {min }} \leq \phi(x)<\varepsilon \operatorname{rch}(x)$
ORACLE : For a facet f of $\operatorname{Del}_{\mid S}(\mathcal{P})$, return c_{f}, r_{f} and $\phi\left(c_{f}\right)$

A facet f is bad if $r_{f}>\phi\left(c_{f}\right)$

Algorithm

INIT compute an initial (small) sample $\mathcal{P}_{0} \subset S$
REPEAT IF f is a bad facet insert_in_Del3D $\left(c_{f}\right)$, update \mathcal{P} and $\operatorname{Del}_{\mid S}(\mathcal{P})$
UNTIL all facets are good

The meshing algorithm in action

The algorithm outputs a good sample

The output sample \mathcal{P} is sparse

$$
\begin{aligned}
\forall p \in \mathcal{P}, d(p, \mathcal{P} \backslash\{p\}) & =\|p-q\| \\
& \geq \min (\phi(p), \phi(q)) \\
& \geq \phi(p)-\|p-q\| \\
\Rightarrow \quad\|p-q\| \geq \frac{1}{2} \phi(p) & \geq \frac{1}{2} \phi_{0}>0
\end{aligned}
$$

the algorithm terminates
\mathcal{P} is a loose ε-sample of \mathcal{S}

- Each facet has a \mathcal{S}-radius $r_{f} \leq \phi\left(c_{f}\right)<\varepsilon \operatorname{rch}(\mathcal{S})$
- $\operatorname{Del}_{\mid S}(\mathcal{P})$ has a vertex on each cc of \mathcal{S}

Size of the sample $=\Theta\left(\int_{S} \frac{d x}{\phi^{2}(x)}\right)$

Upper bound

$B_{p}=B\left(p, \frac{\phi(p)}{2}\right), p \in \mathcal{P}$

$$
\begin{array}{rlrl}
\int_{S} \frac{d x}{\phi^{2}(x)} & \geq \sum_{p} \int_{\left(B_{p} \cap S\right)} \frac{d x}{\phi^{2}(x)} & \text { (the } B_{p} \text { are disjoint) } \\
& \geq \frac{4}{9} \sum_{p} \frac{\operatorname{area}\left(B_{p} \cap S\right)}{\phi^{2}(p)} & \phi(x) & \leq \phi(p)+\|p-x\| \\
& \geq \sum_{p} C=C|\mathcal{P}| & & \left.\leq \frac{3}{2} \phi(p)\right)
\end{array}
$$

Size of the sample $=\Theta\left(\int_{S} \frac{d x}{\phi^{2}(x)}\right)$

Upper bound

$B_{p}=B\left(p, \frac{\phi(p)}{2}\right), p \in \mathcal{P}$

$$
\begin{array}{rlr}
\int_{S} \frac{d x}{\phi^{2}(x)} & \geq \sum_{p} \int_{\left(B_{p} \cap S\right)} \frac{d x}{\phi^{2}(x)} & \text { (the } B_{p} \text { are disjoint) } \\
\geq \frac{4}{9} \sum_{p} \frac{\operatorname{area}\left(B_{p} \cap s\right)}{\phi^{2}(p)} & \phi(x) \leq \phi(p)+\|p-x\| \\
\geq \sum_{p} C=C|\mathcal{P}| & \left.\leq \frac{3}{2} \phi(p)\right)
\end{array}
$$

Lower bound
Use a covering instead of a packing

The full result

The Delaunay refinement algorithm produces

- a good (dense and sparse) sample
- a triangulated surface \hat{S}
- homeomorphic to S
- close to \mathcal{S} (Hausdorff/Fréchet distance, approximation of normals)

Applications

- Implicit surfaces $f(x, y, z)=0$
- Isosurfaces in a 3d image (Medical images)
- Triangulated surfaces (Remeshing)
- Point sets (Surface reconstruction)
see cgal.org, CGALmesh project

Results on smooth implicit surfaces

Meshing 3D domains

Input from segmented 3D medical images
[INSERM]

[SIEMENS]

Comparison with the Marching Cube algorithm

Delaunay refinement

Marching cube

Meshing with sharp features

A polyhedral example

Meshing 3D multi-domains

Input from segmented 3D medical images [IRCAD]

Size bound (mm)	vertices nb	facets nb	tetrahedra nb	CPU Time (s)
16	3,743	3,735	19,886	0.880
8	27,459	19,109	159,120	6.97
4	199,328	76,341	$1,209,720$	54.1
2	$1,533,660$	311,420	$9,542,295$	431

Surface reconstruction from unorganized point sets

Courtesy of P. Alliez

