Mesh Generation

Jean-Daniel Boissonnat Geometrica, INRIA

http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis January 26-30, 2015

Meshing surfaces and 3D domains

- visualization and graphics applications
- CAD and reverse engineering
- geometric modelling in medecine, geology, biology etc.
- autonomous exploration and mapping (SLAM)
- scientific computing : meshes for FEM

Mesh generation: from art to science

Grid methods

Lorensen & Cline [87]: marching cube

Lopez & Brodlie [03]: topological consistency

Plantiga & Vegter [04]: certified topology using interval arithmetic

Morse theory

Stander & Hart [97]

B., Cohen-Steiner & Vegter [04]: certified topology

Delaunay refinement

Hermeline [84]

Ruppert [95]

Shewchuk [02]

Chew [93]

B. & Oudot [03,04]

Cheng et al. [04]

Main issues

Sampling

- How do we choose points in the domain?
- What information do we need to know/measure about the domain?

Meshing

- How do we connect the points?
- Under what sampling conditions can we compute a good approximation of the domain?

The restricted Delaunay triangulation $\mathrm{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\mathrm{Vor}(\mathsf{P}) \cap X$

If P is an ε -sample, any ball centered on X that circumscribes a facet of $\mathrm{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{rch}(\mathbb{M})$

The restricted Delaunay triangulation $\mathrm{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\mathrm{Vor}(\mathsf{P}) \cap X$

If P is an ε -sample, any ball centered on X that circumscribes a facet of $\mathrm{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{rch}(\mathbb{M})$

The restricted Delaunay triangulation $\mathrm{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\mathrm{Vor}(\mathsf{P}) \cap X$

If P is an ε -sample, any ball centered on X that circumscribes a facet of $\mathrm{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{rch}(\mathbb{M})$

The restricted Delaunay triangulation $\mathrm{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\mathrm{Vor}(\mathsf{P}) \cap X$

Let \mathbb{M} be a compact manifold without boundary. If, for any face $f \in \text{Vor}(\mathsf{P})$ s.t. $f \cap \mathbb{M} \neq \emptyset$,

- $\mathbf{0}$ f intersects \mathbb{M} transversally
- **2** $f \cap \mathbb{M} = \emptyset$ or is a topological ball

then $Del_{\mathbb{M}}(P) \approx \mathbb{M}$

Let \mathbb{M} be a compact manifold without boundary. If, for any face $f \in \text{Vor}(\mathsf{P})$ s.t. $f \cap \mathbb{M} \neq \emptyset$,

- $\mathbf{0}$ f intersects \mathbb{M} transversally
- **2** $f \cap \mathbb{M} = \emptyset$ or is a topological ball

then $\mathrm{Del}_{\mathbb{M}}(\mathsf{P}) \approx \mathbb{M}$

Proof of the closed ball property

Barycentric subdivision

of $Del_{\mathbb{M}}(P)$

Good sampling, scale and dimension

Medial axis of \mathbb{M} : axis(\mathbb{M})

set of points with at least two closest points on $\ensuremath{\mathbb{M}}$

Reach

 $\forall x \in \mathbb{M}, \ \operatorname{rch}(x) = \operatorname{infimum} \ \operatorname{of} \ \operatorname{the} \ \operatorname{radii} \ \operatorname{of} \ \operatorname{the} \ \operatorname{medial} \ \operatorname{balls} \ \operatorname{tangent} \ \operatorname{to} \ \mathbb{M} \ \operatorname{at} \ x$

$$\operatorname{rch}(\mathbb{M}) = \inf_{x \in \mathbb{M}} \operatorname{rch}(x)$$

 (ϵ,η) -net of $\mathbb M$

- 1. $\mathcal{P} \subset \mathbb{M}$, $\forall x \in \mathbb{M}$: $d(x, \mathcal{P}) \leq \epsilon \operatorname{rch}(x)$
- 2. $\forall p, q \in \mathcal{P}$, $||p-q|| \ge \eta \min(\operatorname{rch}(p), \operatorname{rch}(q))$

Medial axis of \mathbb{M} : axis(\mathbb{M})

set of points with at least two closest points on $\ensuremath{\mathbb{M}}$

10 / 23

Reach

 $\forall x \in \mathbb{M}, \ \operatorname{rch}(x) = \operatorname{infimum} \ \operatorname{of} \ \operatorname{the} \ \operatorname{radii} \ \operatorname{of} \ \operatorname{the} \ \operatorname{medial} \ \operatorname{balls} \ \operatorname{tangent} \ \operatorname{to} \ \mathbb{M} \ \operatorname{at} \ x$

$$\operatorname{rch}(\mathbb{M}) = \inf_{x \in \mathbb{M}} \operatorname{rch}(x)$$

(ϵ, η) -net of M

- 1. $\mathcal{P} \subset \mathbb{M}$, $\forall x \in \mathbb{M}$: $d(x, \mathcal{P}) \leq \epsilon \operatorname{rch}(x)$
- 2. $\forall p, q \in \mathcal{P}$, $||p-q|| \ge \eta \min(\operatorname{rch}(p), \operatorname{rch}(q))$

Restricted Delaunay triang. of (ε, η) -nets

[Amenta et al. 1998-], [B. & Oudot 2005]

11 / 23

lf

- \bullet $\mathcal{S} \subset \mathbb{R}^3$ is a compact surface of positive reach without boundary
- $\mathcal P$ is an (ε,η) -net with $\varepsilon/\eta \le \xi_0$ and ε small enough

then

- Del_{|S}(S) provides good estimates of normals
- There exists a homeomorphism $\phi: \mathrm{Del}_{|\mathcal{S}}(\mathcal{P}) \to \mathcal{S}$
- $\sup_{x}(\|\phi(x) x\|) = O(\varepsilon^2)$

Winter School 4 Mesh generation Sophia Antipolis

Surface mesh generation by Delaunay refinement

[Chew 1993, B. & Oudot 2003]

```
\phi: S \to \mathbb{R} = Lipschitz function

\forall x \in S, \ 0 < \phi_{\min} \le \phi(x) < \varepsilon \operatorname{rch}(x)
```

ORACLE : For a facet f of $Del_{|S}(\mathcal{P})$, return c_f , r_f and $\phi(c_f)$

A facet f is bad if $r_f > \phi(c_f)$

Algorithm

INIT compute an initial (small) sample $\mathcal{P}_0\subset S$ EPEAT IF f is a bad facet

 $\mathit{update}\,\mathcal{P}\ \mathsf{and}\ \mathsf{Del}_{|\mathcal{S}}(\mathcal{P})$

UNTIL all facets are good

Surface mesh generation by Delaunay refinement

[Chew 1993, B. & Oudot 2003]

```
\phi: S \to \mathbb{R} = Lipschitz function \forall x \in S, \ 0 < \phi_{\min} \le \phi(x) < \varepsilon \operatorname{rch}(x)
```

ORACLE : For a facet f of $Del_{|S}(P)$, return c_f , r_f and $\phi(c_f)$

A facet f is bad if $r_f > \phi(c_f)$

Algorithm

INIT compute an initial (small) sample $\mathcal{P}_0 \subset S$

REPEAT IF f is a bad facet $insert_in_Del3D(c_f) \ ,$ $update \ \mathcal{P} \ \text{and} \ \mathrm{Del}_{|\mathcal{S}}(\mathcal{P})$

UNTIL all facets are good

The meshing algorithm in action

The algorithm outputs a good sample

The output sample P is sparse

$$\begin{split} \forall p \in \mathcal{P}, d(p, \mathcal{P} \setminus \{p\}) &= \|p - q\| \\ &\geq \min(\phi(p), \phi(q)) \\ &\geq \phi(p) - \|p - q\| \\ \Rightarrow & \|p - q\| \geq \frac{1}{2} \, \phi(p) \geq \frac{1}{2} \, \phi_0 > 0 \end{split} \qquad \text{the algorithm terminates}$$

\mathcal{P} is a loose ε -sample of \mathcal{S}

- ▶ Each facet has a S-radius $r_f \le \phi(c_f) < \varepsilon \operatorname{rch}(S)$

Size of the sample $=\Theta\left(\int_{S} \frac{dx}{\phi^{2}(x)}\right)$

Upper bound

$$B_p = B(p, \frac{\phi(p)}{2}), p \in \mathcal{P}$$

$$\int_{S} \frac{dx}{\phi^2(x)} \ge \sum_{p} \int_{(B_p \cap S)} \frac{dx}{\phi^2(x)}$$

$$\ge \frac{4}{9} \sum_{p} \frac{\operatorname{area}(B_p \cap S)}{\phi^2(p)}$$

$$\geq \sum_{p} C = C |\mathcal{P}|$$

(the B_n are disjoint)

$$\phi(x) \le \phi(p) + ||p - x||$$

$$\le \frac{3}{2} \phi(p)$$

Lower bound

Use a covering instead of a packing

Size of the sample $=\Theta\left(\int_{S} \frac{dx}{\phi^{2}(x)}\right)$

Upper bound

$$B_p = B(p, \frac{\phi(p)}{2}), p \in \mathcal{P}$$

$$\int_{S} \frac{dx}{\phi^2(x)} \ge \sum_{p} \int_{(B_p \cap S)} \frac{dx}{\phi^2(x)}$$

$$\ge \frac{4}{9} \sum_{p} \frac{\operatorname{area}(B_p \cap S)}{\phi^2(p)}$$

$$\geq \sum_{p} C = C |\mathcal{P}|$$

(the B_n are disjoint)

$$\phi(x) \le \phi(p) + ||p - x||$$

$$\le \frac{3}{2} \phi(p)$$

Lower bound

Use a covering instead of a packing

The full result

The Delaunay refinement algorithm produces

- a good (dense and sparse) sample
- ullet a triangulated surface \hat{S}
 - homeomorphic to S
 - lacktriangle close to ${\cal S}$ (Hausdorff/Fréchet distance, approximation of normals)

Applications

- Implicit surfaces f(x, y, z) = 0
- Isosurfaces in a 3d image (Medical images)
- Triangulated surfaces (Remeshing)
- Point sets (Surface reconstruction)

see cgal.org, CGALmesh project

Results on smooth implicit surfaces

Meshing 3D domains

Input from segmented 3D medical images

[INSERM]

[SIEMENS]

Comparison with the Marching Cube algorithm

Delaunay refinement

Marching cube

Meshing with sharp features

A polyhedral example

Meshing 3D multi-domains

Input from segmented 3D medical images [IRCAD]

Size bound (mm)	vertices nb	facets nb	tetrahedra nb	CPU Time (s)
16	3,743	3,735	19,886	0.880
8	27,459	19,109	159,120	6.97
4	199,328	76,341	1,209,720	54.1
2	1,533,660	311,420	9,542,295	431

Surface reconstruction from unorganized point sets

Courtesy of P. Alliez