Voronoi Diagrams, Delaunay Triangulations and Polytopes

Jean-Daniel Boissonnat
Geometrica, INRIA
http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis January 26-30, 2015

Voronoi diagrams in nature

The solar system (Descartes)

Growth of merystem

Euclidean Voronoi diagrams

Voronoi cell

$$
V\left(p_{i}\right)=\left\{x:\left\|x-p_{i}\right\| \leq\left\|x-p_{j}\right\|, \forall j\right\}
$$

Voronoi diagram $(P) \quad=\left\{\right.$ collection of all cells $\left.V\left(p_{i}\right), p_{i} \in P\right\}$

Voronoi diagrams and polytopes

Polytope
The intersection of a finite collection of half-spaces : $\quad \mathcal{V}=\bigcap_{i \in I} h_{i}^{+}$

- Each Voronoi cell is a polytope
- The Voronoi diagram has the structure of a cell complex
- The Voronoi diagram of P is the projection of a polytope of \mathbb{R}^{d+1}

Voronoi diagrams and polytopes

Polytope
The intersection of a finite collection of half-spaces : $\quad \mathcal{V}=\bigcap_{i \in I} h_{i}^{+}$

- Each Voronoi cell is a polytope
- The Voronoi diagram has the structure of a cell complex
- The Voronoi diagram of P is the projection of a polytope of \mathbb{R}^{d+1}

Voronoi diagrams and polytopes

Polytope
The intersection of a finite collection of half-spaces :

$$
\mathcal{V}=\bigcap_{i \in I} h_{i}^{+}
$$

- Each Voronoi cell is a polytope
- The Voronoi diagram has the structure of a cell complex
- The Voronoi diagram of P is the projection of a polytope of \mathbb{R}^{d+1}

Voronoi diagrams and polytopes

Polytope
The intersection of a finite collection of half-spaces : $\quad \mathcal{V}=\bigcap_{i \in I} h_{i}^{+}$

- Each Voronoi cell is a polytope
- The Voronoi diagram has the structure of a cell complex
- The Voronoi diagram of P is the projection of a polytope of \mathbb{R}^{d+1}

Voronoi diagrams and polyhedra

- $\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$
- arg min $\left(\delta_{i}\right)=\arg \max \left(h_{i}\right)$
where $h_{p i}(x)=2 p_{i} \cdot x-p_{i}^{2}$
- The minimization diagram of the δ_{i} is also the maximization diagram of the affine
 functions $h_{p_{i}}(x)$
- The faces of $\operatorname{Vor}(P)$ are the projections of the faces of $\mathcal{V}(P)=\bigcap_{i} h_{p_{i}}^{+}$ $h_{p_{i}}^{+}=\left\{x: x_{d+1}>2 p_{i} \cdot x-p_{i}^{2}\right\}$

Note!
the graph of $h_{p_{i}}(x)$ is the hyperplane tangent

Voronoi diagrams and polyhedra

- $\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$
- $\arg \min \left(\delta_{i}\right)=\arg \max \left(h_{i}\right)$ where $h_{p_{i}}(x)=2 p_{i} \cdot x-p_{i}^{2}$
- The minimization diagram of the δ_{i} is also the maximization diagram of the affine
 functions $h_{p_{i}}(x)$
- The faces of $\operatorname{Vor}(P)$ are the projections of the faces of $\mathcal{V}(P)=\bigcap_{i} h_{p_{i}}^{+}$ $h_{p_{i}}^{+}=\left\{x: x_{d+1}>2 p_{i} \cdot x-p_{i}^{2}\right\}$

Note!
the graph of $h_{p_{i}}(x)$ is the hyperplane tangent

Voronoi diagrams and polyhedra

- $\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$
- $\arg \min \left(\delta_{i}\right)=\arg \max \left(h_{i}\right)$ where $h_{p_{i}}(x)=2 p_{i} \cdot x-p_{i}^{2}$
- The minimization diagram of the δ_{i} is also the maximization diagram of the affine functions $h_{p_{i}}(x)$
- The faces of $\operatorname{Vor}(P)$ are the projections of the faces of $\mathcal{V}(P)=\bigcap_{i} h_{p_{i}}^{+}$
 $h_{p_{i}}^{+}=\left\{x: x_{d+1}>2 p_{i} \cdot x-p_{i}^{2}\right\}$

Note!
the graph of $h_{p_{i}}(x)$ is the hyperplane tangent

Voronoi diagrams and polyhedra

- $\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$
- $\arg \min \left(\delta_{i}\right)=\arg \max \left(h_{i}\right)$ where $h_{p_{i}}(x)=2 p_{i} \cdot x-p_{i}^{2}$
- The minimization diagram of the δ_{i} is also the maximization diagram of the affine functions $h_{p_{i}}(x)$
- The faces of $\operatorname{Vor}(P)$ are the projections of the faces of $\mathcal{V}(P)=\bigcap_{i} h_{p_{i}}^{+}$

$$
h_{p_{i}}^{+}=\left\{x: x_{d+1}>2 p_{i} \cdot x-p_{i}^{2}\right\}
$$

Note!

$$
\begin{aligned}
& \text { the graph of } h_{p_{i}}(x) \text { is the hyperplane tangent } \\
& \qquad \text { to } \mathcal{Q}: \quad x_{d+1}=x^{2} \text { at }\left(x, x^{2}\right)
\end{aligned}
$$

Voronoi diagrams and polyhedra

- $\operatorname{Vor}\left(p_{1}, \ldots, p_{n}\right)$ is the minimization diagram of the n functions $\delta_{i}(x)=\left(x-p_{i}\right)^{2}$
- $\arg \min \left(\delta_{i}\right)=\arg \max \left(h_{i}\right)$ where $h_{p_{i}}(x)=2 p_{i} \cdot x-p_{i}^{2}$
- The minimization diagram of the δ_{i} is also the maximization diagram of the affine functions $h_{p_{i}}(x)$
- The faces of $\operatorname{Vor}(P)$ are the projections of the faces of $\mathcal{V}(P)=\bigcap_{i} h_{p_{i}}^{+}$

$$
h_{p_{i}}^{+}=\left\{x: x_{d+1}>2 p_{i} \cdot x-p_{i}^{2}\right\}
$$

Note!

the graph of $h_{p_{i}}(x)$ is the hyperplane tangent

$$
\text { to } \mathcal{Q}: x_{d+1}=x^{2} \quad \text { at }\left(x, x^{2}\right)
$$

Voronoi diagrams and polytopes

Lifting map
The faces of $\operatorname{Vor}(P)$ are the projection of the faces of the polytope

$$
\mathcal{V}(P)=\bigcap_{i} h_{p_{i}}^{+}
$$

where $h_{p_{i}}$ is the hyperplane tangent to paraboloid \mathcal{Q} at the lifted point (p_{i}, p_{i}^{2})

Corollaries

- The size of $\operatorname{Vor}(\mathcal{P})$ is the same as the size of $\mathcal{V}(P)$
- Computing $\operatorname{Vor}(\mathcal{P})$ reduces to computing $\mathcal{V}(P)$

Voronoi diagrams and polytopes

Lifting map
The faces of $\operatorname{Vor}(P)$ are the projection of the faces of the polytope

$$
\mathcal{V}(P)=\bigcap_{i} h_{p_{i}}^{+}
$$

where $h_{p_{i}}$ is the hyperplane tangent to paraboloid \mathcal{Q} at the lifted point (p_{i}, p_{i}^{2})

Corollaries

- The size of $\operatorname{Vor}(\mathcal{P})$ is the same as the size of $\mathcal{V}(P)$
- Computing $\operatorname{Vor}(\mathcal{P})$ reduces to computing $\mathcal{V}(P)$

Polytopes (convex polyhedra)

Two ways of defining polytopes

- Convex hull of a finite set of points : $\mathcal{V}=\operatorname{conv}(P)$
- Intersection of a finite set of half-spaces: $\mathcal{H}=\cap_{h \in H} h_{i}^{+}$

Facial structure of a polytope

Supporting hyperplane h :
$H \cap \mathcal{P} \neq \emptyset$
\mathcal{P} on one side of h

Faces: $\mathcal{P} \cap h, h$ supp. hyp.
Dimension of a face : the dim. of its affine hull

General position

Points in general position

- P is in general position iff no subset of $k+2$ points lie in a k-flat
\Rightarrow If P is in general position, all faces of $\operatorname{conv}(P)$ are simplices

Hyperplanes in general position

General position

Points in general position

- P is in general position iff no subset of $k+2$ points lie in a k-flat
\Rightarrow If P is in general position, all faces of $\operatorname{conv}(P)$ are simplices

Hyperplanes in general position

- H is in general position iff the intersection of any subset of $d-k$ hyperplanes intersect in a k-flat
\Rightarrow any k-face is the intersection of $d-k$ hyperplanes

Duality between points and hyperplanes

$$
\begin{array}{lll}
\text { hyperplane of } \mathbb{R}^{d} \quad h: x_{d}=a \cdot x^{\prime}-b & \longrightarrow & \text { point } h^{*}=(a, b) \in \mathbb{R}^{d} \\
\text { point } p=\left(p^{\prime}, p_{d}\right) \in \mathbb{R}^{d} & \longrightarrow & \text { hyperplane } p^{*} \subset \mathbb{R}^{d} \\
& =\left\{(a, b) \in \mathbb{R}^{d}: b=p^{\prime} \cdot a-p_{d}\right\}
\end{array}
$$

Duality

- preserves incidences:

Duality between points and hyperplanes

$$
\begin{array}{lll}
\text { hyperplane of } \mathbb{R}^{d} \quad h: x_{d}=a \cdot x^{\prime}-b & \longrightarrow & \text { point } h^{*}=(a, b) \in \mathbb{R}^{d} \\
\text { point } p=\left(p^{\prime}, p_{d}\right) \in \mathbb{R}^{d} & \longrightarrow & \text { hyperplane } p^{*} \subset \mathbb{R}^{d} \\
& =\left\{(a, b) \in \mathbb{R}^{d}: b=p^{\prime} \cdot a-p_{d}\right\}
\end{array}
$$

Duality

- preserves incidences:

$$
\begin{aligned}
p \in h & \Longleftrightarrow p_{d}=a \cdot p^{\prime}-b \Longleftrightarrow b=p^{\prime} \cdot a-p_{d} \Longleftrightarrow h^{*} \in p^{*} \\
p \in h^{+} & \Longleftrightarrow p_{d}>a \cdot p^{\prime}-b \Longleftrightarrow b>p^{\prime} \cdot a-p_{d} \Longleftrightarrow h^{*} \in p^{*+}
\end{aligned}
$$

- is an involution and thus is bijective : $h^{* *}=h$ and $p^{* *}=p$

Duality between polytopes

Let h_{1}, \ldots, h_{n} be n hyperplanes of \mathbb{R}^{d} and let $\mathcal{H}=\cap h_{i}^{+}$

A vertex s of \mathcal{H} is $\overline{\text { the }}$ intersection of $k \geq d$ hyperplanes h_{1}, \ldots, h_{k} lying above all the other hyperplanes
$\Longrightarrow s^{*}$ is a hyperplane that 1 . contains $h_{1}^{*}, \ldots, h_{k}^{*}$
2. supports $\mathcal{H}^{*}=\operatorname{conv}^{-}\left(h_{1}^{*}, \ldots, h_{k}^{*}\right)$

General position
s is the intersection of d hyperplanes $\Rightarrow s^{*}$ supports a $(d-1)$-simplex de \mathcal{H}^{*}

More generally and under the general position assumption,
Let f be a $(d-k)$-face of $\mathcal{H} \quad$ and $\quad \operatorname{aff}(f)=\cap_{i=1}^{k} h_{i}$

$$
\begin{aligned}
p \in f \Leftrightarrow & h_{i}^{*} \in p^{*} \text { for } i=1, \ldots, k \\
& h_{i}^{*} \in p^{*+} \text { for } i=k+1, \ldots, n \\
\Leftrightarrow & p^{*} \text { support. hyp. of } \mathcal{H}^{*}=\operatorname{conv}\left(h_{1}^{*}, \ldots, h_{n}^{*}\right) \\
& p^{*} \ni h_{1}^{*}, \ldots, h_{k}^{*} \\
\Leftrightarrow & f^{*}=\operatorname{conv}\left(h_{1}^{*}, \ldots, h_{k}^{*}\right) \text { is a }(k-1)-\text { face of } \mathcal{H}^{*}
\end{aligned}
$$

Duality between \mathcal{H} and \mathcal{H}^{*}
 - The corresnondence hetween the faces of \mathcal{H} and \mathcal{H}^{*} is involutive and therefore bijective

More generally and under the general position assumption,
Let f be a $(d-k)$-face of $\mathcal{H} \quad$ and $\quad \operatorname{aff}(f)=\cap_{i=1}^{k} h_{i}$

$$
\begin{aligned}
p \in f \Leftrightarrow & h_{i}^{*} \in p^{*} \text { for } i=1, \ldots, k \\
& h_{i}^{*} \in p^{*+} \text { for } i=k+1, \ldots, n \\
\Leftrightarrow & p^{*} \text { support. hyp. of } \mathcal{H}^{*}=\operatorname{conv}\left(h_{1}^{*}, \ldots, h_{n}^{*}\right) \\
& p^{*} \ni h_{1}^{*}, \ldots, h_{k}^{*} \\
\Leftrightarrow & f^{*}=\operatorname{conv}\left(h_{1}^{*}, \ldots, h_{k}^{*}\right) \text { is a }(k-1)-\text { face of } \mathcal{H}^{*}
\end{aligned}
$$

Duality between \mathcal{H} and \mathcal{H}^{*}

- The correspondence between the faces of \mathcal{H} and \mathcal{H}^{*} is involutive and therefore bijective
- It reverses inclusions : $\forall f, g \in \mathcal{H}, f \subset g \Rightarrow g^{*} \subset f^{*}$

Algorithmic consequences

- Depending on the application, the primal or the dual setting may be more appropriate
- We will bound the combinatorial complexity of the intersection of n upper half-spaces
- We will compute the convex hull of n points
- By duality, the results extend to the dual case

Euler formula for 3-polytopes

The numbers of vertices s, edges a and facets f of a polytope of \mathbb{R}^{3} satisfy

$$
s-a+f=2
$$

Schlegel diagram

Euler formula for 3-polytopes : $s-a+f=2$

Incidences edges-facets

$$
2 a \geq 3 f \quad \Longrightarrow \quad \begin{aligned}
& a \leq 3 s-6 \\
& f \leq 2 s-4
\end{aligned}
$$

with equality when all facets are triangles

Beyond the 3rd dimension

Upper bound theorem
[McMullen 1970]
If \mathcal{H} is the intersection of n half-spaces of \mathbb{R}^{d}

$$
\text { nb faces of } \mathcal{H}=\Theta\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

Hyperplanes in general position

- any k-face is the intersection of $d-k$ hyperplanes defining \mathcal{H}
- all vertices of \mathcal{H} are incident to d edges and have distinct x_{d}
* the convex hull of $k<d$ edges incident to a vertex p is a k-face of \mathcal{H}

Beyond the 3rd dimension

Upper bound theorem
[McMullen 1970]
If \mathcal{H} is the intersection of n half-spaces of \mathbb{R}^{d}

$$
\text { nb faces of } \mathcal{H}=\Theta\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

Hyperplanes in general position

- any k-face is the intersection of $d-k$ hyperplanes defining \mathcal{H}
- all vertices of \mathcal{H} are incident to d edges and have distinct x_{d}
- the convex hull of $k<d$ edges incident to a vertex p is a k-face of \mathcal{H}

Proof of the upper bound theorem

Bounding the number of vertices
(1) $\geq\left\lceil\frac{d}{2}\right\rceil$ edges incident to a vertex p are in $h_{p}^{+}: x_{d} \geq x_{d}(p)$ or in h_{p}^{-} $\Rightarrow p$ is a x_{d}-max or x_{d}-min vertex of at least one $\left\lceil\frac{d}{2}\right\rceil$-face of \mathcal{H}
\Rightarrow \# vertices of $\mathcal{H} \leq 2 \times \#\left\lceil\frac{d}{2}\right\rceil$-faces of \mathcal{H}
(2) A k-face is the intersection of $d-k$ hyperplanes defining \mathcal{H}

$\Rightarrow \quad \#\left\lceil\frac{d}{2}\right\rceil$-faces $=O\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)$

Bounding the total number of faces
The number of faces incident to p depends on d but not on n

Proof of the upper bound theorem

Bounding the number of vertices

(1) $\geq\left\lceil\frac{d}{2}\right\rceil$ edges incident to a vertex p are in $h_{p}^{+}: x_{d} \geq x_{d}(p)$ or in h_{p}^{-} $\Rightarrow p$ is a x_{d}-max or x_{d}-min vertex of at least one $\left\lceil\frac{d}{2}\right\rceil$-face of \mathcal{H}
$\Rightarrow \#$ vertices of $\mathcal{H} \leq 2 \times \#\left\lceil\frac{d}{2}\right\rceil$-faces of \mathcal{H}
(2) A k-face is the intersection of $d-k$ hyperplanes defining \mathcal{H}

$$
\begin{aligned}
& \Rightarrow \# k \text {-faces }=\binom{n}{d-k}=O\left(n^{d-k}\right) \\
& \Rightarrow \#\left\lceil\left[\frac{d}{2}\right\rceil \text {-faces }=O\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)\right.
\end{aligned}
$$

Bounding the total number of faces
The number of faces incident to p depends on d but not on n

Proof of the upper bound theorem

Bounding the number of vertices

(1) $\geq\left\lceil\frac{d}{2}\right\rceil$ edges incident to a vertex p are in $h_{p}^{+}: x_{d} \geq x_{d}(p)$ or in h_{p}^{-} $\Rightarrow p$ is a x_{d}-max or x_{d}-min vertex of at least one $\left\lceil\frac{d}{2}\right\rceil$-face of \mathcal{H}
\Rightarrow \# vertices of $\mathcal{H} \leq 2 \times \#\left\lceil\frac{d}{2}\right\rceil$-faces of \mathcal{H}
(2) A k-face is the intersection of $d-k$ hyperplanes defining \mathcal{H}

$$
\begin{aligned}
& \Rightarrow \# k \text {-faces }=\binom{n}{d-k}=O\left(n^{d-k}\right) \\
& \Rightarrow \#\left\lceil\frac{d}{2}\right\rceil \text {-faces }=O\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
\end{aligned}
$$

Bounding the total number of faces The number of faces incident to p depends on d but not on n

Representation of a convex hull

Adjacency graph (AG) of the facets
In general position, all the facets are $(d-1)$-simplexes

Adjacency graph (V, E)

- $V=$ set of $(d-1)$-faces (facets)
- $\left(f, f^{\prime}\right) \in E \quad$ iff $\quad f \cap f^{\prime}$ share a $(d-2)$-face

Incremental algorithm

\mathcal{P}_{i} : set of the i points that have been inserted first
$\operatorname{conv}\left(\mathcal{P}_{i}\right)$: convex hull at step i

$f=\left[p_{1}, \ldots, p_{d}\right]$ is a red facet iff its supporting hyperplane separates p_{i} from $\operatorname{conv}\left(\mathcal{P}_{i}\right)$
$\Longleftrightarrow \operatorname{orient}\left(p_{1}, \ldots, p_{d}, p_{i}\right) \times \operatorname{orient}\left(p_{1}, \ldots, p_{d}, O\right)<0$
$\operatorname{orient}\left(p_{0}, p_{1}, \ldots, p_{d}\right)=\left|\begin{array}{cccc}1 & 1 & \ldots & 1 \\ p_{0} & p_{1} & \ldots & p_{d}\end{array}\right|=\left|\begin{array}{cccc}1 & 1 & \ldots & 1 \\ x_{01} & x_{11} & \ldots & x_{d 1} \\ \vdots & \vdots & \ldots & \vdots \\ x_{0 d} & x_{1 d} & \ldots & x_{d d}\end{array}\right|$

Update of $\operatorname{conv}\left(\mathcal{P}_{i}\right)$

red facet = facet whose supporting hyperplane separates o and p_{i+1}
horizon : ($d-2$)-faces shared by a blue and a red facet
Update $\operatorname{conv}\left(\mathcal{P}_{i}\right)$:
(1) find the red facets
(2) remove them and create the new facets

$$
\left[p_{i+1}, g\right], \forall g \in \text { horizon }
$$

Complexity
proportional to the number of red facets

Update of $\operatorname{conv}\left(\mathcal{P}_{i}\right)$

red facet = facet whose supporting hyperplane separates
o and p_{i+1}
horizon : ($d-2$)-faces shared by a blue and a red facet
Update $\operatorname{conv}\left(\mathcal{P}_{i}\right)$:
(1) find the red facets
(2) remove them and create the new facets

$$
\left[p_{i+1}, g\right], \forall g \in \text { horizon }
$$

Complexity
proportional to the number of red facets

Complexity analysis

- update proportional to the number of red facets
- \# new facets $=|\operatorname{conv}(i, d-1)|$

$$
=O\left(i^{\left\lfloor\frac{d-1}{2}\right\rfloor}\right)
$$

- fast locate : insert the points in lexicographic order and search
 a 1st red facet in $\operatorname{star}\left(p_{i-1}\right)$ (which necessarily exists)

Complexity analysis

- update proportional to the number of red facets
- \# new facets $=|\operatorname{conv}(i, d-1)|$

$$
=O\left(i^{\left\lfloor\frac{d-1}{2}\right\rfloor}\right)
$$

- fast locate : insert the points in lexicographic order and search
 a 1st red facet in $\operatorname{star}\left(p_{i-1}\right)$ (which necessarily exists)

$$
\begin{aligned}
T(n, d) & \left.=O(n \log n)+\sum_{i=1}^{n} i^{\left.i \frac{d-1}{2}\right\rfloor}\right) \\
& =O\left(n \log n+n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)
\end{aligned}
$$

Worst-case optimal in even dimensions

Lower bound

x_{i}

$$
\operatorname{conv}\left(\left\{p_{i}\right\}\right) \Longrightarrow \operatorname{tri}\left(\left\{x_{i}\right\}\right)
$$

the orientation test reduces to 3 comparisons

$$
\begin{aligned}
\operatorname{orient}\left(p_{i}, p_{j}, p_{k}\right) & =\left|\begin{array}{cc}
x_{i}-x_{j} & x_{i}-x_{k} \\
x_{i}^{2}-x_{j}^{2} & x_{i}^{2}-x_{k}^{2}
\end{array}\right| \\
& =\left(x_{i}-x_{j}\right)\left(x_{j}-x_{k}\right)\left(x_{k}-x_{i}\right)
\end{aligned}
$$

Lower bound for the incremental algorithm

No incremental algorithm can compute the convex hull of n points of \mathbb{R}^{3} in less than $\Omega\left(n^{2}\right)$

Randomized incremental algorithm

$o:$ a point inside $\operatorname{conv}(\mathcal{P})$
\mathcal{P}_{i} : the set of the first i inserted points $\operatorname{conv}\left(\mathcal{P}_{i}\right)$: convex hull at step i

Conflict graph
bipartite araph $\left\{p_{i}\right\} \times\left\{\right.$ facets of $\left.\operatorname{conv}\left(\mathcal{P}_{i}\right)\right\}$ $p_{j} \dagger f \Longleftrightarrow j>i \quad\left(p_{j}\right.$ not yet inserted)

Randomized incremental algorithm

$o:$ a point inside $\operatorname{conv}(\mathcal{P})$
\mathcal{P}_{i} : the set of the first i inserted points
$\operatorname{conv}\left(\mathcal{P}_{i}\right)$: convex hull at step i

Conflict graph bipartite graph $\left\{p_{j}\right\} \times\left\{\right.$ facets of $\left.\operatorname{conv}\left(\mathcal{P}_{i}\right)\right\}$

$$
p_{j} \dagger f \Longleftrightarrow j>i \quad\left(p_{j} \text { not yet inserted) } \wedge f \cap o p_{j} \neq \emptyset\right.
$$

Randomized analysis

Hyp. : points are inserted in random order
Conflict : \dagger
Notations R : random sample of size r of \mathcal{P}
$F(R)=\{$ subsets of d points of $R\}$
$F_{0}(R)=\{$ elements of $F(R)$ with 0 conflict in $R\}$
(i.e. $\in \operatorname{conv}(R))$
$F_{1}(R)=\{$ elements of $F(R)$ with 1 conflict in $R\}$
$C_{i}(r, \mathcal{P})=E\left(\left|F_{i}(R)\right|\right)$
(expectation over all random samples $R \subset \mathcal{P}$ of size r)
$C_{i}(r, \mathcal{P})=O\left(r^{\left\lfloor\frac{d}{2}\right\rfloor}\right), \quad i=1,2$

Randomized analysis

Hyp. : points are inserted in random order
Conflict : \dagger
Notations R : random sample of size r of \mathcal{P}
$F(R)=\{$ subsets of d points of $R\}$
$F_{0}(R)=\{$ elements of $F(R)$ with 0 conflict in $R\}$
(i.e. $\in \operatorname{conv}(R)$)
$F_{1}(R)=\{$ elements of $F(R)$ with 1 conflict in $R\}$

$$
C_{i}(r, \mathcal{P})=E\left(\left|F_{i}(R)\right|\right)
$$

(expectation over all random samples $R \subset \mathcal{P}$ of size r)

Randomized analysis

Hyp. : points are inserted in random order
Conflict : \dagger
Notations R : random sample of size r of \mathcal{P}
$F(R)=\{$ subsets of d points of $R\}$
$F_{0}(R)=\{$ elements of $F(R)$ with 0 conflict in $R\}$
(i.e. $\in \operatorname{conv}(R)$)
$F_{1}(R)=\{$ elements of $F(R)$ with 1 conflict in $R\}$

$$
C_{i}(r, \mathcal{P})=E\left(\left|F_{i}(R)\right|\right)
$$

(expectation over all random samples $R \subset \mathcal{P}$ of size r)

Lemma

$$
C_{i}(r, \mathcal{P})=O\left(r^{\left\lfloor\frac{d}{2}\right\rfloor}\right), \quad i=1,2
$$

Proof of the lemma : $C_{1}(r, \mathcal{P})=C_{0}(r, \mathcal{P})=O\left(r^{\left\lfloor\frac{d}{2}\right\rfloor}\right)$

$R^{\prime}=R \backslash\{p\}$
$f \in F_{0}\left(R^{\prime}\right)$ if $\quad f \in F_{1}(R)$ and $p \dagger f$ or $f \in F_{0}(R)$ and $R^{\prime} \ni$ the d vertices of f
$\left(\right.$ proba $\left.=\frac{1}{r}\right)$
$\left(\right.$ proba $\left.=\frac{r-d}{r}\right)$

Taking the expectation,

$$
\begin{aligned}
C_{0}(r-1, R) & =\frac{1}{r}\left|F_{1}(R)\right|+\frac{r-d}{r}\left|F_{0}(R)\right| \\
C_{0}(r-1, \mathcal{P}) & =\frac{1}{r} C_{1}(r, \mathcal{P})+\frac{r-d}{r} C_{0}(r, \mathcal{P}) \\
C_{1}(r, \mathcal{P}) & =d C_{0}(r, \mathcal{P})-r\left(C_{0}(r, \mathcal{P})-C_{0}(r-1, \mathcal{P})\right) \\
& \leq d C_{0}(r, \mathcal{P}) \\
& =O\left(r^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
\end{aligned}
$$

Randomized analysis 1

Updating the convex hull + memory space

Expected number $N(i)$ of facets created at step i

$$
\begin{aligned}
N(i) & =\sum_{f \in F(\mathcal{P})} \operatorname{proba}\left(f \in F_{0}\left(\mathcal{P}_{i}\right)\right) \times \frac{d}{i} \\
& =\frac{d}{i} O\left(i^{\left\lfloor\frac{d}{2}\right\rfloor}\right) \\
& =O\left(n^{\left\lfloor\frac{d}{2}\right\rfloor-1}\right)
\end{aligned}
$$

Expected total number of created facets $=O\left(n\left\lfloor\frac{d}{2}\right\rfloor\right)$

Randomized analysis 1

Updating the convex hull + memory space

Expected number $N(i)$ of facets created at step i

$$
\begin{aligned}
N(i) & =\sum_{f \in F(\mathcal{P})} \operatorname{proba}\left(f \in F_{0}\left(\mathcal{P}_{i}\right)\right) \times \frac{d}{i} \\
& =\frac{d}{i} O\left(i^{\left\lfloor\frac{d}{2}\right\rfloor}\right) \\
& =O\left(n^{\left\lfloor\frac{d}{2}\right\rfloor-1}\right)
\end{aligned}
$$

Expected total number of created facets $=O\left(n\left\lfloor\frac{d}{2}\right\rfloor\right)$

$$
O(n) \text { if } d=2,3
$$

Randomized analysis2

Updating the conflict graph

Cost proportional to the number of faces of $\operatorname{conv}\left(\mathcal{P}_{i}\right)$ in conflict with p_{i+1} and some $p_{j}, j>i$
$N(i, j)=\operatorname{expected}$ number of faces of $\operatorname{conv}\left(\mathcal{P}_{i}\right)$ in conflict with p_{i+1} and $p_{j}, j>i$
$\mathcal{P}_{i}^{+}=\mathcal{P}_{i} \cup\left\{p_{i+1}\right\} \cup\left\{p_{j}\right\}:$ a random subset of $i+2$ points of \mathcal{P}
$N(i, j)=\sum_{f \in F(\mathcal{P})} \operatorname{proba}\left(f \in F_{2}\left(\mathcal{P}_{i}^{+}\right)\right) \times\binom{ i+2}{2}^{-1}=C_{2}(i+1) \frac{2}{(i+1)(i+2)}=O\left(i^{\left\lfloor\frac{d}{2}\right\rfloor-2}\right)$

Expected total cost of updating the conflict graph

$$
\sum_{i=1}^{n} \sum_{j=i+1}^{n} N(i, j)=\sum_{i=1}^{n}(n-i) O\left(i^{\left\lfloor\frac{d}{2}\right\rfloor-2}\right)=O\left(n \log n+n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)
$$

Theorem

- The convex hull of n points of \mathbb{R}^{d} can be computed in time $O\left(n \log n+n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)$ using $O\left(n^{\left\lfloor\frac{d}{2}\right\rfloor}\right)$ space
- The same bounds hold for computing the intersection of n half-spaces of \mathbb{R}^{d}
- The randomized algorithm can be derandomized
[Chazelle 1992]
- The same results hold for Voronoi diagrams provided that $d \rightarrow d+1$

Voronoi diagram and Delaunay triangulation

Finite set of points $P \in \mathbb{R}^{d}$

- The Delaunay complex is the nerve of the Voronoi diagram
- It is not always embedded in \mathbb{R}^{d}

Empty circumballs

An (open) d-ball B circumscribing a simplex $\sigma \subset \mathcal{P}$ is called empty if
(1) $\operatorname{vert}(\sigma) \subset \partial B$
(2) $B \cap \mathcal{P}=\emptyset$
$\operatorname{Del}(\mathcal{P})$ is the collection of simplices admitting an empty circumball

Point sets in general position wrt spheres

$P=\left\{p_{1}, p_{2} \ldots p_{n}\right\}$ is said to be in general position wrt spheres if $\nexists d+2$ points of P lying on a same $(d-1)$-sphere

Theorem [Delaunay 1936]
If P is in general position wrt spheres, the simplicial map

Point sets in general position wrt spheres

$P=\left\{p_{1}, p_{2} \ldots p_{n}\right\}$ is said to be in general position wrt spheres if $\nexists d+2$ points of P lying on a same $(d-1)$-sphere

Theorem [Delaunay 1936]
If P is in general position wrt spheres, the simplicial map

$$
f: \operatorname{vert}(\operatorname{Del} P) \rightarrow P
$$

provides a realization of $\operatorname{Del}(P)$ called the Delaunay triangulation of P.

Proof of Delaunay's theorem 1

Linearization

$$
S(x)=x^{2}-2 c \cdot x+s, \quad s=c^{2}-r^{2}
$$

$$
S(x)<0 \Leftrightarrow\left\{\begin{array}{l}
z<2 c \cdot x-s \\
z=x^{2}
\end{array}\right.
$$

$$
\Leftrightarrow \hat{x}=\left(x, x^{2}\right) \in h_{S}^{-}
$$

Proof of Delaunay's theorem 2

Proof of Delaunay's th.
P general position wrt spheres $\Leftrightarrow \hat{P}$ in general position
σ a simplex, S_{σ} its circumscribing sphere

$$
\begin{aligned}
\sigma \in \operatorname{Del}(P) & \Leftrightarrow S_{\sigma} \text { empty } \\
& \Leftrightarrow \forall i, \hat{p}_{i} \in h_{S_{\sigma}}^{+} \\
& \Leftrightarrow \hat{\sigma} \text { is a face of } \operatorname{conv}^{-}(\hat{P})
\end{aligned}
$$

Proof of Delaunay's theorem 2

$$
\operatorname{Del}(P)=\operatorname{proj}\left(\operatorname{conv}^{-}(\hat{P})\right)
$$

Duality

$\mathcal{V}(P)=\cap_{i} h_{p_{i}}^{+}$

$$
\mathcal{D}(P)=\operatorname{conv}^{-}(\hat{P})
$$

Voronoi diagrams, Delaunay triangulations and polytopes

If P is in general position wrt spheres :

$$
\begin{array}{cc}
\mathcal{V}(P)= & h_{p_{1}}^{+} \cap \ldots \cap h_{p_{n}}^{+} \quad \xrightarrow{\text { duality }} \quad \mathcal{D}(P)=\operatorname{conv}^{-}\left(\left\{\hat{p}_{1}, \ldots, \hat{p}_{n}\right\}\right) \\
& \uparrow
\end{array}
$$

Voronoi Diagram of $P \quad \xrightarrow{\text { nerve }} \quad$ Delaunay Complex of P

Combinatorial complexity

The combinatorial complexity of the Delaunay triangulation diagram of n points of \mathbb{R}^{d} is the same as the combinatorial complexity of a convex hull of n points of \mathbb{R}^{d+1}

Quadratic in \mathbb{R}^{3}

Constructing $\quad \operatorname{Del}(P), \quad P=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$

Algorithm

1 Lift the points of P onto the paraboloid $x_{d+1}=x^{2}$ of \mathbb{R}^{d+1} : $p_{i} \rightarrow \hat{p}_{i}=\left(p_{i}, p_{i}^{2}\right)$

2 Compute $\operatorname{conv}\left(\left\{\hat{p}_{i}\right\}\right)$
3 Project the lower hull conv ${ }^{-}\left(\left\{\hat{p}_{i}\right\}\right)$ onto \mathbb{R}^{d}

Complexity : $\Theta\left(n \log n+n^{\left\lfloor\frac{d+1}{2}\right\rfloor}\right)$

Direct algorithm : insertion of a new point p_{i}

1. Location: find all the d-simplices that conflict with p_{i} i.e. whose circumscribing ball contains p_{i}
2. Update : construct the new d-simplices

Updating the adjacency graph

We look at the d-simplices to be removed and at their neighbors

Each d-simplex is considered $\leq \frac{d(d+1)}{2}$ times

Update cost $=O$ (\# created and deleted simplices $)$
$=O(\#$ created simplices $)$

Exercise : computing the DT of an ε-net

Definition Let Ω be a bounded subset of \mathbb{R}^{d} and P a finite point set in Ω. P is called an (ε, η)-net of Ω if
(1) Covering: $\forall p \in \Omega, \exists p \in P,\|p-x\| \leq \varepsilon$
(2) Packing: $\forall p, q \in P,\|p-q\| \geq \eta$

Questions
(a) Show that $(\varepsilon, \varepsilon)$-nets exist
(2) Show that any simplex with all its vertices at distance $>\varepsilon$ from $\partial \Omega$ has a circumradius $\leq \varepsilon$

3 Show that the complexity of $\operatorname{Del}(P)$ is $O(n)$ for fixed d
(4) Improve the construction of $\operatorname{Del}(P)$

Exercise : computing the DT of an ε-net

Definition Let Ω be a bounded subset of \mathbb{R}^{d} and P a finite point set in Ω. P is called an (ε, η)-net of Ω if
(1) Covering: $\forall p \in \Omega, \exists p \in P,\|p-x\| \leq \varepsilon$
(2) Packing: $\forall p, q \in P,\|p-q\| \geq \eta$

Questions

(1) Show that $(\varepsilon, \varepsilon)$-nets exist
(2) Show that any simplex with all its vertices at distance $>\varepsilon$ from $\partial \Omega$ has a circumradius $\leq \varepsilon$
(3) Show that the complexity of $\operatorname{Del}(P)$ is $O(n)$ for fixed d
(4) Improve the construction of $\operatorname{Del}(P)$

