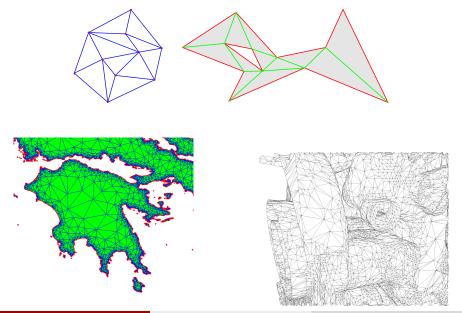
Simplicial Complexes

Jean-Daniel Boissonnat Geometrica, INRIA

http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis January 26-30, 2015

Examples of simplicial complexes



Geometric simplices

A k-simplex σ is the convex hull of k+1 points of \mathbb{R}^d that are affinely independent

$$\sigma = \text{conv}(p_0, ..., p_k) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \ \lambda_i \ p_i, \quad \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

 $k = \dim(\operatorname{aff}(\sigma))$ is called the dimension of σ

1-simplex = line segment

2-simplex = triangle

3-simplex = tetrahedron

Faces of a simplex

 $V(\sigma)=$ set of vertices of a k-simplex σ

 $\forall V' \subseteq V(\sigma)$, $\operatorname{conv}(V')$ is a face of σ

a k-simplex has $\binom{k+1}{i+1}$ faces of dimension i

total nb of faces
$$=\sum_{i=0}^d \left(\begin{array}{c} k+1\\ i+1 \end{array}\right) = 2^{k+1}-1$$

Geometric simplicial complexes

A finite collection of simplices K called the faces of K such that

- $\forall \sigma \in K$, σ is a simplex
- \bullet $\sigma \in K$, $\tau \subset \sigma \Rightarrow \tau \in K$
- $\forall \sigma, \tau \in K$, either $\sigma \cap \tau = \emptyset$ or $\sigma \cap \tau$ is a common face of both



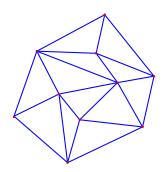
Geometric simplicial complexes

The dimension of a simplicial complex K is the max dimension of its simplices

A subset of K which is a complex is called a subcomplex of K

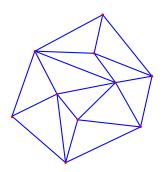
The underlying space $|K| \subset \mathbb{R}^d$ of K is the union of the simplices of K

Example 1 : Triangulation of a finite point set of \mathbb{R}^d



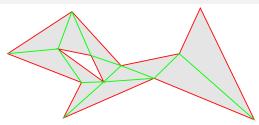
- A simplicial d-complex K is pure if every simplex in K is the face of a d-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^d$ is a pure geometric simplicial complex K s.t. $\operatorname{vert}(K) = P$ and $|K| = \operatorname{conv}(P)$.

Example 1 : Triangulation of a finite point set of \mathbb{R}^d



- A simplicial d-complex K is pure if every simplex in K is the face of a d-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^d$ is a pure geometric simplicial complex K s.t. $\operatorname{vert}(K) = P$ and $|K| = \operatorname{conv}(P)$.

Example 2 : triangulation of a polygonal domain of \mathbb{R}^2

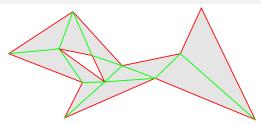


A triangulation of a polygonal domain $\Omega \subset \mathbb{R}^2$ is a pure geometric simplicial complex K s.t. $\operatorname{vert}(K) = \operatorname{vert}(\Omega)$ and $|K| = \Omega$.

Exercises

- \blacktriangleright Show that such a triangulation exists for any Ω
- Propose an algorithm of complexity O(n log n) to compute it where n = #vert(Ω)
- Show that some polyhedral domains of R³ do not admit a triangulation

Example 2 : triangulation of a polygonal domain of \mathbb{R}^2

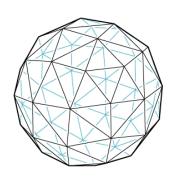


A triangulation of a polygonal domain $\Omega \subset \mathbb{R}^2$ is a pure geometric simplicial complex K s.t. $\operatorname{vert}(K) = \operatorname{vert}(\Omega)$ and $|K| = \Omega$.

Exercises

- Show that such a triangulation exists for any Ω
- ▶ Propose an algorithm of complexity $O(n \log n)$ to compute it where $n = \sharp \text{vert}(\Omega)$
- Show that some polyhedral domains of \mathbb{R}^3 do not admit a triangulation

Example 3: the boundary complex of the convex hull of a finite set of points in general position



Polytope

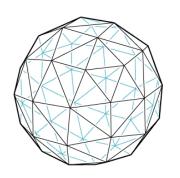
conv(P) =
$$\{x \in \mathbb{R}^d, x = \sum_{i=0}^k \lambda_i p_i, \lambda_i \in [0, 1], \sum_{i=0}^k \lambda_i = 1\}$$

Supporting hyperplane H: $H \cap P \neq \emptyset$, P on one side of H

Faces : $conv(P) \cap H$, H supp. hyp.

- P is in general position iff no subset of k + 2 points lie in a k-flat
- If P is in general position, all faces of conv(P) are simplices

Example 3: the boundary complex of the convex hull of a finite set of points in general position



Polytope

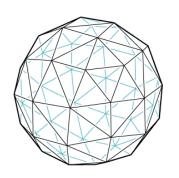
$$\operatorname{conv}(P) = \{ x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \lambda_i \ p_i, \\ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1 \}$$

Supporting hyperplane H: $H \cap P \neq \emptyset$, P on one side of H

Faces : $conv(P) \cap H$, H supp. hyp.

- P is in general position iff no subset of k + 2 points lie in a k-flat
- If P is in general position, all faces of conv(P) are simplices

Example 3: the boundary complex of the convex hull of a finite set of points in general position



Polytope

$$conv(P) = \{x \in \mathbb{R}^d, \ x = \sum_{i=0}^k \lambda_i \ p_i, \\ \lambda_i \in [0, 1], \ \sum_{i=0}^k \lambda_i = 1\}$$

Supporting hyperplane H: $H \cap P \neq \emptyset$, P on one side of H

Faces : $conv(P) \cap H$, H supp. hyp.

- P is in general position iff no subset of k + 2 points lie in a k-flat
- If P is in general position, all faces of conv(P) are simplices

Abstract simplicial complexes

Given a finite set of elements P, an abstract simplicial complex K with vertex set P is a set of subsets of P s.t.

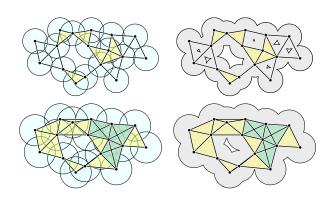
- 2 if $\sigma \in K$ and $\tau \subseteq \sigma$, then $\tau \in K$

The elements of *K* are called the (abstract) simplices or faces of *K*

The dimension of a simplex σ is $\dim(\sigma) = \sharp \operatorname{vert}(\sigma) - 1$

Nerve of a finite cover $\mathcal{U} = \{U_1, ..., U_n\}$ of X

An example of an abstract simplicial complex



The nerve of \mathcal{U} is the simplicial complex K(U) defined by

$$\sigma = [U_{i_0}, ..., U_{i_k}] \in K(U) \quad \Leftrightarrow \quad \cap_{i=1}^k U_{i_i} \neq \emptyset$$

Realization of an abstract simplicial complex

• A realization of an abstract simplicial complex K is a geometric simplicial complex K_g whose corresponding abstract simplicial complex is isomorphic to K, i.e.

$$\exists$$
 bijective $f : \text{vert}(K) \rightarrow \text{vert}(K_g)$ s.t. $\sigma \in K \Rightarrow f(\sigma) \in K_g$

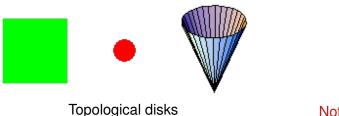
ullet Any abstract simplicial complex K can be realized in \mathbb{R}^n

Hint:
$$v_i \to p_i = (0, ..., 0, 1, 0, ...0) \in \mathbb{R}^n$$
 $(n = \sharp \operatorname{vert}(K))$ $\sigma = \operatorname{conv}(p_1, ..., p_n)$ (canonical simplex) $K_g \subseteq \sigma$

 Realizations are not unique but are all topologically equivalent (homeomorphic)

Topological equivalence

Two subsets X and Y of \mathbb{R}^d are said to be topologically equivalent or homeomorphic if there exists a continuous, bijective map $f:X\to Y$ with continuous inverse f^{-1}

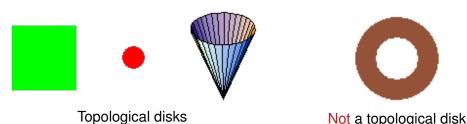


Not a topological disk

No need for the condition f^{-1} to be continuous if X is compact and Y is Hausdorff

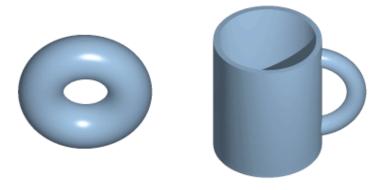
Topological equivalence

Two subsets X and Y of \mathbb{R}^d are said to be topologically equivalent or homeomorphic if there exists a continuous, bijective map $f: X \to Y$ with continuous inverse f^{-1}

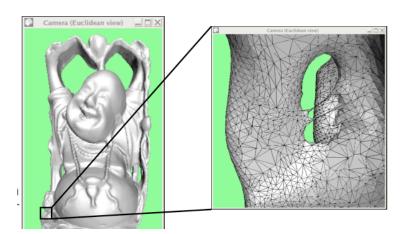


No need for the condition f^{-1} to be continuous if X is compact and Y is Hausdorff

Are these objects homeomorphic?



Are these objects homeomorphic?



Are these objects homeomorphic?

Triangulated balls and spheres

A triangulated d-ball ((d-1)-sphere) is a simplicial complex whose realization is homeomorphic to the unit d-ball ((d-1)-sphere) of \mathbb{R}^d

Examples

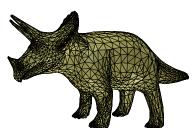
- a triangulated simple polygon
- ▶ the boundary complex of a simplicial d-polytope is a triangulated (d - 1)-sphere
- a triangulated polyhedron without hole

Triangulated balls and spheres

A triangulated d-ball ((d-1)-sphere) is a simplicial complex whose realization is homeomorphic to the unit d-ball ((d-1)-sphere) of \mathbb{R}^d

Examples

- a triangulated simple polygon
- the boundary complex of a simplicial d-polytope is a triangulated (d-1)-sphere
- ► a triangulated polyhedron without hole



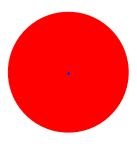
17 / 39

A weaker notion of topological equivalence

Let X and Y be two subsets of \mathbb{R}^d . Two maps $f_0, f_1: X \to Y$ are said to be homotopic if there exists a continuous map $H: [0,1] \times X \to Y$ s.t.

$$\forall x \in X$$
, $H(0,x) = f_0(x)$ \land $H(1,x) = f_1(x)$

Homotopy equivalence



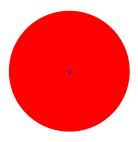
19 / 39

X and Y are said to be homotopy equivalent if there exist two continuous maps $f:X\to Y$ and $g:Y\to X$ such that $f\circ g$ $(g\circ f)$ is homotopic to the identity map in Y (X)

Deformation retract : $r: X \to Y \subseteq X$ is a d.r. if it is homotopic to Id X and Y then have the same homotopy type

X is said to be contractible if it has the same homotopy type as a point

Homotopy equivalence



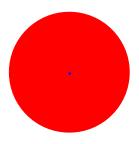
19 / 39

X and Y are said to be homotopy equivalent if there exist two continuous maps $f:X\to Y$ and $g:Y\to X$ such that $f\circ g$ $(g\circ f)$ is homotopic to the identity map in Y (X)

Deformation retract : $r: X \to Y \subseteq X$ is a d.r. if it is homotopic to Id X and Y then have the same homotopy type

X is said to be contractible if it has the same homotopy type as a point

Homotopy equivalence

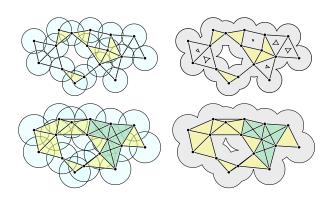


X and Y are said to be homotopy equivalent if there exist two continuous maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ $(g \circ f)$ is homotopic to the identity map in Y (X)

Deformation retract : $r: X \to Y \subseteq X$ is a d.r. if it is homotopic to Id X and Y then have the same homotopy type

X is said to be contractible if it has the same homotopy type as a point

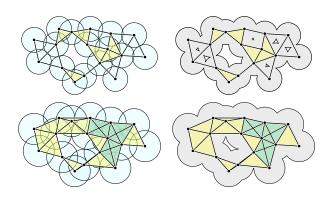
Nerve of a finite cover $\mathcal{U} = \{U_1, ..., U_n\}$ of X



The nerve of \mathcal{U} is the simplicial complex K(U) defined by

$$\sigma = [U_{i_0}, ..., U_{i_k}] \in K(U) \quad \Leftrightarrow \quad \cap_{i=1}^k U_{i_i} \neq \emptyset$$

Nerve of a cover



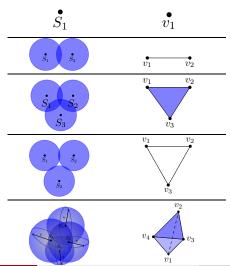
Nerve Theorem (Leray)

If any intersection of the U_i is either empty or contractible, then X and K(U) have the same homotopy type

21 / 39

Example 1: Cech complex of a point set $P \subset \mathbb{R}^d$

$$\sigma \subseteq P \in C(P, \alpha) \iff \bigcap_{p \in \sigma} B(p, \alpha) \neq \emptyset$$

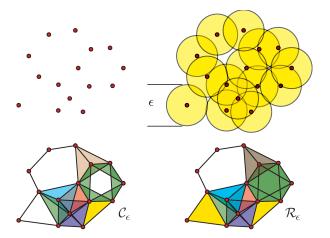


Exercises

- Show that $\sigma \in C(P, \alpha) \Leftrightarrow R(\text{minball}(P)) \leq \alpha$
- Propose an algorithm to compute minball(P)
 (O(#P) time complexity for fixed dimension d)
- Involves computing radii of circumscribing spheres

Example 2 : Rips complex of P

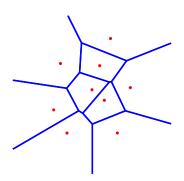
$$\sigma \subseteq P \in \mathit{R}(P,\alpha) \ \Leftrightarrow \ \forall p,q \in \sigma \ \|p-q\| \leq \alpha \ \Leftrightarrow \ \mathit{B}(p,\frac{\alpha}{2}) \cap \mathit{B}(q,\frac{\alpha}{2}) \neq \emptyset$$



Exercises

- Show that $R(P, \alpha) \subseteq C(P, \alpha) \subseteq R(P, 2\alpha)$
- Computing $R(P,\alpha)$ reduces to computing the graph G (vertices+edges) of $R(P,\alpha)$ and computing the cliques of G

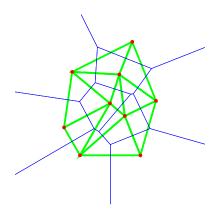
Nerves of Euclidean Voronoi diagrams



Voronoi cell
$$V(p_i) = \{x : ||x - p_i|| \le ||x - p_i||, \forall j\}$$

Voronoi diagram $(P) = \{ \text{ collection of all cells } V(p_i), p_i \in P \}$

Nerves of Euclidean Voronoi diagrams



The nerve of Vor(P) is called the Delaunay complex Del(P)

 $\mathrm{Del}(P)$ cannot always be realized in \mathbb{R}^d

Triangulation of a finite point set of \mathbb{R}^d

- A simplicial k-complex K is pure if every simplex in K is the face of a k-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^d$ is a pure geometric simplicial complex K s.t. $\operatorname{vert}(K) = P$ and $|K| = \operatorname{conv}(P)$.

Problem: show that the Delaunay triangulation of a finite point set of \mathbb{R}^d is a triangulation under some mild genericity assumption

Triangulation of a finite point set of \mathbb{R}^d

- A simplicial k-complex K is pure if every simplex in K is the face of a k-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^d$ is a pure geometric simplicial complex K s.t. $\operatorname{vert}(K) = P$ and $|K| = \operatorname{conv}(P)$.

Problem: show that the Delaunay triangulation of a finite point set of \mathbb{R}^d is a triangulation under some mild genericity assumption

Triangulation of a finite point set of \mathbb{R}^d

- A simplicial k-complex K is pure if every simplex in K is the face of a k-simplex.
- A triangulation of a finite point set $P \in \mathbb{R}^d$ is a pure geometric simplicial complex K s.t. $\operatorname{vert}(K) = P$ and $|K| = \operatorname{conv}(P)$.

Problem: show that the Delaunay triangulation of a finite point set of \mathbb{R}^d is a triangulation under some mild genericity assumption

Stars and links

- Let K be a simplicial complex with vertex set P. The star of $p \in P$ is the set of simplices of K that have p as a vertex
- The link of p is the set of simplices $\tau \subset \sigma$ such that $\sigma \in \text{star}(p, K)$ but $\tau \not\in \text{star}(p, K)$

If K is a triangulation of a point set

- the link of any vertex of $K \setminus \partial K$ is a triangulated (k-1)-sphere
- the link of any vertex of ∂K is a triangulated (k-1)-ball

Data structures to represent simplicial complexes

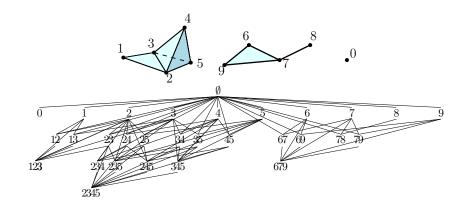
Atomic operations

- Look-up/Insertion/Deletion of a simplex
- The facets and subfaces of a simplex
- The **cofaces** of a simplex
- Edge contractions
- Elementary collapses

Explicit representation of all simplices? of all incidence relations?

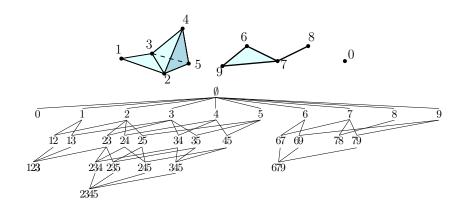
The incidence graph

$$G(V,E) \qquad \sigma \in V \qquad \Leftrightarrow \quad \sigma \in K$$
$$(\sigma,\tau) \in E \iff \quad \sigma \subset \tau$$

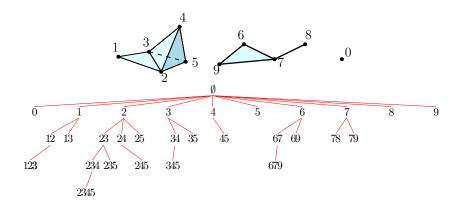


The Hasse diagram

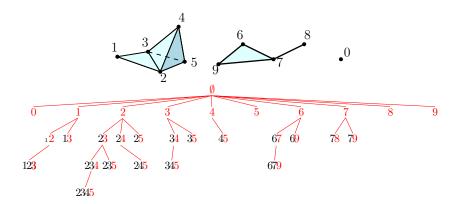
$$\begin{array}{lll} G(V,E) & & \sigma \in V & \Leftrightarrow & \sigma \in K \\ & & (\sigma,\tau) \in E \Leftrightarrow & \sigma \subset \tau & \wedge & \dim(\sigma) = \dim(\tau) - 1 \end{array}$$



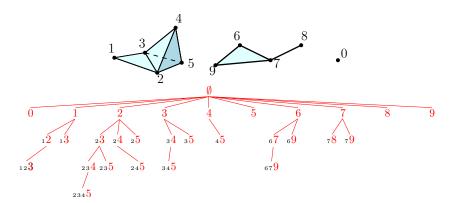
- Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
- 2 Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node



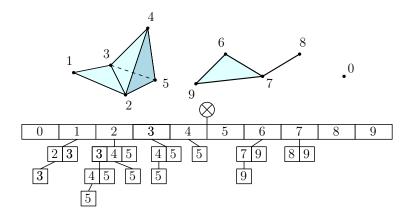
- Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
- Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node



- Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
- Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node

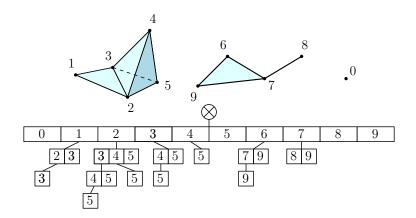


- Select a specific spanning tree of the Hasse diagram s.t. the chosen incidences respect the lexicographic order
- Keep only the biggest vertex in each simplex. The vertices of a simplex are encountered in the path from the root to its node



The simplex tree is a trie

- index the vertices of K
- **2** associate to each simplex $\sigma \in K$, the sorted list of its vertices
- store the simplices in a trie.



Performance of the simplex tree

- Explicit representation of all simplices
- #nodes = $\#\mathcal{K}$
- Memory complexity: O(1) per simplex.
- depth = $dim(\mathcal{K}) + 1$
- $\bullet \ \#\mathsf{children}(\sigma) \ \le \ \#\mathsf{cofaces}(\sigma) \ \le \ \mathsf{deg}(\mathsf{last}(\sigma))$

Data	$ \mathcal{P} $	D	d	r	k	$T_{\rm g}$	E	$T_{ m Rips}$	$ \mathcal{K} $	$T_{ m tot}$	$T_{ m tot}/ \mathcal{K} $
Bud	49,990	3	2	0.11	3	1.5	1,275,930	104.5	354,695,000	104.6	$3.0 \cdot 10^{-7}$
\mathbf{Bro}	15,000	25	?	0.019	25	0.6	3083	36.5	116,743,000	37.1	$3.2 \cdot 10^{-7}$
Cy8	6,040	24	2	0.4	24	0.11	76,657	4.5	13,379,500	4.61	$3.4 \cdot 10^{-7}$
Kl	90,000	5	2	0.075	5	0.46	1,120,000	68.1	233,557,000	68.5	$2.9 \cdot 10^{-7}$
S4	50,000	5	4	0.28	5	2.2	$1,\!422,\!490$	95.1	275,126,000	97.3	$3.6\cdot 10^{-7}$

Exercises

- Show how to implement the atomic operations on a ST
- Show how to represent a Rips complex

Computing the min. enclosing ball $\mathsf{mb}(P)$ of $P \subset \mathbb{R}^d$

Properties

- mb(P) is unique
- mb(P) is determined by at most d + 1 points
- If $B = mb(P \setminus \{p\})$ and $p \notin B$, then $p \in \partial mb(P)$
- same results for mb (P,Q), the min ball B such that $P \subset \operatorname{int} B$ and $Q \in \partial B$ (if it exists)

If
$$B = mb(P \setminus \{p\}, Q)$$
) and $p \notin B$, then

- ▶ $p \in \partial \operatorname{mb}(P, Q)$ (if it exists)
- $ightharpoonup \Leftrightarrow \mathsf{mb}(P,Q) = \mathsf{mb}(P \setminus \{p\}, Q \cup \{p\})$

Computing the min. enclosing ball $\mathsf{mb}(P)$ of $P \subset \mathbb{R}^d$

Algorithm

```
\begin{array}{ll} \textbf{input} \ P \\ Q := \emptyset & \textit{// points on } \partial \ \mathsf{mb} \ (P) \\ \mathsf{mb}(\mathsf{P}) := \mathsf{miniball} \ (P,Q) \\ \mathsf{stop} \end{array}
```

Algorithm miniball(P, Q)

- if $P = \emptyset$ then compute directly B := mb(Q)
- else
 - choose a random $p \in P$
 - **2** $B := miniball(P \setminus \{p\}, Q)$

 $//p \in \partial B$

return B

Complexity analysis

Let
$$T(n,j) =$$
expected number of tests $p \notin B$ with $\#P = n$ and $j = d + 1 - \#Q$

$$T(0,j) = 0$$
 and $T(n,0) = O(1)$

since p is any point among P and $\#(B\cap\partial B)=j$, proba $(p\not\in B)\leq \frac{j}{n}$

$$T(n,j) \le T(n-1,j) + O(1) + \frac{j}{n} T(n-1,j-1)$$

 $\Rightarrow T(n,j) \le (j+1)! n$

Complexity of mb(P) = O(d) T(n, d + 1) = O(n) for fixed d