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Examples of simplicial complexes

ol
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Geometric simplices

A k-simplex o is the convex hull of k + 1 points of R¢ that are affinely
independent

k

k
o = conv(pg, ...,px) = {x € RY, x:Z Xipi, Ai€[0,1], Z/\i: 1}
i=0 i=0

k = dim(aff(0)) is called the dimension of o

1-simplex = line segment
2-simplex = triangle / A

3-simplex = tetrahedron
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Faces of a simplex

/A D

V(o) = set of vertices of a k-simplex o

VYV C V(o), conv(V') is a face of o

k+1

a k-simplex has ( i

> faces of dimension i

total nb of faces = 3¢, ( ]:j:ll ) SV |
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Geometric simplicial complexes

A finite collection of simplices K called the faces of K such that

it
@ Vo € K, o is a simplex 4
QocecK, TCo=717€K

@ Vo,re€K,eithercnrTt=0oronNrisa »

common face of both Q'

Winter School 1 Simplicial Complexes Sophia Antipolis 5/39



Geometric simplicial complexes

The dimension of a simplicial complex K is the max dimension of its
simplices

A subset of K which is a complex is called a subcomplex of K

The underlying space |K| C R? of K is the union of the simplices of K
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Example 1 : Triangulation of a finite point set of R¢

@ A simplicial d-complex K is pure if every simplex in K is the face of
a d-simplex.
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Example 1 : Triangulation of a finite point set of R¢

@ A simplicial d-complex K is pure if every simplex in K is the face of
a d-simplex.

@ A triangulation of a finite point set P € R¢ is a pure geometric
simplicial complex K s.t. vert(K) =P and |K| = conv(P).
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Example 2 : triangulation of a polygonal domain of R?

A triangulation of a polygonal domain Q c R? is a pure geometric
simplicial complex K s.t.  vert(K) = vert(2) and |K|= Q.
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Example 2 : triangulation of a polygonal domain of R?

A triangulation of a polygonal domain Q c R? is a pure geometric
simplicial complex K s.t.  vert(K) = vert(2) and |K|= Q.

Exercises
» Show that such a triangulation exists for any 2
» Propose an algorithm of complexity O(nlogn) to compute it where
n = fvert(Q)
» Show that some polyhedral domains of R do not admit a
triangulation
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Example 3 : the boundary complex of the convex hull
of a finite set of points in general position

Polytope
conv(P) = {x e R, x =S5, \ipi,

1

A e01], Shon=1}

Supporting hyperplane H :
HNP#(, Ponone sideof H

Faces : conv(P) N H, H supp. hyp.
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Example 3 : the boundary complex of the convex hull
of a finite set of points in general position

Polytope
conv(P) = {x c R4, x = Zf:o Ai Di
N€E0,1], Yo =1}

Supporting hyperplane H :
HNP#(, Ponone sideof H

Faces : conv(P) N H, H supp. hyp.

@ Pisin general position iff no subset of k + 2 points lie in a k-flat
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Example 3 : the boundary complex of the convex hull
of a finite set of points in general position

Polytope
conv(P) = {x c R4, x = Zf:o Ai Di
N€E0,1], Yo =1}

Supporting hyperplane H :
HNP#(, Ponone sideof H

Faces : conv(P) N H, H supp. hyp.

@ Pisin general position iff no subset of k + 2 points lie in a k-flat

@ If P is in general position, all faces of conv(P) are simplices
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Abstract simplicial complexes

Given a finite set of elements P, an abstract simplicial complex K with
vertex set P is a set of subsets of P s.t.

Q@ VpecP, pckK
Q@ ifcecKandr Co,thent €K

The elements of K are called the (abstract) simplices or faces of K

The dimension of a simplex ¢ is dim(c) = fvert(c) — 1
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Nerve of a finite cover Y = {Uy, ..., U,} of X

An example of an abstract simplicial complex

The nerve of U is the simplicial complex K(U) defined by
o =[Up,...Up] €EK(U) & N U, #0
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Realization of an abstract simplicial complex

@ A realization of an abstract simplicial complex K is a geometric
simplicial complex K, whose corresponding abstract simplicial
complex is isomorphic to K, i.e.

d bijective f : vert(K) — vert(K,) st. 0 € K = f(o) €K,

@ Any abstract simplicial complex K can be realized in R”

Hint: v; — p; = (0,...,0,1,0,...0) € R" (n = gvert(K))
o =conv(py, ..., pn) (canonical simplex)
K, Co

@ Realizations are not unique but are all topologically equivalent
(homeomorphic)
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Topological equivalence

Two subsets X and Y of R? are said to be topologically equivalent or

homeomorphic if there exists a continuous, bijective mapf: X — Y
with continuous inverse f~!

Topological disks

Not a topological disk
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Topological equivalence

Two subsets X and Y of R? are said to be topologically equivalent or

homeomorphic if there exists a continuous, bijective mapf: X — Y
with continuous inverse f~!

Topological disks

Not a topological disk

No need for the condition f~! to be continuous
if X is compact and Y is Hausdorff
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Are these objects homeomorphic ?
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Are these objects homeomorphic ?

[ camera(Euclidean view) |0 X
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Are these objects homeomorphic ?
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Triangulated balls and spheres

A triangulated d-ball ((d — 1)-sphere) is a simplicial complex whose
realization is homeomorphic to the unit d-ball ((d — 1)-sphere) of R?
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Triangulated balls and spheres

A triangulated d-ball ((d — 1)-sphere) is a simplicial complex whose
realization is homeomorphic to the unit d-ball ((d — 1)-sphere) of R?

Examples

» a triangulated simple polygon

» the boundary complex of a simplicial d-polytope is a triangulated
(d — 1)-sphere

» a triangulated polyhedron without hole
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A weaker notion of topological equivalence

Let X and Y be two subsets of R?. Two maps fp,f; : X — Y are said
to be homotopic if there exists a continuous map H : [0,1] x X — Y
s.t.

VxeX, HO,x)=fi(x) AN H(l,x)=fi(x)

oeePP
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Homotopy equivalence

X and Y are said to be homotopy equivalent if there exist two
continuousmapsf: X —-Yandg:Y — Xsuchthatfog (gof)is
homotopic to the identity map in Y (X)
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Homotopy equivalence

X and Y are said to be homotopy equivalent if there exist two

continuousmapsf: X —-Yandg:Y — Xsuchthatfog (gof)is
homotopic to the identity map in Y (X)

Deformation retract: r: X — Y C X is a d.r. if it is homotopic to 1d
X and Y then have the same homotopy type
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Homotopy equivalence

X and Y are said to be homotopy equivalent if there exist two
continuousmapsf: X —-Yandg:Y — Xsuchthatfog (gof)is
homotopic to the identity map in Y (X)

Deformation retract: r: X — Y C X is a d.r. if it is homotopic to 1d
X and Y then have the same homotopy type

X is said to be contractible if it has the same homotopy type as a
point
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Nerve of a finite cover Y = {Uy, ..., U,} of X

The nerve of U is the simplicial complex K(U) defined by
o= [Uj,...Up] €EK(U) & N U, #0
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Nerve of a cover

Nerve Theorem (Leray)

If any intersection of the U; is either empty or contractible, then X and
K(U) have the same homotopy type
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Example 1: Cech complex of a point set P ¢ R?

o CPeC(P,a) & MyesB(p,a)#0

°
U1

U1 U2

U1 V2
U3

U1 V2
U3

V2

U4 é v3

G

-
v
¥
‘P
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Exercises

@ Show thato € C(P,a) < R(minball(P)) < «

@ Propose an algorithm to compute minball(P)
(O(#P) time complexity for fixed dimension d)

@ Involves computing radii of circumscribing spheres
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Example 2 : Rips complex of P

cCPERP.a) & Vpgealp—gl<a & Bp,3)NBg.5)#0
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Exercises

e Show that R(P,a) C C(P,a) C R(P,2a)

@ Computing R(P, ) reduces to computing the graph G
(vertices+edges) of R(P, «) and computing the cliques of G
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Nerves of Euclidean Voronoi diagrams

Voronoi cell Vpi) ={x:|lx —pill < llx—pjl, ¥}

Voronoi diagram (P) = { collection of all cells V(p;), p; € P }
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Nerves of Euclidean Voronoi diagrams

The nerve of Vor(P) is called the Delaunay complex Del(P)

Del(P) cannot always be realized in R?
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Triangulation of a finite point set of R¢

@ A simplicial k--complex K is pure if every simplex in K is the face of
a k-simplex.
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Triangulation of a finite point set of R¢

@ A simplicial k--complex K is pure if every simplex in K is the face of
a k-simplex.

@ A triangulation of a finite point set P € R is a pure geometric
simplicial complex K s.t. vert(K) =P and |K| = conv(P).
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Triangulation of a finite point set of R¢

@ A simplicial k--complex K is pure if every simplex in K is the face of
a k-simplex.

@ A triangulation of a finite point set P € R is a pure geometric
simplicial complex K s.t. vert(K) =P and |K| = conv(P).

Problem : show that the Delaunay triangulation of a finite point set of
R is a triangulation under some mild genericity assumption
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Stars and links

@ Let K be a simplicial complex with vertex set P. The starof p € P
is the set of simplices of K that have p as a vertex

@ The link of p is the set of simplices 7 C ¢ such that o € star(p, K)
but 7 ¢ star(p, K)

If K is a triangulation of a point set

@ the link of any vertex of K \ 0K is a triangulated (k — 1)-sphere
@ the link of any vertex of OK is a triangulated (k — 1)-ball
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Data structures to represent simplicial complexes

Atomic operations

@ Look-up/Insertion/Deletion of a simplex
@ The facets and subfaces of a simplex

@ The cofaces of a simplex

@ Edge contractions

@ Elementary collapses

Explicit representation of all simplices ? of all incidence relations ?
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The incidence graph

ceV & ek
el oCT

(o,7)

G(V,E)

o0

i
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The Hasse diagram

G(V,E) o€V & oek
(0,71)€E & oCT1 A dim(o) =dim(7)— 1

4
6 8
3
1 - P'/ .0
!
0 1 2 4 6 7 8 9
12 13 2 24 2 # B 45 67 69 79
123 24235 U5 345 679
2345
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The simplex tree [C. Maria]

@ Select a specific spanning tree of the Hasse diagram s.t. the
chosen incidences respect the lexicographic order

4
6 8
1% P
5 L]
? 0
——
0 1 2 3 4 5 6 7 8 9
a7 N N
12 13 23 24 25 RU ) 45 67 69 819
AN |
123 734235245345 679
2345
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The simplex tree [C. Maria]

@ Select a specific spanning tree of the Hasse diagram s.t. the
chosen incidences respect the lexicographic order

© Keep only the biggest vertex in each simplex. The vertices of a
simplex are encountered in the path from the root to its node

4
Z\ 6 8
13 i _~ 0
5 [ ]
’ 0
— .
0 1 2 3 4 5 6 7 8 9
) R NN
12 13 23 24 25 A 3P 45 67 69 879
AN |
123 ?/3—1 235 245 45 679
245
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The simplex tree [C. Maria]
@ Select a specific spanning tree of the Hasse diagram s.t. the
chosen incidences respect the lexicographic order

© Keep only the biggest vertex in each simplex. The vertices of a
simplex are encountered in the path from the root to its node

4
6 8
1 - i: e .0
2
0

— T
0 i D 3 4 5 6 7 8 9

AN e

12 l:} 23 24 25 34 35 45 ()7 59 78 79
/ VAYERN | |
123 234 230 245 345 679

/

234D
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The simplex tree [C. Maria]
@ Select a specific spanning tree of the Hasse diagram s.t. the
chosen incidences respect the lexicographic order

© Keep only the biggest vertex in each simplex. The vertices of a
simplex are encountered in the path from the root to its node

4
5 6 8
! N 0
‘ 5 7
9
2

Lol 1t [ 2713415 ]6 ]7]81]9 |

B3] BHE O35 B [0
EJ
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The simplex tree is a trie

@ index the vertices of K
© associate to each simplex o € K, the sorted list of its vertices
© store the simplices in a trie.
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Performance of the simplex tree

@ Explicit representation of all simplices

@ #nodes = #K

@ Memory complexity: O(1) per simplex.

@ depth = dim(K) +1

@ #children(o) < #cofaces(o) < deg(last(0))

Data [Pl D d Tk Ty |E] TRips Kl Tiot  Tiot/IKI
Bud [49,990 3 2 011 3 15 1,275930 104.5 354,695,000 104.6 3.0-10~7
Bro | 15,000 25 7?7 0.019 25 0.6 3083 365 116,743,000 37.1 3.2-1077
Cy8 | 6,040 24 2 04 24 0.11 76,657 4.5 13,379,500 4.61 3.4-1077
Kl [90,000 5 2 0075 5 046 1,120,000 68.1 233,557,000 68.5 2.9-1077
S4 50,000 5 4 028 5 2.2 1,422,490 95.1 275,126,000 97.3 3.6-1077
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Exercises

@ Show how to implement the atomic operations on a ST

@ Show how to represent a Rips complex
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Computing the min. enclosing ball mb(P) of P c R4

Properties

@ mb(P) is unique
@ mb(P) is determined by at most d + 1 points
@ If B=mb(P\ {p}) and p ¢ B, then p € 0 mb(P)

@ same results for mb (P, Q), the min ball B such that
PcintB and Qe€9dB (if it exists)

If B=mb(P\ {p},0)) and p ¢ B, then

» p € 9 mb(P, Q) (if it exists)
> < mb(P,Q) =mb(P\ {p},QU {p})
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Computing the min. enclosing ball mb(P) of P c R4
Algorithm

input P

Q:=10 // points on & mb (P)
mb(P) := miniball (P, Q)

stop

Algorithm miniball(P, Q)

@ if P = () then compute directly B := mb(Q)

Q else
@ choose arandomp € P

@ B :=miniball(P\ {p},0)
© if p ¢ Bthen B :=miniball(P\ {p}, QU {p}) Il'p € OB
© return B
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Complexity analysis

Let T(n,j) = expected number of tests p & B
with #P=n and j=d+1—#Q

7(0,j) =0and T(n,0) = O(1)
since p is any point among P and #(B N 0B) = j, proba (p ¢ B) < L

T(n,j) <T(n—1,)+01)+LT(n—1,j—1)
= T(nj)<(@G+1n

Complexity of mb(P) = O(d) T(n,d + 1) = O(n) for fixed d
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