Algorithmic Geometry of Triangulations

Jean-Daniel Boissonnat Geometrica, INRIA http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis January 26-30, 2015

Algorithmic Geometry of Triangulations

Jean-Daniel Boissonnat Geometrica, INRIA http://www-sop.inria.fr/geometrica

Winter School, University of Nice Sophia Antipolis January 26-30, 2015

Triangulations and Meshes

Mesh generation

Meshing with sharp features A polyhedral example

.

Reconstructing surfaces from point clouds

One can reconstruct a surface from 10^6 points within 1mn

[CGAL]

Winter School 0

CGAL-mesh

GeometryFactory, Acute3D

Geometric data analysis

Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis :	Data lie close to a structure of
	"small" intrinsic dimension

Problem : Infer the structure from the data

Winter School 0

Image manifolds

An image with 10 million pixels \rightarrow a point in a space of 10 million dimensions!

camera : 3 dof light : 2 dof

The image-points lie close to a structure of intrinsic dimension 5 embedded in this huge ambient space

Motion capture

Typically $N = 100, D = 100^3, d \le 15$

Winter School 0

Dimensionality reduction

Wrist rotation

Conformation spaces of molecules

e.g. C_8H_{16}

- Each conformation is represented as a point in \mathbb{R}^{72} (\mathbb{R}^{24} when neglecting the *H* atoms)
- The intrinsic dimension of the conformation space is 2
- The geometry of C_8H_{16} is highly nonlinear

Course overview

Algorithmic geometry of triangulations

1 Simplicial complexes in metric spaces

Representation of simplicial complexes (D. Mazauric)

2 Delaunay-type complexes

Exercises (A.C. De Vitis)

3 Union of balls and α -complexes

Exercises (M. Rouxel-Labbé)

4 Mesh generation

Surface reconstruction (P. Alliez)

5 Reconstruction of submanifolds

Exam !

Further reading

CGALmesh :

https://www-sop.inria.fr/geometrica/software/cgalmesh/

Recent theses at Geometrica Sophia Antipolis

- Triangulation of manifolds : A. Ghosh (2012)
- Data structures for computational topology : C. Maria (2014)

Course Notes

www-sop.inria.fr/geometrica/courses/supports/CGL-poly.pdf

Colloquium J. Morgenstern

www-sop.inria.fr/colloquium

Vin de Silva : Point-clouds, sensor networks, and persistence: algebraic topology in the 21st century 26/3/2009

Winter School 0

Projects

• European project Computational Geometric Learning (CGL) cgl.uni-jena.de/Home/WebHome

ANR TopData

Geometry meets statistics http://geometrica.saclay.inria.fr/ collaborations/TopData/Home.html

• ERC Sdvanced Grant GUDHI

Geometry Understanding in Higher Dimensions https://project.inria.fr/gudhi/

• On the industrial side Californian Startup : www.ayasdi.com