3D Triangulations in CGAL

Monique Teillaud

CGAL

www.cgal.org

INRIA

January 2012
Overview

- Definitions
- Functionalities
- Geometry vs. Combinatorics
- Representation
- Software Design
- Algorithms
- Some recent and ongoing work
Definition

2D (3D) simplicial complex = set \mathcal{K} of 0,1,2,3-faces such that

1. $\sigma \in \mathcal{K}, \tau \leq \sigma \Rightarrow \tau \in \mathcal{K}$
2. $\sigma, \sigma' \in \mathcal{K} \Rightarrow \sigma \cap \sigma' \leq \sigma, \sigma'$
Various triangulations

2D, 3D Basic triangulations
2D, 3D Delaunay triangulations
2D, 3D Regular triangulations
Basic and Delaunay triangulations

(figures in 2D)

Basic triangulations: incremental construction
Delaunay triangulations: empty sphere property
Regular triangulations

weighted point $p^{(w)} = (p, w_p)$, $p \in \mathbb{R}^3$, $w_p \in \mathbb{R}$

$p^{(w)} = (p, w_p) \simeq$ sphere of center p and radius $\sqrt{w_p}$.

power product between $p^{(w)}$ and $z^{(w)}$

$$\Pi(p^{(w)}, z^{(w)}) = \|p - z\|^2 - w_p - w_z$$

$p^{(w)}$ and $z^{(w)}$ orthogonal iff $\Pi(p^{(w)}, z^{(w)}) = 0$

(2D)
Power sphere of 4 weighted points in \mathbb{R}^3 = unique common orthogonal weighted point. $z^{(w)}$ is regular iff $\forall p^{(w)}, \Pi(p^{(w)}, z^{(w)}) \geq 0$

Regular triangulations: generalization of Delaunay triangulations to weighted points. Dual of the power diagram.

The power sphere of all simplices is regular.
Part II

Functionalities of CGAL triangulations
General functionalities

- Traversal of a **2D (3D)** triangulation
 - passing from a **face (cell)** to its neighbors
 - iterators to visit all **faces (cells)** of a triangulation
 - **circulators (iterators)** to visit all **faces (cells)** incident to a vertex
 - **circulators** to visit all **cells** around an edge

- Point location query

- Insertion, removal, flips
Traversal of a 3D triangulation

Iterators
- All_cells_iterator
- All_faces_iterator
- All_edges_iterator
- All_vertices_iterator
- Finite_cells_iterator
- Finite_faces_iterator
- Finite_edges_iterator
- Finite_vertices_iterator

Circulators
- Cell_circulator: cells incident to an edge
- Facet_circulator: facets incident to an edge

```cpp
All_vertices_iterator vit;
for (vit = T.all_vertices_begin();
    vit != T.all_vertices_end(); ++vit)
    ...
```
Traversal of a 3D triangulation

Around a vertex

incident cells and facets, adjacent vertices

template < class OutputIterator >
OutputIterator
t.incident_cells
 (Vertex_handle v, OutputIterator cells)
basic triangulation:

Delaunay triangulation:
3D Flip

if convex position

3 tetrahedra

2 tetrahedra
Additional functionalities for Delaunay triangulations

- Nearest neighbor queries
- Voronoi diagram
Part III

Geometry vs. Combinatorics
Infinite vertex

Triangulation of a set of points = partition of the **convex hull** into simplices.

Addition of an **infinite vertex**

\rightarrow “triangulation” of the outside of the convex hull.

- Any cell is a “tetrahedron”.
- Any facet is incident to two cells.
Infinite vertex

Triangulation of a set of points = partition of the convex hull into simplices.

Addition of an infinite vertex \rightarrow “triangulation” of the outside of the convex hull.

- Any cell is a “tetrahedron”.
- Any facet is incident to two cells.

Triangulation of $\mathbb{R}^d \cong$ Triangulation of the topological sphere S^d.
Dimensions

dim 0

dim 1

dim 2

dim 3

a 4-dimensional triangulated sphere
Dimensions

Adding a point outside the current affine hull:
From $d = 1$ to $d = 2$
Part IV

Representation
2D - Representation based on faces

Vertex
- Face_handle v_face

Face
- Vertex_handle vertex[3]
- Face_handle neighbor[3]
2D - Representation based on faces

Edges are implicit: std::pair< f, i >
where f = one of the two incident faces.

From one face to another

$n = f \rightarrow \text{neighbor}(i)$
$j = n \rightarrow \text{index}(f)$
3D - Representation based on cells

Faces are implicit: std::pair< c, i > where c = one of the two incident cells.

Edges are implicit: std::pair< u, v > where u, v = vertices.
3D - Representation based on cells

From one cell to another

\[n = c \rightarrow \text{neighbor}(i) \]
\[j = n \rightarrow \text{index}(c) \]
Part V

Software Design
Traits class

Triangulation_2\langleTraits, TDS\rangle

Geometric traits classes provide:
 Geometric objects + predicates + constructors

Flexibility:
- The **Kernel** can be used as a traits class for several algorithms
- Otherwise: **Default traits classes** provided
- The **user** can plug his own traits class
Traits class

Generic algorithms

Delaunay_Triangulation_2< Traits, TDS>

Traits parameter provides:

- Point
- orientation test, in_circle test
2D Kernel used as traits class

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_2<K> Delaunay;

- 2D points: coordinates \((x, y)\)
- orientation, in_circle
Traits class

Changing the traits class

typedef
 CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef
 CGAL::Projection_traits_xy_3< K > Traits;
typedef CGAL::Delaunay_triangulation_2< Traits > Terrain;

• 3D points: coordinates \((x, y, z)\)
• orientation, in_circle:
 on \(x\) and \(y\) coordinates only
Layers

Triangulation_3< Traits, TDS >

Triangulation
Geometry
location

Data Structure
Combinatorics
insertion

Geometric information
Additional information

Triangulation_data_structure_3< Vb, Cb > ;
Vb and Cb have default values.
Layers

The base level
Concepts **VertexBase** and **CellBase**.

Provide
- Point + access function + setting
- incidence and adjacency relations (access and setting)

Several models, parameterised by the **traits** class.
Changing the `Vertex_base` and the `Cell_base`
Changing the Vertex_base and the Cell_base
First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS

```cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/IO/Color.h>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_vertex_base_with_info_3<CGAL::Color,K> Vb;

typedef CGAL::Triangulation_data_structure_3<Vb> Tds;

typedef CGAL::Delaunay_triangulation_3<K, Tds> Delaunay;

typedef Delaunay::Point Point;
```
Changing the Vertex_base and the Cell_base
First option: Triangulation_vertex_base_with_info_3

When the additional information does not depend on the TDS

```cpp
int main()
{
    Delaunay T;
    T.insert(Point(0,0,0));  T.insert(Point(1,0,0));
    T.insert(Point(0,1,0));  T.insert(Point(0,0,1));
    T.insert(Point(2,2,2));  T.insert(Point(-1,0,1));

    // Set the color of finite vertices of degree 6 to red.
    Delaunay::Finite_vertices_iterator vit;
    for (vit = T.finite_vertices_begin();
         vit != T.finite_vertices_end(); ++vit)
    {
        if (T.degree(vit) == 6)
            vit->info() = CGAL::RED;
    }

    return 0;
}
```
Changing the Vertex_base and the Cell_base

Third option: write new models of the concepts
Changing the `Vertex_base` and the `Cell_base`

Second option: the “rebind” mechanism

- Vertex and cell base classes: initially given a **dummy TDS** template parameter: dummy TDS provides the types that can be used by the vertex and cell base classes (such as handles).

- inside the TDS itself, vertex and cell base classes are **rebound** to the real TDS type

→ the same vertex and cell base classes are now **parameterized with the real TDS** instead of the dummy one.
Changing the Vertex_base and the Cell_base

Second option: the “rebind” mechanism
template< class GT, class Vb= Triangulation_vertex_base<GT> >
class My_vertex
 : public Vb
{
pUBLIC:
 typedef typename Vb::Point Point;
 typedef typename Vb::Cell_handle Cell_handle;

 template < class TDS2 >
 struct Rebind_TDS {
 typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
 typedef My_vertex<GT, Vb2> Other;
 };

 My_vertex() {}
 My_vertex(const Point&p) : Vb(p) {}
 My_vertex(const Point&p, Cell_handle c) : Vb(p, c) {}
 ...
}
Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

Example

```cpp
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>
```
Changing the Vertex_base and the Cell_base
Second option: the “rebind” mechanism

Example

template < class GT, class Vb=CGAL::Triangulation_vertex_base_3<GT> >
class My_vertex_base : public Vb
{
 public:
 typedef typename Vb::Vertex_handle Vertex_handle;
 typedef typename Vb::Cell_handle Cell_handle;
 typedef typename Vb::Point Point;

 template < class TDS2 > struct Rebind_TDS {
 typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
 typedef My_vertex_base<GT, Vb2> Other;
 };

 My_vertex_base() {}
 My_vertex_base(const Point& p) : Vb(p) {}
 My_vertex_base(const Point& p, Cell_handle c) : Vb(p, c) {}

 Vertex_handle vh;
 Cell_handle ch;
};
Example

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::
 Triangulation_data_structure_3< My_vertex_base<K> > Tds;
typedef CGAL::
 Delaunay_triangulation_3< K, Tds > Delaunay;
typedef Delaunay::Vertex_handle Vertex_handle;
typedef Delaunay::Point Point;

int main()
{ Delaunay T;
 Vertex_handle v0 = T.insert(Point(0,0,0));
 ... v1; v2; v3; v4; v5;
 // Now we can link the vertices as we like.
 v0->vh = v1; v1->vh = v2;
 v2->vh = v3; v3->vh = v4;
 v4->vh = v5; v5->vh = v0;
 return 0;
}
Part VI

Algorithms
Point location

Locate_type
Point location

2D (/3D)

- Along a straight line

2 (/3) orientation tests per triangle (/tetrahedron)

degenerate cases

CGAL 2D triangulations
Point location

2D (/3D)
- By visibility

< 1.5 (/2) tests per triangle (/tetrahedron)

CGAL 3D triangulations
Point location

2D (/3D)

• By visibility

< 1.5 (/2) tests per triangle (/tetrahedron)

Breaking cycles: random choice of the neighbor
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Triangulation_3.h>

#include <iostream>
#include <fstream>
#include <cassert>
#include <list>
#include <vector>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Triangulation_3<K> Triangulation;

typedef Triangulation::Cell_handle Cell_handle;
typedef Triangulation::Vertex_handle Vertex_handle;
typedef Triangulation::Locate_type Locate_type;
typedef Triangulation::Point Point;
int main()
{
 std::list<Point> L;
 L.push_front(Point(0,0,0));
 L.push_front(Point(1,0,0));
 L.push_front(Point(0,1,0));
 Triangulation T(L.begin(), L.end());
 int n = T.number_of_vertices();

 std::vector<Point> V(3);
 V[0] = Point(0,0,1);
 V[1] = Point(1,1,1);
 V[2] = Point(2,2,2);
 n = n + T.insert(V.begin(), V.end());

 assert(n == 6);
 assert(T.is_valid());
Point location - Example

Locate_type lt; int li, lj;
Point p(0,0,0);
Cell_handle c = T.locate(p, lt, li, lj);
assert(lt == Triangulation::VERTEX);
assert(c->vertex(li)->point() == p);

Vertex_handle v = c->vertex((li+1)&3);
Cell_handle nc = c->neighbor(li);
int nli; assert(nc->has_vertex(v, nli));

std::ofstream oFileT("output",std::ios::out);
oFileT << T;
Triangulation T1;
std::ifstream iFileT("output",std::ios::in);
iFileT >> T1;
assert(T1.is_valid());
assert(T1.number_of_vertices() == T.number_of_vertices());
assert(T1.number_of_cells() == T.number_of_cells());
return 0;
}
The Delaunay Hierarchy
Point location data structure

Optimal randomized worst-case complexity
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Random.h>

#include <vector>
#include <cassert>

typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Delaunay_triangulation_3<K, CGAL::Fast_location> Delaunay;
typedef Delaunay::Point Point;
```cpp
int main()
{ Delaunay T;
  std::vector<Point> P;
  for (int z=0 ; z<20 ; z++)
    for (int y=0 ; y<20 ; y++)
      for (int x=0 ; x<20 ; x++)
        P.push_back(Point(x,y,z));

  Delaunay T(P.begin(), P.end());
  assert( T.number_of_vertices() == 8000 );

  for (int i=0; i<10000; ++i)
    T.nearest_vertex
      ( Point(CGAL::default_random.get_double(0,20),
               CGAL::default_random.get_double(0,20),
               CGAL::default_random.get_double(0,20)) );

  return 0;
}
```
Spatial Sorting
Speeding-up construction

Incremental algorithms

→ Efficiency depends on the order of insertion
Sort points along a space-filling curve

Example: Hilbert curve

(2D picture from Wikipedia)
Spatial Sorting
Speeding-up construction

Incremental algorithms

\[\rightarrow \text{Efficiency depends on the order of insertion} \]

Sort points along a space-filling curve

\[\text{close geometrically} \iff \text{close in the insertion order} \quad \text{with high probability} \]

\[\rightarrow \text{point location} \]

- previous cell in cache memory \(\rightarrow \text{faster start} \)
- previous point close \(\rightarrow \text{shorter walk} \)

\[\rightarrow \text{memory locality improved} \quad \rightarrow \text{speed-up in data structure} \]
Spatial Sorting
Speeding-up construction

Incremental algorithms
→ Efficiency depends on the order of insertion
Sort points along a space-filling curve

CGAL spatial sort =
Hilbert sort + std::random_shuffle

• points still close enough for speed-up
• some randomness for randomized algorithms

template < class InputIterator >
int
 t.insert (InputIterator first, InputIterator last)
Symbolic perturbation
Robustness to degenerate cases

Cospherical points

Any triangulation is a Delaunay triangulation
Symbolic perturbation
Robustness to degenerate cases

Vertex removal

1- remove the tetrahedra incident to $v \rightarrow$ hole
Symbolic perturbation
Robustness to degenerate cases

Vertex removal

1- remove the tetrahedra incident to v \(\rightarrow\) hole
2- retriangulate the hole
Symbolic perturbation
Robustness to degenerate cases

Vertex removal

Several possible Delaunay triangulations of a facet of the hole

Cocircular points

Triangulation of the hole must be compatible with the rest of the triangulation
Remark on the general question:

H given polyhedron with triangulated facets. Find a Delaunay triangulation of H keeping its facets?

Not always possible:
Symbolic perturbation
Robustness to degenerate cases

Allowing flat tetrahedra?

k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole

sequence of $O(k^2)$ edge flips

2D triangulation of the facet induced by tetrahedra outside the hole

deedge flip \leftrightarrow flat tetrahedron
Symbolic perturbation
Robustness to degenerate cases

Allowing flat tetrahedra?
k cocircular points on a facet

2D triangulation of the facet induced by tetrahedra in the hole

\[\text{sequence of } O(k^2) \text{ edge flips} \]

2D triangulation of the facet induced by tetrahedra outside the hole

edge flip \leftrightarrow flat tetrahedron

Unacceptable
Symbolic perturbation
Robustness to degenerate cases

Solution

\rightarrow Perturbing the \textit{in}_\textit{sphere} predicate

\textit{orientation} predicate not perturbed \rightarrow no flat tetrahedra
p_0, p_1, p_2, p_3, p_4 non coplanar

\textit{in}_\textit{sphere} \((p_0, p_1, p_2, p_3, p_4)\)

\[
\begin{align*}
> 0 \text{ if } p_4 \text{ is outside} \\
= 0 \text{ if } p_4 \text{ is on the boundary of} \\
< 0 \text{ if } p_4 \text{ is inside}
\end{align*}
\]

the ball circumscribing p_0, p_1, p_2, p_3.
Symbolic perturbation
Robustness to degenerate cases

\(p_0, p_1, p_2, p_3, p_4 \) non coplanar

\[
in_{\text{sphere}} (p_0, p_1, p_2, p_3, p_4) = \frac{\text{sign } \det(p_0, p_1, p_2, p_3, p_4)}{\text{orient}(p_0, p_1, p_2, p_3)}
\]

\[
\text{orient}(p_0, p_1, p_2, p_3) = \text{sign } \left| \begin{array}{cccc}
1 & 1 & 1 & 1 \\
x_0 & x_1 & x_2 & x_3 \\
y_0 & y_1 & y_2 & y_3 \\
z_0 & z_1 & z_2 & z_3 \\
\end{array} \right|
\]
Symbolic perturbation
Robustness to degenerate cases

\[\text{in_sphere} \left(p_0, p_1, p_2, p_3, p_4 \right) = \frac{\text{sign} \ Det(p_0, p_1, p_2, p_3, p_4)}{\text{orient}(p_0, p_1, p_2, p_3)} \]

\[\text{Det}(p_0, p_1, p_2, p_3, p_4) = \]

\[
\begin{vmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
x_0 & x_1 & x_2 & x_3 & x_4 \\
y_0 & y_1 & y_2 & y_3 & y_4 \\
z_0 & z_1 & z_2 & z_3 & z_4 \\
x_0^2 + y_0^2 + z_0^2 & x_1^2 + y_1^2 + z_1^2 & x_2^2 + y_2^2 + z_2^2 & x_3^2 + y_3^2 + z_3^2 & x_4^2 + y_4^2 + z_4^2 \\
\end{vmatrix}
\]
Symbolic perturbation
Robustness to degenerate cases

\[\text{in_sphere} \left(p_0, p_1, p_2, p_3, p_4 \right) = \frac{\text{sign Det}(p_0, p_1, p_2, p_3, p_4)}{\text{orient}(p_0, p_1, p_2, p_3)} \]

\[\text{Det}(p_0, p_1, p_2, p_3, p_4) = \det \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ x_0 & x_1 & x_2 & x_3 & x_4 \\ y_0 & y_1 & y_2 & y_3 & y_4 \\ z_0 & z_1 & z_2 & z_3 & z_4 \\ t_0 & t_1 & t_2 & t_3 & t_4 \end{vmatrix} \]

\[\iff \text{orientation in } \mathbb{R}^4 \]

\[\pi : \mathbb{R}^3 \rightarrow \Pi \subset \mathbb{R}^4 \]

\[p_i = (x_i, y_i, z_i) \mapsto \pi(p_i) = (x_i, y_i, z_i, t_i = x_i^2 + y_i^2 + z_i^2) \]
Symbolic perturbation
Robustness to degenerate cases

Perturbation
points indexed

$$\pi_{\varepsilon} : \Pi \subset \mathbb{R}^4 \rightarrow \mathbb{R}^4$$
$$\pi(p_i) = (x_i, y_i, z_i, t_i) \mapsto (x_i, y_i, z_i, t_i + \varepsilon^{n-i})$$

$$\text{Det}_{\varepsilon}(p_i, p_j, p_k, p_l, p_m) =$$

$$\begin{vmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
x_i & x_j & x_k & x_l & x_m \\
y_i & y_j & y_k & y_l & y_m \\
z_i & z_j & z_k & z_l & z_m \\
t_i + \varepsilon^{n-i} & t_j + \varepsilon^{n-j} & t_k + \varepsilon^{n-k} & t_l + \varepsilon^{n-l} & t_m + \varepsilon^{n-m}
\end{vmatrix}$$
Symbolic perturbation
Robustness to degenerate cases

Perturbation
points indexed

\[\pi_\varepsilon : \Pi \subset \mathbb{R}^4 \rightarrow \mathbb{R}^4 \]
\[\pi(p_i) = (x_i, y_i, z_i, t_i) \mapsto (x_i, y_i, z_i, t_i + \varepsilon^{n-i}) \]

\[\text{Det}_\varepsilon(p_i, p_j, p_k, p_l, p_m) = \]
\[\text{Det}(p_i, p_j, p_k, p_l, p_m) + \text{orient}(p_i, p_j, p_k, p_l) \varepsilon^{n-m} \]
\[- \text{orient}(p_i, p_j, p_k, p_m) \varepsilon^{n-l} \]
\[+ \text{orient}(p_i, p_j, p_l, p_m) \varepsilon^{n-k} \]
\[- \text{orient}(p_i, p_k, p_l, p_m) \varepsilon^{n-j} \]
\[+ \text{orient}(p_j, p_k, p_l, p_m) \varepsilon^{n-i} \]

polynomial in \(\varepsilon \)
Symbolic perturbation
Robustness to degenerate cases

Perturbation

5 cospherical points:

point with highest index
→
outside the sphere of the other 4 [non coplanar] points

4 coplanar points:

point with highest index
→
outside the disk of the other 3 points in their plane
Symbolic perturbation
Robustness to degenerate cases

Perturbation

- Free choice for indexing the points
 lexicographic order

- Algorithm working even in degenerate situations
- No flat tetrahedra
- Perturbed predicate easy to code

CGAL: only publicly available software proposing a fully dynamic 3D Delaunay/regular triangulation.
Robustness

Dassault Systèmes
Robustness

Pictures by Pierre Alliez
Part VII

Some recent and ongoing work
Periodic triangulations

3D released in CGAL 3.5
Manuel Caroli, PhD thesis
2D: in progress Nico Kruithof
Meshing of periodic volumes

Mikhail Bogdanov, internship Moscow Institute of Physics and Technology
Hyperbolic triangulations

Mikhail Bogdanov, PhD student
Triangulation on the sphere

Olivier Rouiller, internship École Centrale Lille
Claudia Werner, internship Uni. Applied Sciences Stuttgart
To know more

www.cgal.org

http://www.inria.fr/sophia/members/Monique.Teillaud/