
Introduction to the
Computational Geometry Algorithms Library

Monique Teillaud

www.cgal.org

January 2013



Overview

The CGAL Open Source Project
Contents of the Library
Kernels and Numerical Robustness



Part I

The CGAL Open Source Project



Goals

• Promote the research in Computational Geometry (CG)

• “make the large body of geometric algorithms developed in
the field of CG available for industrial applications”

⇒ robust programs



History

• Development started in 1995



History

• Development started in 1995

• January, 2003: creation of GEOMETRY FACTORY
INRIA startup
sells commercial licenses, support, customized developments

• November, 2003: Release 3.0 - Open Source Project
new contributors

• September, 2012: Release 4.1



License

a few basic packages under LGPL
most packages under GPLv3+
◦ free use for Open Source code
◦ commercial license needed otherwise



Distribution

• from the INRIA gforge

• included in Linux distributions (Debian, etc)
• available through macport

• CGAL triangulations integrated in Matlab
• Scilab interface to CGAL triangulations and meshes

• CGAL-bindings
CGAL triangulations, meshes, etc,
can be used in Java or Python
implemented with SWIG



CGAL in numbers

• 500,000 lines of C++ code

• several platforms
g++ (Linux MacOS Windows), VC++

• > 1,000 downloads per month on the gforge

• 50 developers registered on developer list
(∼ 20 active)



Development process

• Packages are reviewed.

• 1 internal release per day

• Automatic test suites running on all supported
compilers/platforms



Users

List of identified users in various fields

• Molecular Modeling
• Particle Physics, Fluid Dynamics, Microstructures
• Medical Modeling and Biophysics
• Geographic Information Systems
• Games
• Motion Planning
• Sensor Networks
• Architecture, Buildings Modeling, Urban Modeling
• Astronomy
• 2D and 3D Modelers
• Mesh Generation and Surface Reconstruction
• Geometry Processing
• Computer Vision, Image Processing, Photogrammetry
• Computational Topology and Shape Matching
• Computational Geometry and Geometric Computing

More non-identified users. . .



Customers of GEOMETRY FACTORY

(end 2008)



Part II

Contents of CGAL



Structure

Kernels
Various packages
Support Library

STL extensions, I/O, generators, timers. . .



Some packages



Part III

Numerical Robustness



The CGAL Kernels

2D, 3D, dD “Rational” kernels
2D circular kernel
3D spherical kernel



In the kernels

Elementary geometric objects
Elementary computations on them

Primitives Predicates Constructions
2D, 3D, dD • comparison • intersection
• Point • Orientation • squared distance
• Vector • InSphere . . .
• Triangle . . .
• Circle
. . .



Affine geometry

Point - Origin→ Vector
Point - Point→ Vector
Point + Vector→ Point

Point Vector

Origin

Point + Point illegal

midpoint(a,b) = a + 1/2 x (b-a)



Kernels and number types

Cartesian representation

Point
∣∣∣∣ x = hx

hw
y = hy

hw

Homogeneous representation

Point

∣∣∣∣∣∣
hx
hy
hw

- ex: Intersection of two lines -{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =
∣∣∣∣∣∣ b1 c1

b2 c2

∣∣∣∣∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣∣
,−

∣∣∣∣∣∣ a1 c1
a2 c2

∣∣∣∣∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣∣



{
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx ,hy ,hw) =(∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ ,− ∣∣∣∣ a1 c1
a2 c2

∣∣∣∣ , ∣∣∣∣ a1 b1
a2 b2

∣∣∣∣)

Field operations Ring operations



Kernels and number types

Cartesian representation

Point
∣∣∣∣ x = hx

hw
y = hy

hw

Homogeneous representation

Point

∣∣∣∣∣∣
hx
hy
hw

- ex: Intersection of two lines -{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =
∣∣∣∣∣∣ b1 c1

b2 c2

∣∣∣∣∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣∣
,−

∣∣∣∣∣∣ a1 c1
a2 c2

∣∣∣∣∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣∣



{
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx ,hy ,hw) =(∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ ,− ∣∣∣∣ a1 c1
a2 c2

∣∣∣∣ , ∣∣∣∣ a1 b1
a2 b2

∣∣∣∣)

Field operations Ring operations



Kernels and number types

Cartesian representation

Point
∣∣∣∣ x = hx

hw
y = hy

hw

Homogeneous representation

Point

∣∣∣∣∣∣
hx
hy
hw

- ex: Intersection of two lines -{
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

(x , y) =
∣∣∣∣∣∣ b1 c1

b2 c2

∣∣∣∣∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣∣
,−

∣∣∣∣∣∣ a1 c1
a2 c2

∣∣∣∣∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣∣∣



{
a1hx + b1hy + c1hw = 0
a2hx + b2hy + c2hw = 0

(hx ,hy ,hw) =(∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ ,− ∣∣∣∣ a1 c1
a2 c2

∣∣∣∣ , ∣∣∣∣ a1 b1
a2 b2

∣∣∣∣)

Field operations Ring operations



The “rational” Kernels

CGAL::Cartesian< FieldType >

CGAL::Homogeneous< RingType >

−→ Flexibility

typedef double NumberType;
typedef Cartesian< NumberType > Kernel;
typedef Kernel::Point_2 Point;



Numerical robustness issues

Predicates = signs of polynomial expressions

Ex: Orientation of 2D points

p

q

r

orientation(p,q, r) = sign

det

 px py 1
qx qy 1
rx ry 1


= sign((qx − px)(ry − py )− (qy − py )(rx − px))



Numerical robustness issues

Predicates = signs of polynomial expressions

Ex: Orientation of 2D points

p = (0.5 + x .u, 0.5 + y .u)
0 ≤ x , y < 256, u = 2−53

q = (12,12)
r = (24,24)

orientation(p,q, r)
evaluated with double

(x , y) 7→ > 0 , = 0 , < 0

double −→ inconsistencies in predicate evaluations



Numerical robustness issues

Speed and exactness through

Exact Geometric Computation

6=
exact arithmetics

Filtering Techniques (interval arithmetics, etc)
exact arithmetics only when needed

Degenerate cases explicitly handled



Numerical robustness issues

Speed and exactness through

Exact Geometric Computation

6=
exact arithmetics

Filtering Techniques (interval arithmetics, etc)
exact arithmetics only when needed

Degenerate cases explicitly handled



Numerical robustness issues

Speed and exactness through

Exact Geometric Computation

6=
exact arithmetics

Filtering Techniques (interval arithmetics, etc)
exact arithmetics only when needed

Degenerate cases explicitly handled



The circular/spherical kernels

Circular/spherical kernels
• solve needs for e.g. intersection of circles.
• extend the CGAL (linear) kernels

Exact computations on algebraic numbers of degree 2
= roots of polynomials of degree 2

Algebraic methods reduce comparisons to
computations of signs of polynomial expressions



Application of the 2D circular kernel

Computation of arrangements
of 2D circular arcs and line segments

Pedro M.M. de Castro, Master internship



Application of the 3D spherical kernel

Computation of arrangements of 3D spheres

Sébastien Loriot, PhD thesis


	The CGAL Open Source Project
	Contents of CGAL
	Numerical Robustness
	2D Triangulations
	Some recent and ongoing work

