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Geometric data analysis

Images, text, speech, neural signals, GPS traces,...

Geometrisation : Data = points + distances between points

Hypothesis : Data lie close to a structure of
“small” intrinsic dimension

Problem : Infer the structure from the data
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Submanifolds of R4

A compact subset M ¢ R¢ is a submanifold without boundary of

(intrinsic) dimension k < d, if any p € Ml has an open (topological)
k-ball as a neighborhood in M

RN

Intuitively, a submanifold of dimension & is a subset of R? that looks
locally like an open set of an affine space of dimension k

A curve a 1-dimensional submanifold
A surface is a 2-dimensional submanifold
'
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Triangulation of a submanifold

We call triangulation of a submanifold M ¢ R¢ a simplicial complex M
such that

@ M is embedded in RY
@ its vertices are on M
@ it is homeomorphic to M
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Triangulation of a submanifold

We call triangulation of a submanifold M ¢ R¢ a simplicial complex M
such that

@ M is embedded in RY
@ its vertices are on M
@ it is homeomorphic to M

Submanifold reconstruction

The problem is to construct a triangulation M of some unknown
submanifold M given a finite set of points P C M
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Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data
= need for automated and provably correct methods methods
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Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data
= need for automated and provably correct methods methods

@ Complexity of data structures and algorithms rapidly grow as the
dimensionality increases
= no subdivision of the ambient space is affordable

= data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data
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Issues in high-dimensional geometry

@ Dimensionality severely restricts our intuition and ability to
visualize data
= need for automated and provably correct methods methods

@ Complexity of data structures and algorithms rapidly grow as the
dimensionality increases
= no subdivision of the ambient space is affordable
= data structures and algorithms should be sensitive to the
intrinsic dimension (usually unknown) of the data

@ Inherent defects : sparsity, noise, outliers
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Looking for small and faithful simplicial complexes

Need to compromise

@ Size of the complex

» can we have dimM = dim M ?

@ Efficiency of the construction algorithms and of the
representations

» can we avoid the exponential dependence ond ?
» can we minimize the number of simplices ?

@ Quality of the approximation

» Homotopy type & homology (Cech and o complexes, persistence)
» Homeomorphism (Delaunay-type complexes)
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Sampling and distance functions [Niyogi et al.], [Chazal et al.]

Distance to a compact K : di : x — infyeg [[x — p|

Stability

If the data points C are close (Hausdorff) to the geometric structure K,
the topology and the geometry of the offsets K, = 4~'([0, ]) and
C, =d!([0,r]) are close
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Distance functions and triangulations

Nerve theorem (Leray)

The nerve of the balls (Cech complex) and the union of balls have the
same homotopy type  (same result for the a-complex)
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Questions

+ The homotopy type of a compact set X can be computed from the
Cech complex of a sample of X

+ The same is true for the a-complex

— The Cech and the a-complexes are huge (0(n) and O(nl4/21))
and difficult to compute in high dimensions

— Both complexes are not in general homeomorphic to X
(i.e. not a triangulation of X)

— The Cech complex cannot be realized in general in the same
space as X
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Cech and Rips complexes

The Rips complex is easier to compute but still very big, and less
precise in approximating the topology
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An example where no offset has the right topology !

1. Manifold + small noise assumption
2. Call persistent homology at rescue !
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The curses of Delaunay triangulations in higher
dimensions

@ Complexity depends exponentially on the ambient dimension.
Robustness issues become very tricky

@ Higher dimensional Delaunay triangulations are not thick even if
the vertices are well-spaced

@ The restricted Delaunay triangulation is no longer a good

approximation of the manifold even under strong sampling
conditions (for d > 2)
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3D Delaunay Triangulations are not thick
even if the vertices are well-spaced

Ier
ARsazead!
R

@ Each square face can be circumscribed by an empty sphere

@ This remains true if the grid points are slightly perturbed
therefore creating thin simplices
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Badly-shaped simplices

Badly-shaped simplices lead to bad geometric approximations

which in turn may lead to topological defects in Del| v(P) [Oudot]

see also [Cairns], [Whitehead], [Munkres], [Whitney]
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Tangent space approximation

M is a smooth k-dimensional manifold (k > 2) embedded in R4

Bad news

The Delaunay triangulation restricted to M may be a bad
approximation of the manifold even if the sample is dense

[Oudot 2005]
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Thickness and tangent space approximation

Lemma [Whitney 1957]

If o is a j-simplex whose vertices all lie within a distance n from a
hyperplane H c R?, then

sin Z(aff (0),H) < ——
o

Corollary
If o is aj-simplex, j <k, vert(oc) CM, A(c)<drch(M)

_J

Vp eo, sin/(aff(0),T,) < (o)

(n < A% by the Chord Lemma)
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The assumptions

@ M is a differentiable submanifold of positive reach of R?
@ The dimension k of M is small

@ Pisance-netof M, i.e.
» VxeM, 3 peP, |x—p| <erch(M)

> vp7q€ Pa HP—‘IH 27?5

@ ¢ is small enough
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The tangential Delaunay complex [B. & Ghosh 2010]

@ Construct the star of p € P in the Delaunay triangulation Dely), (P)
of P restricted to 7,

© Delyy(P) = U,ep star(p)
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+ Delyv(P) C Del(P)

+ star(p), Delr, (P) and therefore Delr(P) can be computed without
computing Del(P)

— Dely(P) is not necessarily a triangulated manifold
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Construction of Delz, (P)

Given a d-flat H C R, Vor(P) N H is a weighted Voronoi diagram in H

lx = pill* < [lx = pylI?
& x—=pillP + llpi = pill> < llx = pjI* + llps — pj1I°
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Construction of Delz, (P)

Given a d-flat H C R, Vor(P) N H is a weighted Voronoi diagram in H

lx = pill* < [lx = pylI?
& x—=pillP + llpi = pill> < llx = pjI* + llps — pj1I°

Corollary: construction of Dely,
Uy (pi) = (P, —llpi = Pi1I%) (weighted point)
@ project P onto 7, which requires O(Dn) time
@ construct star(¥,(p;)) in Del(¥,(p;)) C T,
Q star(p;) ~ star(¥,(p;))  (isomorphic)

v
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Inconsistencies in the tangential complex

A simplex is not in the star of all its vertices

B(cp,(T)NP =10

@ 7 estar(p;) <& Ty, NVor(r) #
= B(cp(T)NP3p

o 7 ¢star(p;)) <« T, N Vor(r)
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Inconsistency (k + 1)-trigger

€ aff(Vor(7))

@ B, (7) : ball circumscribing 7 centered on T),, ¢, its center
@ Inconsistency : B, (t)NP =10 and B,(t)NP#0
@ p; € By, first point hit by (1 — A\)B,, + AB,,, A: 0 — 1
e Trigger 71 : (k + 1)-simplex 7 * p; € Del((P))
Submanifold reconstruction J-D. Boissonnat  22/36



Inconsistency (k + 1)-triggers are flakes

€ aff(Vor(7))

M

If 7 is small and thick, then
@ T), ~ Tp, ~ aff(7) (sample density)
@ [[cp, —cpllsmall = Bj:=B,(7)\By,(r) #0 issmall (r thick)

@ the trigger 77 = 7 * p; is not thick
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Bound on the diameter of the simplices of Dely;(P)

(i) Vor(p) N T, C B(p, aprch(M)) where o ~ ¢
(i) Vo € star(p), R,(0) < arch(M)

(iii) Vo € Delyy(P), A(o) < 2arch(M).
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Proof of (i)

x € Vor(p) N Ty, [|[p — x|| = arrch(M) N/\

x’ be the point of M closestto x and x” =II,(x')

lp =X <lp— x|+ flx =X < 2|lp — ]
= =X < % < 2a? rch(M) (Chord Lemma)

[« — x"|| = [lx — x| cos ¢, where ¢ = £(T\+,T,) and cos ¢ > 1 — 8a?

202 rch(M 2
= |x—2| < Ciicg(();) assuming o < \4f
P is an e-dense sample : 3¢ € P, ||x’ — ¢|| < erch(M)
/ / az
Jrpll = areh() < -l < = |+ gl < (255 + <) rehtrn)
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Bound on the diameter of inconsistency triggers

7 an inconsistent k-simplex, 71 a trigger, 6 = max,e, Z(aff(7), T,)

Lemma sinf) < % and R(r1) < 2®)
Proof
d(pi, T, ) > ZrAch&)I) (Chord Lemma)
) AX(r) A
sin Z(aff(7),7T,) < @(irgh(AME)T) = 50 r(cTh)(M) (Whitney’s angle bound)

Rp(m) = lIpi — cpll < B9 and R(r1) < [li(rt) — pif) < 2O

cos 6§ — cosf
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Bound on the thickness of inconsistency triggers

A(rf
Lemma @(TT) < 2(k+1()rcI2(M) <1 * @(27)>

Proof Let g € 7.

D(p;, 7" I — gl sin Z(pi — g, aff(r))

A7) (sin Z(p; — g, T,) + sin Z(T,, aff(7)))
A(rh) A(7)

A <2rch(M) * O(7) rch(M)

2Ah(<1§4?> (1 * @(27>>

Hence, if 7 is thick, 7T cannot be so : we say that 71 is a flake

IN

IN

> (Chord + previous Lemmas)
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Reconstruction of smooth submanifolds

@ For each vertex v, compute the star star(p) of p in Del, (P)
© Remove inconsistencies among the stars by weighting the points
© Stitch the stars to obtain a triangulation of P
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Algorithm hypotheses

Known quantities in red

@ M = a differentiable submanifold of positive reach of dim. k ¢ R?
@ P =an (g,0)-sample of M

@ =< ¢

@ /5 <o

@ we can estimate the tangent space 7, atany p € P
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Removing inconsistencies by removing flakes
Another application of Moser-Tardos algorithmic LLL

Input: P, {T,,p € P}, Wy, ©9

Initialize all weights to 0 and compute Delzy;(P)

while there are ©-flakes or inconsistencies in Dely;(P) do

while there is a Op-flake o in Delyy(P) do
resample o, i.e. reweight the vertices of o
update Delyy(P)

A~

if there is an inconsistent simplex o in Delry(P) then
compute a trigger simplex o' associated to o
resample the flake o C o7
update Delzy(P)

Output: A weighting scheme on P and Delzy;(P)
Delrv (P) is ©p-thick and has no inconsistency
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Summary

@ Termination
» If 2> p > f(Oy), the algorithm terminates and returns
a complex M that has no inconsistent configurations

@ Complexity
» No d-dimensional data structure = linear in d
» exponential in k

@ Approximation
» M is a PL simplicial k-manifold
» M C tub(M, )
» M is homeomorphic to M
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M is a PL simplicial k~-manifold

Lemma Let P be an e-sample of a manifold M and let p € P. The link of
any vertex p in M is a topological (k — 1)-sphere

Proof :
1. Since M contains no inconsistencies, Vp € vert(M), star(p, M) = star(p, Del,(P))

2. Del,(P) C RY =~ Del(¥,(P)) CT, = star(p) = star,(p)
3. star,(p) is a k-dimensional triangulated topological ball (general position)

4. p cannot belong to the boundary of star,(p)
(the Voronoi cell of p = ¥, (p) in Vor(¥,(P)) is bounded)
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M is a triangulation of M
Theorem

M : a connected compact k-submanifold of R4 without boundary
M : combinatorial k-manifold without boundary, embedded in R? s.t.

Q@ P=vert((M) Cc M

Q@ VoeM, A(o) < dyrch(M) where dp < &
L(o) > Aprch(M)
O(c) > 8.13 83/

Q IJpicMsit. I '(p) = {p:}

Then

(longest edge)
(shortest edge)
(thickness)

© M is a triangulation of M
@ The Hausdorff distance between M and M is at most 267 rch(M)
© If o is a k-simplex of M and p one of its vertices, we have

. do
sin Z(aff(0), T,) < o
0

Submanifold reconstruction
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Triangulating a Riemann surface

Aa

a complex curve in the projective plane (parameterized as a real
surface of R®)
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Triangulating the conformational space of CsH g
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Applications and extensions

@ Discrete metric sets (see the previous lecture on the witness
complex)

@ Anisotropic mesh generation

- y
— />/\ 7
/

e

@ Non euclidean embedding space (e.g. statistical manifolds)
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