Mesh Generation

Jean-Daniel Boissonnat DataShape, INRIA http://www-sop.inria.fr/datashape

Meshing surfaces and 3D domains

- visualization and graphics applications
- CAD and reverse engineering
- geometric modelling in medecine, geology, biology etc.
- autonomous exploration and mapping (SLAM)
- scientific computing : meshes for FEM

Grid methods

Lorensen & Cline [87] : marching cube Lopez & Brodlie [03] : topological consistency Plantiga & Vegter [04] : certified topology using interval arithmetic

Morse theory

Stander & Hart [97] B., Cohen-Steiner & Vegter [04] : certified topology

Delaunay refinement

Hermeline [84] Ruppert [95] Shewchuk [02] Chew [93] B. & Oudot [03,04] Cheng et al. [04]

Main issues

Sampling

- How do we choose points in the domain ?
- What information do we need to know/measure about the domain ?

Meshing

- How do we connect the points ?
- Under what sampling conditions can we compute a good approximation of the domain ?

Scale and dimension

Algorithmic Geometry

Mesh generation

Sampling conditions [Federer 1958], [Amenta & Bern 1998]

$\begin{aligned} &(\epsilon, \bar{\eta}) \text{-net of } \mathbb{M} \\ &1. \ \mathcal{P} \subset \mathbb{M}, \forall x \in \mathbb{M} : \quad d(x, \mathcal{P}) \leq \epsilon \ \mathrm{lfs}(x) \\ &2. \ \forall p, q \in \mathcal{P}, \qquad ||p-q|| \geq \bar{\eta} \varepsilon \ \min(\mathrm{lfs}(p), \mathrm{lfs}(q)) \end{aligned}$

Algorithmic Geometry

Sampling conditions [Federer 1958], [Amenta & Bern 1998]

$\begin{array}{l} (\epsilon, \bar{\eta}) \text{-net of } \mathbb{M} \\ 1. \ \mathcal{P} \subset \mathbb{M}, \forall x \in \mathbb{M} : \quad d(x, \mathcal{P}) \leq \epsilon \ \mathrm{lfs}(x) \\ 2. \ \forall p, q \in \mathcal{P}, \qquad \qquad \|p - q\| \geq \bar{\eta}\varepsilon \ \min(\mathrm{lfs}(p), \mathrm{lfs}(q)) \end{array}$

Algorithmic Geometry

[Chew 93]

Definition

The restricted Delaunay triangulation $\text{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\text{Vor}(\mathsf{P}) \cap X$

If P is an ε -sample, any ball centered on X that circumscribes a facet f of $\text{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{lfs}(c_f)$

[Chew 93]

Definition

The restricted Delaunay triangulation $\text{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\text{Vor}(\mathsf{P}) \cap X$

If P is an ε -sample, any ball centered on *X* that circumscribes a facet *f* of $\text{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{lfs}(c_f)$

[Chew 93]

Definition

The restricted Delaunay triangulation $\text{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\text{Vor}(\mathsf{P}) \cap X$

If P is an ε -sample, any ball centered on *X* that circumscribes a facet *f* of $\text{Del}_X(\mathcal{P})$ has a radius $\leq \varepsilon \operatorname{lfs}(c_f)$

[Chew 93]

Definition

The restricted Delaunay triangulation $\text{Del}_X(\mathcal{P})$ to $X \subset \mathbb{R}^d$ is the nerve of $\text{Vor}(\mathsf{P}) \cap X$

Restricted Delaunay triang. of $(\varepsilon, \overline{\eta})$ -nets

[Amenta et al. 1998-], [B. & Oudot 2005]

- $\mathcal{S} \subset \mathbb{R}^3$ is a compact surface of positive reach without boundary
- *P* is an (ε, η
)-net with η
 ≥ cst and ε small enough

then

- Del_{|S}(S) provides good estimates of normals
- There exists a homeomorphism $\phi : \operatorname{Del}_{|S}(\mathcal{P}) \to \mathcal{S}$
- $\sup_{x}(\|\phi(x) x\|) = O(\varepsilon^2)$

Surface mesh generation by Delaunay refinement

[Chew 1993, B. & Oudot 2003]

 $\begin{array}{l} \phi: S \to \mathbb{R} = \text{Lipschitz function} \\ \forall x \in S, \ 0 < \phi_0 = \bar{\eta}_0 \, \varepsilon \, \text{rch}(\mathcal{S}) \leq \phi(x) < \\ \varepsilon \, \text{lfs}(x) \end{array}$

ORACLE : For a facet f of $\text{Del}_{|S}(\mathcal{P})$, return c_f , r_f and $\phi(c_f)$

A facet *f* is bad if $r_f > \phi(c_f)$

AlgorithmINITcompute an initial (small) sample $\mathcal{P}_0 \subset S$ REPEATIF f is a bad facetinsert_in_Del3D(c_f) ,update \mathcal{P} and $Del_{|S}(\mathcal{P})$ UNTILno bad facet remains

Surface mesh generation by Delaunay refinement

[Chew 1993, B. & Oudot 2003]

 $\begin{array}{l} \phi: S \to \mathbb{R} = \text{Lipschitz function} \\ \forall x \in S, \ 0 < \phi_0 = \bar{\eta}_0 \, \varepsilon \, \text{rch}(\mathcal{S}) \leq \phi(x) < \\ \varepsilon \, \text{lfs}(x) \end{array}$

```
ORACLE : For a facet f of \text{Del}_{|s|}(\mathcal{P}),
return c_f, r_f and \phi(c_f)
```

```
A facet f is bad if r_f > \phi(c_f)
```


Algorithm INIT compute an initial (small) sample $\mathcal{P}_0 \subset S$ REPEAT IF f is a bad facet $insert_in_Del3D(c_f)$, $update \mathcal{P}$ and $Del_{|S}(\mathcal{P})$ UNTIL no bad facet remains

The meshing algorithm in action

Mesh generation

The algorithm outputs a loose net of $\ensuremath{\mathcal{S}}$

Separation

$$\begin{split} \forall p \in \mathcal{P}, d(p, \mathcal{P} \setminus \{p\}) &= \|p - q\| \\ &\geq \min(\phi(p), \phi(q)) \\ &\geq \phi(p) - \|p - q\| \quad (\phi \text{ is Lipschitz}) \\ \Rightarrow \quad \|p - q\| \geq \frac{1}{2} \phi(p) \geq \frac{1}{2} \phi_0 > 0 \quad \Rightarrow \text{ the algorithm terminates} \end{split}$$

Density

- Each facet has a *S*-radius $r_f \le \phi(c_f) < \varepsilon \operatorname{lfs}(c_f)$
- ▶ If correctly initialized, $Del_{|S}(P)$ has a vertex on each cc of S

Size of the sample = $\Theta\left(\int_{S} \frac{dx}{\phi^{2}(x)}\right)$

Upper bound

$$B_{p} = B(p, \frac{\phi(p)}{2}), p \in \mathcal{P}$$

$$\int_{S} \frac{dx}{\phi^{2}(x)} \geq \sum_{p} \int_{(B_{p} \cap S)} \frac{dx}{\phi^{2}(x)} \qquad \text{(the } B_{p} \text{ are disjoint)}$$

$$\geq \frac{4}{9} \sum_{p} \frac{\operatorname{area}(B_{p} \cap S)}{\phi^{2}(p)} \qquad \phi(x) \leq \phi(p) + ||p - x||$$

$$\leq \frac{3}{2} \phi(p))$$

 $\leq \frac{3}{2} \phi(p)$)

Lower bound

Use a covering instead of a packing

Size of the sample = $\Theta\left(\int_{S} \frac{dx}{\phi^{2}(x)}\right)$

Upper bound

$$B_{p} = B(p, \frac{\phi(p)}{2}), p \in \mathcal{P}$$

$$\int_{S} \frac{dx}{\phi^{2}(x)} \geq \sum_{p} \int_{(B_{p} \cap S)} \frac{dx}{\phi^{2}(x)} \qquad \text{(the } B_{p} \text{ are disjoint)}$$

$$\geq \frac{4}{9} \sum_{p} \frac{\operatorname{area}(B_{p} \cap S)}{\phi^{2}(p)} \qquad \phi(x) \leq \phi(p) + ||p - x||$$

$$\geq \sum_{p} C = C |\mathcal{P}|$$

Lower bound

Use a covering instead of a packing

Chord lemma

Let *x* and *y* be two points of \mathbb{M} . We have

$$in \angle (xy, T_x) \le \frac{\|x-y\|}{2 \operatorname{rch}(\mathbb{M})};$$

2 the distance from *y* to T_x is at most $\frac{||x-y||^2}{2 \operatorname{rch}(\mathbb{M})}$.

Tangent space approximation

Lemma

[Whitney 1957]

If σ is a *j*-simplex whose vertices all lie within a distance *h* from a hyperplane $H \subset \mathbb{R}^d$, then

$$\sin \angle (\operatorname{aff}(\sigma), H) \le \frac{2jh}{D(\sigma)} = \frac{2h}{\Theta(\sigma)\Delta(\sigma)}$$

Corollary

If σ is a *j*-simplex, $j \le k$, vert $(\sigma) \subset \mathbb{M}$, $\Delta(\sigma) \le 2\varepsilon \operatorname{rch}(\mathbb{M})$

$$orall p \in \sigma, \quad \sin \angle (\mathrm{aff}(\sigma), T_p) \leq rac{2arepsilon}{\Theta(\sigma)}$$

($h \leq rac{\Delta(\sigma)^2}{2\operatorname{rch}(\mathbb{M})}$ by the Chord Lemma)

Schwarz lantern

Thickness and angle bounds for triangles

Triangulated pseudo-surface

For ε small enough, $\mathrm{Del}_{|S}(\mathcal{P})$ is a triangulated pseudo-surface

• Any edge e of $\text{Del}_{|S}(\mathcal{P})$ has exactly two incident facets

• The adjacency graph of the facets is connected

Triangulated pseudo-surface

e an edge of $\hat{\mathbb{M}}$, f any face incident on e

• V(p) bounded $\Rightarrow |V(e) \cap S|$ is even

2 V(f) intersects *S* at most once

Proof of 2 by contradiction: $c, c' \in V(f) \cap S$

a. $||c - c'|| \le 2\varepsilon \operatorname{rch}(S) \Rightarrow \sin \angle (cc', T_c) \le \varepsilon$ b. $cc' \perp f$ (dual face) c. $T_c \approx aff(f)$ (Chord L.)

(Whitney's L.)

Triangulated pseudo-surface

e an edge of $\hat{\mathbb{M}}$, f any face incident on e

• V(p) bounded $\Rightarrow |V(e) \cap S|$ is even

2 V(f) intersects *S* at most once

Proof of 2 by contradiction: $c, c' \in V(f) \cap S$

a.
$$||c - c'|| \le 2\varepsilon \operatorname{rch}(S) \Rightarrow \sin \angle (cc', T_c) \le \varepsilon$$
(Chord L.)b. $cc' \perp f$ (dual face)(Whitney's L.)

The Delaunay refinement algorithm produces

- an ε net \mathcal{P} of \mathcal{S}
- a triangulated surface \hat{S}
 - homeomorphic to S
 - ► close to S (Hausdorff/Fréchet distance O(ε²), approximation of normals O(ε))

- Implicit surfaces f(x, y, z) = 0
- Isosurfaces in a 3d image (Medical images)
- Triangulated surfaces (Remeshing)
- Point sets (Surface reconstruction)

see cgal.org, CGALmesh project

Results on smooth implicit surfaces

Meshing 3D domains

Input from segmented 3D medical images

[INSERM]

Comparison with the Marching Cube algorithm

Delaunay refinement

Marching cube

Meshing with sharp features

A polyhedral example

Meshing 3D multi-domains

Input from segmented 3D medical images [IRCAD]

Size bound (mm)	vertices nb	facets nb	tetrahedra nb	CPU Time (s)
16	3,743	3,735	19,886	0.880
8	27,459	19,109	159,120	6.97
4	199,328	76,341	1,209,720	54.1
2	1,533,660	311,420	9,542,295	431

Surface reconstruction from unorganized point sets

Courtesy of P. Alliez

Algorithmic Geometry

Mesh generation