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Definition and existence of nets

Definition

Let Ω be a bounded subset of Rd. A finite set of points P is called an
(ε, η̄)-net of Ω iff

Density : ∀x ∈ Ω, ∃p ∈ P : ‖x− p‖ ≤ ε
Separation : ∀p, q ∈ P : ‖p− q‖ ≥ η̄ ε

Lemma Ω admits an (ε, 1)-net.

Proof. While there exists a point p ∈ Ω, d(p,P) ≥ ε, insert p in P
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Size of a net

Lemma The number of points of an (ε, η̄)-net is at most

n(ε, η̄) ≤ vold(Ω
η
2 )

vold(B(η2 ))
= O

(
1
εd

)
where the constant in the O depends on the geometry of Ω and on η̄d.

Proof. Consider the balls B(p, η2 ) of radius η
2 that are centered at the

points p ∈ P. These balls are disjoint by definition of an (ε, η̄)-sample
and they are all contained in Ω

η
2

Algorithmic Geometry Good Triangulations J-D. Boissonnat 3 / 29



Delaunay complex of a net

lemma Let Ω be a bounded subset of Rd, P an (ε, η̄)-net of Ω, and
assume that d and η̄ are positive constants. The restriction of the
Delaunay triangulation of P to Ω has linear size O(n) where
n = |P| = O( 1

εd )

Proof. 1. First bound the number of neighbours of p is np = O(1) using a
volume argument

2. Bound the number of simplices incident on a vertex is at most
d+1∑
i=1

(
np

i

)
≤

np∑
i=0

(
np

i

)
= 2np .

3. For the construction, use a grid Gε of resolution ε and compute, for each
p ∈ P, the subset N(p) ⊂ P of points that lie at distance at most 2ε from the
cell that contains p. We have

|N(p)| = O(1) and star(p,Del|Ω(P)) = star(p,Del|Ω(N(p))
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Nets in discrete metric spaces

We are only given the distance of interpoint distances (not the
locations of the points)

Lemma Let W be a finite set of points such that the distance of any
point q ∈ W to W \ {q} is at most ε and let λ ≥ ε. One can extract from
W a subsample L that is a (λ, 1)-net of W.
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Farthest point insertion

Input: the distance matrix of a finite point set W and either a positive
constant λ (Case 1) or an integer k (Case 2)

1. L := ∅
2. L(w) := p∞ for all w ∈ W
3. λ∗ := maxw∈W ‖w− L(w)‖
4. w∗ := a point p ∈ W such that ‖p− L(p)‖ = λ∗

5. while either λ∗ > λ (Case 1) or |L| < k (Case 2)
5.1 add w∗ to L
5.2 for each point w of W such that ‖w− w∗‖ < ‖w− L(w)‖ do

5.2.1 L(w)) := w∗

5.2.2 update w∗

6. Output : L ⊆ W, a (λ, 1)-net of W (Case 1), an approximate solution
to the k-centers problem (Case 2)
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Analysis of the algorithm

For any i > 0, Li = {p1, ..., pi} and λi = d(pi,Li−1)

Since Li grows with i : j ≥ i ⇒ λj ≤ λi

Lemma At each iteration i > 0, Li is a (λi, 1)-net of W.

Proof

1. Li is λi-dense in W ...

2. Li is λi-separated: papb closest par in Li, ‖pa − pb‖ = λb ≥ λi
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The k-centers problem

Problem : Select from W a subset L of k points so as to maximize the
minimum pairwise distance between the points of L.

Lemma The farthest insertion algorithm (Case 2) provides a
2-approximation to the k-centers problem.

Proof

W ⊂ ∪k−1
i=1 B(li, λk)

⇒ Two points of Lopt lie in the same ball B(li, λk), i ≤ k − 1

⇒ ∃p, q ∈ Lopt s.t. ‖p− q‖ ≤ 2λk

The distance between any two points of L is at least λk.
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Some optimality properties of Delaunay triangulations

Among all possible triangulations of P, Del(P)

1 (2d) maximizes the smallest angle [Lawson]

2 (2d) Linear interpolation of {(pi, f (pi))} that minimizes [Rippa]

R(T) =
∑

i

∫
Ti

((
∂φi
∂x

)2
+
(
∂φi
∂y

)2
)

dx dy (Dirichlet energy)

φi = linear interpolation of the f (pj) over triangle Ti ∈ T

3 minimizes the radius of the maximal smallest ball
enclosing a simplex ) [Rajan]

ct = c′t ct c′t

rt r′t
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Optimizing the angular vector (d = 2)

Angular vector of a triangulation T(P)

ang (T(P)) = (α1, . . . , α3t), α1 ≤ . . . ≤ α3t

Optimality Any triangulation of a given point set P whose angular
vector is maximal (for the lexicographic order) is a Delaunay
triangulation of P

Good for matrix conditioning in FE methods
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Local characterization of Delaunay complexes

f
q1 q2

σ1

σ2

Pair of regular simplices

σ2(q1) ≥ 0 and σ1(q2) ≥ 0

⇔ ĉ1 ∈ h+
σ2

and ĉ2 ∈ h+
σ1

Theorem A triangulation T(P) such that all pairs of simplexes are regular
is a Delaunay triangulation Del(P)

Proof The PL function whose graph G is obtained by lifting the triangles
is locally convex and has a convex support

⇒ G = conv−(Q̂) ⇒ T(Q) = Del(Q)
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Lawson’s proof using flips

a

b

c

d

a

b

d

c

t3

t4

a4

c4
d4

a3

b3

d3

a1
t1

c1

b1

c2
d2

t2

b2

While ∃ a non regular pair (t3, t4)

/* t3 ∪ t4 is convex */

replace (t3, t4) by (t1, t2)

Regularize⇔ improve ang (T(P))

ang (t1, t2) ≥ ang (t3, t4)

a1 = a3 + a4, d2 = d3 + d4,
c1 ≥ d3, b1 ≥ d4, b2 ≥ a4, c2 ≥ a3

I The algorithm terminates since the number of triangulations of P is
finite and ang(T(P)) cannot decrease

I The obtained triangulation is a Delaunay triangulation of P since all
its edges are regular
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Flat simplices may exist in higher dimensional DT

! !
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##
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####################5#&"-0&(#9"&:""+#-#(8#/(8"#/0&"8*0;%

>45$+6&*(+%7#6(8+"8#?"8&*6"%
5#1,"-$0&(#9"&:""+#@#(8#/(8"#/0&"8*0;%#

Each square face can be circumscribed by an empty sphere
This remains true if the grid points are slightly perturbed
therefore creating flat tetrahedra
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The long quest for thick triangulations

Differential Topology [Cairns], [Whitehead], [Whitney], [Munkres]

Differential Geometry [Cheeger et al.]

Geometric Function Theory [Peltonen], [Saucan]
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Simplex quality

Altitudes
D(q, σ)

σq

q If σq, the face opposite q in σ is
protected, The altitude of q in σ is

D(q, σ) = d(q, aff(σq)),

where σq is the face opposite q.

Definition (Thickness [Cairns, Whitney, Whitehead et al.] )
The thickness of a j-simplex σ with diameter ∆(σ) is

Θ(σ) =

{
1 if j = 0
minp∈σ

D(p,σ)
j∆(σ) otherwise.
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Protection

δ

cσ

δ-protection We say that a Delaunay simplex σ ⊂ L is δ-protected if

‖cσ − q‖ > ‖cσ − p‖+ δ ∀p ∈ σ and ∀q ∈ L \ σ.

Algorithmic Geometry Good Triangulations J-D. Boissonnat 16 / 29



Protection implies separation and thickness

Let P be a (ε, η̄)-net, i.e.

∀x ∈ Ω, d(x,P) ≤ ε

∀p, q ∈ P, ‖p− q‖ ≥ η̄ε

if all d-simplices of Del(P) are δ̄ε-protected, then

Separation of P : η̄ ≥ δ̄

Thickness : ∀σ ∈ Del(P), Θ(σ) ≥ δ̄2

8d
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The Lovász Local Lemma
Motivation

Given: A set of (bad) events A1, ...,AN ,
each happens with proba(Ai) ≤ p < 1

Question : what is the probability that none of the events occur?

The case of independent events

proba(¬A1 ∧ ... ∧ ¬AN) ≥ (1− p)N > 0

What if we allow a limited amount of dependency among the
events?
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LLL : symmetric version [Lovász & Erdös 1975]

Under the assumptions

1 proba(Ai) ≤ p < 1
2 Ai depends of ≤ Γ other events Aj

3 proba(Ai) ≤ 1
e (Γ+1) e = 2.718...

then
proba(¬A1 ∧ ... ∧ ¬AN) > 0
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Moser and Tardos’ constructive proof of the LLL [2010]

P a finite set of mutually independent random variables

A a finite set of events that are determined by the values of S ⊆ P
Two events are independent iff they share no variable

Algorithm

for all P ∈ P do
vP ← a random evaluation of P;

while ∃A ∈ A : A happens when (P = vP,P ∈ P) do

pick an arbitrary happening event A ∈ A;

for all P ∈ variables(A) do
vP ← a new random evaluation of P;

return (vP)P∈P ;
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Moser and Tardos’ theorem

if

1 proba(Ai) ≤ p < 1
2 Ai depends of ≤ Γ other events Aj

3 proba(Ai) ≤ 1
e (Γ+1) e = 2.718...

then ∃ an assignment of values to the variables P such that no event
in A happens

The randomized algorithm resamples an event A ∈ A at most 1
Γ

expected times before it finds such an evaluation

The expected total number of resampling steps is at most N
Γ
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Home work

Read the proof of Moser & Tardos (or Spencer’s nice note)

Learn about the parallel and the derandomized versions

Listen to a talk by Aravind Srinivasan on further extensions
https://video.ias.edu/csdm/2014/0407-AravindSrinivasan
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Protecting Delaunay simplices via perturbation

Picking regions : pick p′ in B(p, ρ) Hyp. ρ ≤ η
4 (≤ ε

2)

Sampling parameters of a perturbed point set

If P is an (ε, η̄)-net, P′ is an (ε′, η̄′)-net, where

ε′ = ε(1 + ρ̄) and η̄′ =
η̄ − 2ρ̄
1 + ρ̄

≥ η̄

3

Notation : x̄ = x
ε
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The LLL framework

Random variables : P′ a set of random points {p′, p′ ∈ B(p, ρ), p ∈ P}

Event: ∃φ′ = (σ′, p′) (Bad configuration)
σ′ is a d simplex with Rσ′ ≤ ε+ ρ
p′ ∈ Zδ(σ′) Zδ(σ′) = B(cσ′ ,Rσ′ + δ) \ B(cσ′ ,Rσ′)

Algorithm
Input: P, ρ, δ

while an event φ′ = (σ′, p′) occurs do

resample the points of φ′

update Del(P′)

Output: P′ and Del(P′)
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Bounding Γ

Lemma : An event is independent of all but at most Γ other bad
events where Γ depends on η̄, ρ̄, δ̄ and d

Proof :

Let φ′ = (σ′, p′) be a bad configuration.

∀p′ ∈ φ′, ‖p′ − cσ′‖ ≤ Rσ′ + δ = R = ε+ ρ+ δ = ε (1 + ρ̄+ δ̄)

the number of events that may not be independent from an event (σ′, p′)
is at most the number of subsets of (d + 1) points in B(cσ′ , 3R).

Since P′ is η′-sparse,

Γ =

(
3R + η′

2
η′

2

)d(d+1)

=

(
1 + 6

(1 + ρ̄+ δ̄) (1 + ρ̄)

η̄ − 2ρ̄

)d(d+1)
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Bounding proba(σ, p) be a bad configuration

p

B(p, ρ)

2β

S(c, R)

S1

θ R

ρ

c

S(c,R) a hypersphere of Rd

Tδ = B(c,R + δ) \ B(c,R)

Bρ any d-ball of radius ρ < R

vold(Tδ ∩ Bρ) ≤ Ud−1 (Rθ)d−1
δ,

2
π θ ≤ sin θ ≤ ρ

R (θ < π
2 ⇐ ρ < R)

⇒ Rθ ≤ π
2 ρ

proba(p′ ∈ Zδ(σ′)) ≤ $ =
Ud−1

Ud

2
π
δ
ρ ≤ C√

d
δ
ρ
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Main result

Under condition
2d+1e
π

(Γ + 1) δ ≤ ρ ≤ η

4
the algorithm terminates.

Guarantees on the output
I dH(P,P′) ≤ ρ
I the d-simplices of Del(P′) are δ-protected

I and therefore have a positive thickness
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Bound on the number of events

Σ(p′) : number of d-simplices that can possibly make a bad
configuration with p′ ∈ P′ for some perturbed set P′

R = ε+ ρ+ δ

∑
p′∈P′

Σ(p′) ≤ n× |P′ ∩ B(p′, 2R)|d+1

≤ n

(
2 (1 + ρ̄+ δ̄ + η̄′

2
η̄′

2

)d(d+1)

= C′ n
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Complexity of the algorithm

The number of resamplings executed by the algorithm is at most

Cn
Γ
≤ C′′ n

where C′′ depends on η̄, ρ̄, δ̄ and (exponentially) d

Each resampling consists in perturbing O(1) points

Updating the Delaunay triangulation after each resampling takes
O(1) time

The expected complexity is linear in the number of points
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