Good Triangulations

Jean-Daniel Boissonnat DataShape, INRIA http://www-sop.inria.fr/geometrica

Definition

Let Ω be a bounded subset of \mathbb{R}^d . A finite set of points *P* is called an $(\varepsilon, \bar{\eta})$ -net of Ω iff

Density : $\forall x \in \Omega, \exists p \in P : ||x - p|| \le \varepsilon$ **Separation :** $\forall p, q \in P : ||p - q|| \ge \overline{\eta} \varepsilon$

Lemma Ω admits an $(\varepsilon, 1)$ -net.

Proof. While there exists a point $p \in \Omega$, $d(p, P) \ge \varepsilon$, insert p in P

Size of a net

Lemma The number of points of an $(\varepsilon, \bar{\eta})$ -net is at most

$$n(\varepsilon,\bar{\eta}) \leq \frac{\operatorname{\mathsf{vol}}_d(\Omega^{\frac{\eta}{2}})}{\operatorname{\mathsf{vol}}_d(B(\frac{\eta}{2}))} = O\left(\frac{1}{\varepsilon^d}\right)$$

where the constant in the *O* depends on the geometry of Ω and on $\bar{\eta}^d$.

Proof. Consider the balls $B(p, \frac{\eta}{2})$ of radius $\frac{\eta}{2}$ that are centered at the points $p \in P$. These balls are disjoint by definition of an $(\varepsilon, \overline{\eta})$ -sample and they are all contained in $\Omega^{\frac{\eta}{2}}$

Delaunay complex of a net

lemma Let Ω be a bounded subset of \mathbb{R}^d , P an $(\varepsilon, \overline{\eta})$ -net of Ω , and assume that d and $\overline{\eta}$ are positive constants. The restriction of the Delaunay triangulation of P to Ω has linear size O(n) where $n = |\mathsf{P}| = O(\frac{1}{\varepsilon^d})$

Proof. 1. First bound the number of neighbours of p is $n_p = O(1)$ using a volume argument

2. Bound the number of simplices incident on a vertex is at most

$$\sum_{i=1}^{d+1} \left(egin{array}{c} n_p \ i \end{array}
ight) \leq \sum_{i=0}^{n_p} \left(egin{array}{c} n_p \ i \end{array}
ight) = 2^{n_p}.$$

3. For the construction, use a grid G_{ε} of resolution ε and compute, for each $p \in P$, the subset $N(p) \subset P$ of points that lie at distance at most 2ε from the cell that contains p. We have

$$|N(p)| = O(1)$$
 and $\operatorname{star}(p, \operatorname{Del}_{|\Omega}(\mathsf{P})) = \operatorname{star}(p, \operatorname{Del}_{|\Omega}(N(p)))$

Algorithmic Geometry

Good Triangulations

We are only given the distance of interpoint distances (not the locations of the points)

Lemma Let *W* be a finite set of points such that the distance of any point $q \in W$ to $W \setminus \{q\}$ is at most ε and let $\lambda \ge \varepsilon$. One can extract from *W* a subsample *L* that is a $(\lambda, 1)$ -net of *W*.

Farthest point insertion

Input: the distance matrix of a finite point set *W* and either a positive constant λ (Case 1) or an integer *k* (Case 2)

1.
$$L := \emptyset$$

2. $L(w) := p_{\infty}$ for all $w \in W$
3. $\lambda^* := \max_{w \in W} ||w - L(w)||$
4. $w^* := a \text{ point } p \in W \text{ such that } ||p - L(p)|| = \lambda^*$
5. while either $\lambda^* > \lambda$ (Case 1) or $|L| < k$ (Case 2)
5.1 add w^* to L
5.2 for each point w of W such that $||w - w^*|| < ||w - L(w)||$ do
5.2.1 $L(w)$) := w^*
5.2.2 update w^*

6. **Output :** $L \subseteq W$, a (λ , 1)-net of *W* (Case 1), an approximate solution to the *k*-centers problem (Case 2)

Analysis of the algorithm

For any
$$i > 0$$
, $L_i = \{p_1, ..., p_i\}$ and $\lambda_i = d(p_i, L_{i-1})$
Since L_i grows with $i: j \ge i \Rightarrow \lambda_j \le \lambda_i$

Lemma At each iteration i > 0, L_i is a $(\lambda_i, 1)$ -net of W.

Proof

- 1. L_i is λ_i -dense in W ...
- 2. L_i is λ_i -separated: $p_a p_b$ closest par in L_i , $||p_a p_b|| = \lambda_b \ge \lambda_i$

Problem : Select from W a subset L of k points so as to maximize the minimum pairwise distance between the points of L.

Lemma The farthest insertion algorithm (Case 2) provides a 2-approximation to the *k*-centers problem.

Proof

•
$$W \subset \bigcup_{i=1}^{k-1} B(l_i, \lambda_k)$$

 \Rightarrow Two points of L_{opt} lie in the same ball $B(l_i, \lambda_k), i \leq k-1$

$$\Rightarrow \exists p, q \in L_{\text{opt}} \text{ s.t. } \|p - q\| \le 2\lambda_k$$

• The distance between any two points of *L* is at least λ_k .

Some optimality properties of Delaunay triangulations

Among all possible triangulations of \mathcal{P} , $Del(\mathcal{P})$

(2d) maximizes the smallest angle [Lawson]

- (2d) Linear interpolation of $\{(p_i, f(p_i))\}$ that minimizes [Rippa] $R(T) = \sum_i \int_{T_i} \left(\left(\frac{\partial \phi_i}{\partial x} \right)^2 + \left(\frac{\partial \phi_i}{\partial y} \right)^2 \right) dx dy \qquad \text{(Dirichlet energy)}$ $\phi_i = \text{linear interpolation of the } f(p_j) \text{ over triangle } T_i \in T$
- Image in the maximal smallest ball enclosing a simplex)

 $\dot{c}_t = d_t$

Some optimality properties of Delaunay triangulations

Among all possible triangulations of \mathcal{P} , $Del(\mathcal{P})$

- (2d) maximizes the smallest angle
 [Lawson]
- **2** (2d) Linear interpolation of $\{(p_i, f(p_i))\}$ that minimizes [Rippa]

$$R(T) = \sum_{i} \int_{T_{i}} \left(\left(\frac{\partial \phi_{i}}{\partial x} \right)^{2} + \left(\frac{\partial \phi_{i}}{\partial y} \right)^{2} \right) dx dy$$
(Dirichlet energy)
$$\phi_{i} = \text{linear interpolation of the } f(p_{i}) \text{ over triangle } T_{i} \in T$$

iminimizes the radius of the maximal smallest ball enclosing a simplex)

 $\dot{c}_t = d'_t$

Some optimality properties of Delaunay triangulations

Among all possible triangulations of \mathcal{P} , $Del(\mathcal{P})$

- (2d) maximizes the smallest angle [Lawson]
- **2** (2d) Linear interpolation of $\{(p_i, f(p_i))\}$ that minimizes [Rippa]

$$R(T) = \sum_{i} \int_{T_{i}} \left(\left(\frac{\partial \phi_{i}}{\partial x} \right)^{2} + \left(\frac{\partial \phi_{i}}{\partial y} \right)^{2} \right) dx dy$$
(Dirichlet energy)
$$\phi_{i} = \text{linear interpolation of the } f(p_{i}) \text{ over triangle } T_{i} \in T$$

Image in the maximal smallest ball enclosing a simplex)

[Rajan]

Good Triangulations

Optimizing the angular vector (d = 2)

Angular vector of a triangulation $T(\mathcal{P})$

ang
$$(T(\mathcal{P})) = (\alpha_1, \ldots, \alpha_{3t}), \quad \alpha_1 \leq \ldots \leq \alpha_{3t}$$

Optimality Any triangulation of a given point set \mathcal{P} whose angular vector is maximal (for the lexicographic order) is a Delaunay triangulation of \mathcal{P}

Good for matrix conditioning in FE methods

Local characterization of Delaunay complexes

Pair of regular simplices

$$\sigma_2(q_1) \ge 0$$
 and $\sigma_1(q_2) \ge 0$

$$\Leftrightarrow \hat{c}_1 \in h_{\sigma_2}^+$$
 and $\hat{c}_2 \in h_{\sigma_1}^+$

Theorem A triangulation T(P) such that all pairs of simplexes are regular is a Delaunay triangulation Del(P)

Proof The PL function whose graph *G* is obtained by lifting the triangles is locally convex and has a convex support

$$\Rightarrow \quad G = \operatorname{conv}^{-}(\hat{Q}) \quad \Rightarrow \quad T(Q) = \operatorname{Del}(Q)$$

Algorithmic Geometry

Good Triangulations

Local characterization of Delaunay complexes

Pair of regular simplices

$$\sigma_2(q_1) \ge 0$$
 and $\sigma_1(q_2) \ge 0$

$$\Leftrightarrow \hat{c}_1 \in h_{\sigma_2}^+$$
 and $\hat{c}_2 \in h_{\sigma_1}^+$

Theorem A triangulation T(P) such that all pairs of simplexes are regular is a Delaunay triangulation Del(P)

Proof The PL function whose graph *G* is obtained by lifting the triangles is locally convex and has a convex support

$$\Rightarrow \quad G = \operatorname{conv}^{-}(\hat{Q}) \quad \Rightarrow \quad T(Q) = \operatorname{Del}(Q)$$

Local characterization of Delaunay complexes

Pair of regular simplices

$$\sigma_2(q_1) \ge 0$$
 and $\sigma_1(q_2) \ge 0$

$$\Leftrightarrow \hat{c}_1 \in h_{\sigma_2}^+$$
 and $\hat{c}_2 \in h_{\sigma_1}^+$

Theorem A triangulation T(P) such that all pairs of simplexes are regular is a Delaunay triangulation Del(P)

Proof The PL function whose graph *G* is obtained by lifting the triangles is locally convex and has a convex support

$$\Rightarrow \quad G = \operatorname{conv}^{-}(\hat{Q}) \quad \Rightarrow \quad T(Q) = \operatorname{Del}(Q)$$

Lawson's proof using flips

While \exists a non regular pair (t_3, t_4)

/* $t_3 \cup t_4$ is convex */

replace (t_3, t_4) by (t_1, t_2)

 $\begin{array}{l} \textbf{Regularize} \Leftrightarrow \textbf{improve ang}\left(T(\mathcal{P})\right) \\ \textbf{ang}\left(t_1, t_2\right) \geq \textbf{ang}\left(t_3, t_4\right) \\ a_1 = a_3 + a_4, \, d_2 = d_3 + d_4, \\ c_1 \geq d_3, \ b_1 \geq d_4, \ b_2 \geq a_4, \ c_2 \geq a_3 \end{array}$

- ► The algorithm terminates since the number of triangulations of P is finite and ang(T(P)) cannot decrease
- The obtained triangulation is a Delaunay triangulation of P since all its edges are regular

Lawson's proof using flips

While \exists a non regular pair (t_3, t_4)

/* $t_3 \cup t_4$ is convex */

replace (t_3, t_4) by (t_1, t_2)

Regularize \Leftrightarrow improve ang $(T(\mathcal{P}))$ ang $(t_1, t_2) \ge$ ang (t_3, t_4) $a_1 = a_3 + a_4, d_2 = d_3 + d_4,$ $c_1 \ge d_3, b_1 \ge d_4, b_2 \ge a_4, c_2 \ge a_3$

- ► The algorithm terminates since the number of triangulations of P is finite and ang(T(P)) cannot decrease
- ► The obtained triangulation is a Delaunay triangulation of P since all its edges are regular

Lawson's proof using flips

While \exists a non regular pair (t_3, t_4)

/* $t_3 \cup t_4$ is convex */

replace (t_3, t_4) by (t_1, t_2)

Regularize \Leftrightarrow improve ang $(T(\mathcal{P}))$ ang $(t_1, t_2) \ge$ ang (t_3, t_4) $a_1 = a_3 + a_4, d_2 = d_3 + d_4,$ $c_1 \ge d_3, b_1 \ge d_4, b_2 \ge a_4, c_2 \ge a_3$

- ► The algorithm terminates since the number of triangulations of P is finite and ang(T(P)) cannot decrease
- The obtained triangulation is a Delaunay triangulation of P since all its edges are regular

Flat simplices may exist in higher dimensional DT

- Each square face can be circumscribed by an empty sphere
- This remains true if the grid points are slightly perturbed therefore creating flat tetrahedra

The long quest for thick triangulations

Differential Topology

Differential Geometry

Geometric Function Theory

[Cairns], [Whitehead], [Whitney], [Munkres]

[Cheeger et al.]

[Peltonen], [Saucan]

Simplex quality

Altitudes

) If σ_q , the face opposite q in σ is protected, The *altitude* of q in σ is

$$D(q,\sigma) = d(q, \operatorname{aff}(\sigma_q)),$$

where σ_q is the face opposite q.

Definition (Thickness

[Cairns, Whitney, Whitehead et al.]

The *thickness* of a *j*-simplex σ with diameter $\Delta(\sigma)$ is

$$\Theta(\sigma) = \begin{cases} 1 & \text{if } j = 0\\ \min_{p \in \sigma} \frac{D(p, \sigma)}{j \Delta(\sigma)} & \text{otherwise.} \end{cases}$$

Simplex quality

Altitudes

 $\begin{array}{l} D(q,\sigma) & \text{If } \sigma_q, \text{ the face opposite } q \text{ in } \sigma \text{ is} \\ \swarrow & \text{protected, The altitude of } q \text{ in } \sigma \text{ is} \end{array}$

$$D(q,\sigma) = d(q, \operatorname{aff}(\sigma_q)),$$

where σ_q is the face opposite q.

Definition (Thickness

[Cairns, Whitney, Whitehead et al.])

The *thickness* of a *j*-simplex σ with diameter $\Delta(\sigma)$ is

$$\Theta(\sigma) = \begin{cases} 1 & \text{if } j = 0 \\ \min_{p \in \sigma} \frac{D(p,\sigma)}{j\Delta(\sigma)} & \text{otherwise.} \end{cases}$$

Protection

 δ -protection We say that a Delaunay simplex $\sigma \subset L$ is δ -protected if

$$||c_{\sigma} - q|| > ||c_{\sigma} - p|| + \delta \quad \forall p \in \sigma \text{ and } \forall q \in L \setminus \sigma.$$

Protection implies separation and thickness

Let P be a $(\varepsilon, \overline{\eta})$ -net, i.e.

- $\forall x \in \Omega$, $d(x, P) \leq \varepsilon$
- $\forall p, q \in P$, $||p-q|| \ge \bar{\eta}\varepsilon$

if all *d*-simplices of Del(P) are $\bar{\delta}\varepsilon$ -protected, then

- Separation of $P: \bar{\eta} \geq \bar{\delta}$
- Thickness : $\forall \sigma \in \text{Del}(P), \quad \Theta(\sigma) \geq \frac{\overline{\delta}^2}{8d}$

The Lovász Local Lemma Motivation

Given: A set of (bad) events $A_1, ..., A_N$, each happens with $proba(A_i) \le p < 1$

Question : what is the probability that none of the events occur?

The case of independent events

$$\operatorname{proba}(\neg A_1 \wedge \ldots \wedge \neg A_N) \ge (1-p)^N > 0$$

What if we allow a limited amount of dependency among the events?

The Lovász Local Lemma Motivation

Given: A set of (bad) events $A_1, ..., A_N$, each happens with $proba(A_i) \le p < 1$

Question : what is the probability that none of the events occur?

The case of independent events

$$\operatorname{proba}(\neg A_1 \wedge \ldots \wedge \neg A_N) \ge (1-p)^N > 0$$

What if we allow a limited amount of dependency among the events?

The Lovász Local Lemma Motivation

Given: A set of (bad) events $A_1, ..., A_N$, each happens with $proba(A_i) \le p < 1$

Question : what is the probability that none of the events occur?

The case of independent events

$$\operatorname{proba}(\neg A_1 \wedge \ldots \wedge \neg A_N) \ge (1-p)^N > 0$$

What if we allow a limited amount of dependency among the events?

Under the assumptions

2 A_i depends of $\leq \Gamma$ other events A_j

3 proba
$$(A_i) \le \frac{1}{e(\Gamma+1)}$$
 $e = 2.718...$

then

$$\text{proba}(\neg A_1 \land \ldots \land \neg A_N) > 0$$

Moser and Tardos' constructive proof of the LLL [2010]

 \mathcal{P} a finite set of mutually independent random variables \mathcal{A} a finite set of events that are determined by the values of $S \subseteq \mathcal{P}$ Two events are independent iff they share no variable

Algorithm

for all $P \in \mathcal{P}$ do $v_P \leftarrow$ a random evaluation of P; while $\exists A \in \mathcal{A} : A$ happens when $(P = v_P, P \in \mathcal{P})$ do pick an arbitrary happening event $A \in \mathcal{A}$; for all $P \in \text{variables}(A)$ do $v_P \leftarrow$ a new random evaluation of P;

return $(v_P)_{P \in \mathcal{P}}$

Moser and Tardos' constructive proof of the LLL [2010]

 \mathcal{P} a finite set of mutually independent random variables \mathcal{A} a finite set of events that are determined by the values of $S \subseteq \mathcal{P}$

Two events are independent iff they share no variable

Algorithm

for all $P \in \mathcal{P}$ do $v_P \leftarrow$ a random evaluation of P;

while $\exists A \in \mathcal{A} : A$ happens when $(P = v_P, P \in \mathcal{P})$ do

pick an arbitrary happening event $A \in A$;

for all $P \in \text{variables}(A)$ do $v_P \leftarrow$ a new random evaluation of P;

return $(v_P)_{P \in \mathcal{P}}$;

Moser and Tardos' theorem

if

2 A_i depends of $\leq \Gamma$ other events A_j

(a) $\operatorname{proba}(A_i) \le \frac{1}{e(\Gamma+1)}$ e = 2.718...

then \exists an assignment of values to the variables \mathcal{P} such that no event in \mathcal{A} happens

The randomized algorithm resamples an event $A \in A$ at most expected times before it finds such an evaluation

The expected total number of resampling steps is at most

 $\frac{N}{\Gamma}$

- Read the proof of Moser & Tardos (or Spencer's nice note)
- Learn about the parallel and the derandomized versions
- Listen to a talk by Aravind Srinivasan on further extensions https://video.ias.edu/csdm/2014/0407-AravindSrinivasan

Protecting Delaunay simplices via perturbation

Picking regions : pick p' in $B(p, \rho)$ Hyp. $\rho \leq \frac{\eta}{4} \ (\leq \frac{\varepsilon}{2})$

Sampling parameters of a perturbed point set

If P is an $(\varepsilon, \overline{\eta})$ -net, P' is an $(\varepsilon', \overline{\eta}')$ -net, where

$$arepsilon' = arepsilon(1+ar
ho)$$
 and $ar\eta' = rac{ar\eta - 2ar
ho}{1+ar
ho} \geq rac{ar\eta}{3}$

Notation : $\bar{x} = \frac{x}{\varepsilon}$

Protecting Delaunay simplices via perturbation

Picking regions : pick p' in $B(p, \rho)$ Hyp. $\rho \leq \frac{\eta}{4} \ (\leq \frac{\varepsilon}{2})$

Sampling parameters of a perturbed point set

If P is an $(\varepsilon, \overline{\eta})$ -net, P' is an $(\varepsilon', \overline{\eta}')$ -net, where

$$arepsilon' = arepsilon(1+ar
ho)$$
 and $ar\eta' = rac{ar\eta - 2ar
ho}{1+ar
ho} \geq rac{ar\eta}{3}$

Notation : $\bar{x} = \frac{x}{\varepsilon}$

The LLL framework

Random variables : P' a set of random points $\{p', p' \in B(p, \rho), p \in \mathsf{P}\}$

Event:
$$\exists \phi' = (\sigma', p')$$
(Bad configuration) σ' is a d simplex with $R_{\sigma'} \leq \varepsilon + \rho$ $p' \in Z_{\delta}(\sigma')$ $Z_{\delta}(\sigma') = B(c_{\sigma'}, R_{\sigma'} + \delta) \setminus B(c_{\sigma'}, R_{\sigma'})$

Algorithm

Input: P, ρ , δ

```
while an event \phi' = (\sigma', p') occurs do
```

resample the points of ϕ'

```
update Del(P')
```

```
Output: P' and Del(P')
```

The LLL framework

Random variables : P' a set of random points $\{p', p' \in B(p, \rho), p \in \mathsf{P}\}$

Event: $\exists \phi' = (\sigma', p')$ (Bad configuration) σ' is a d simplex with $R_{\sigma'} \leq \varepsilon + \rho$ $p' \in Z_{\delta}(\sigma')$ $Z_{\delta}(\sigma') = B(c_{\sigma'}, R_{\sigma'} + \delta) \setminus B(c_{\sigma'}, R_{\sigma'})$

Algorithm

Input: P, ρ , δ

while an event $\phi' = (\sigma', p')$ occurs do

resample the points of ϕ'

```
update Del(P')
```

```
Output: P' and Del(P')
```

Lemma : An event is independent of all but at most Γ other bad events where Γ depends on $\bar{\eta}$, $\bar{\rho}$, $\bar{\delta}$ and d

Proof :

• Let $\phi' = (\sigma', p')$ be a bad configuration.

 $\forall p' \in \phi', \quad \|p' - c_{\sigma'}\| \le R_{\sigma'} + \delta = R = \varepsilon + \rho + \delta = \varepsilon \left(1 + \bar{\rho} + \bar{\delta}\right)$

- the number of events that may not be independent from an event (σ', p') is at most the number of subsets of (d + 1) points in $B(c_{\sigma'}, 3R)$.
- Since P' is η '-sparse,

$$\Gamma = \left(\frac{3R + \frac{\eta'}{2}}{\frac{\eta'}{2}}\right)^{d(d+1)} = \left(1 + 6\frac{\left(1 + \bar{\rho} + \bar{\delta}\right)\left(1 + \bar{\rho}\right)}{\bar{\eta} - 2\bar{\rho}}\right)^{d(d+1)}$$

Lemma : An event is independent of all but at most Γ other bad events where Γ depends on $\bar{\eta}$, $\bar{\rho}$, $\bar{\delta}$ and d

Proof :

• Let $\phi' = (\sigma', p')$ be a bad configuration.

$$\forall p' \in \phi', \quad \|p' - c_{\sigma'}\| \le R_{\sigma'} + \delta = R = \varepsilon + \rho + \delta = \varepsilon \left(1 + \bar{\rho} + \bar{\delta}\right)$$

- the number of events that may not be independent from an event (σ', p') is at most the number of subsets of (d + 1) points in $B(c_{\sigma'}, 3R)$.
- Since P' is η '-sparse,

$$\Gamma = \left(\frac{3R + \frac{\eta'}{2}}{\frac{\eta'}{2}}\right)^{d(d+1)} = \left(1 + 6\frac{\left(1 + \bar{\rho} + \bar{\delta}\right)\left(1 + \bar{\rho}\right)}{\bar{\eta} - 2\bar{\rho}}\right)^{d(d+1)}$$

Lemma : An event is independent of all but at most Γ other bad events where Γ depends on $\bar{\eta}$, $\bar{\rho}$, $\bar{\delta}$ and d

Proof :

• Let $\phi' = (\sigma', p')$ be a bad configuration.

 $\forall p' \in \phi', \quad \|p' - c_{\sigma'}\| \le R_{\sigma'} + \delta = R = \varepsilon + \rho + \delta = \varepsilon \left(1 + \bar{\rho} + \bar{\delta}\right)$

• the number of events that may not be independent from an event (σ', p') is at most the number of subsets of (d + 1) points in $B(c_{\sigma'}, 3R)$.

• Since P' is η '-sparse,

$$\Gamma = \left(\frac{3R + \frac{\eta'}{2}}{\frac{\eta'}{2}}\right)^{d(d+1)} = \left(1 + 6\frac{\left(1 + \bar{\rho} + \bar{\delta}\right)\left(1 + \bar{\rho}\right)}{\bar{\eta} - 2\bar{\rho}}\right)^{d(d+1)}$$

Lemma : An event is independent of all but at most Γ other bad events where Γ depends on $\bar{\eta}$, $\bar{\rho}$, $\bar{\delta}$ and d

Proof :

• Let $\phi' = (\sigma', p')$ be a bad configuration.

$$\forall p' \in \phi', \quad \|p' - c_{\sigma'}\| \le R_{\sigma'} + \delta = R = \varepsilon + \rho + \delta = \varepsilon \left(1 + \bar{\rho} + \bar{\delta}\right)$$

- the number of events that may not be independent from an event (σ', p') is at most the number of subsets of (d + 1) points in $B(c_{\sigma'}, 3R)$.
- Since P' is η' -sparse,

$$\Gamma = \left(\frac{3R + \frac{\eta'}{2}}{\frac{\eta'}{2}}\right)^{d(d+1)} = \left(1 + 6\frac{\left(1 + \bar{\rho} + \bar{\delta}\right)\left(1 + \bar{\rho}\right)}{\bar{\eta} - 2\bar{\rho}}\right)^{d(d+1)}$$

Bounding $proba(\sigma, p)$ be a bad configuration

S(c, R) a hypersphere of \mathbb{R}^d

$$T_{\delta} = B(c, R + \delta) \setminus B(c, R)$$

 B_{ρ} any *d*-ball of radius $\rho < R$

$$\operatorname{vol}_d(T_\delta \cap B_\rho) \leq U_{d-1} \left(R\theta\right)^{d-1} \delta,$$

$$\frac{2}{\pi}\theta \le \sin\theta \le \frac{\rho}{R} \qquad (\theta < \frac{\pi}{2} \Leftarrow \rho < R)$$
$$\Rightarrow R\theta \le \frac{\pi}{2}\rho$$

 $\operatorname{proba}(p' \in Z_{\delta}(\sigma')) \leq \varpi = \frac{U_{d-1}}{U_d} \frac{2}{\pi} \frac{\delta}{\rho} \leq \frac{C}{\sqrt{d}} \frac{\delta}{\rho}$

Bounding $proba(\sigma, p)$ be a bad configuration

S(c, R) a hypersphere of \mathbb{R}^d

$$T_{\delta} = B(c, R + \delta) \setminus B(c, R)$$

 B_{ρ} any *d*-ball of radius $\rho < R$

$$\operatorname{vol}_d(T_\delta \cap B_\rho) \leq U_{d-1} \left(R\theta\right)^{d-1} \delta,$$

$$\frac{2}{\pi}\theta \le \sin\theta \le \frac{\rho}{R} \qquad (\theta < \frac{\pi}{2} \Leftarrow \rho < R)$$
$$\Rightarrow R\theta \le \frac{\pi}{2}\rho$$

$$\operatorname{proba}(p' \in Z_{\delta}(\sigma')) \leq \varpi = \frac{U_{d-1}}{U_d} \frac{2}{\pi} \frac{\delta}{\rho} \leq \frac{C}{\sqrt{d}} \frac{\delta}{\rho}$$

Main result

Under condition

$$\frac{2^{d+1}e}{\pi}\left(\Gamma+1\right)\delta\leq\rho\leq\frac{\eta}{4}$$

the algorithm terminates.

Guarantees on the output

- $d_H(P, P') \leq \rho$
- the *d*-simplices of Del(P') are δ -protected
- and therefore have a positive thickness

Main result

Under condition

$$\frac{2^{d+1}e}{\pi}\left(\Gamma+1\right)\delta\leq\rho\leq\frac{\eta}{4}$$

the algorithm terminates.

Guarantees on the output

•
$$d_H(P, P') \leq \rho$$

- the *d*-simplices of Del(P') are δ -protected
- and therefore have a positive thickness

Bound on the number of events

 $\Sigma(p')$: number of *d*-simplices that can possibly make a bad configuration with $p' \in P'$ for some perturbed set P'

 $\mathbf{R} = \varepsilon + \rho + \delta$

$$\sum_{p' \in P'} \Sigma(p') \leq n \times |P' \cap B(p', 2R)|^{d+1}$$
$$\leq n \left(\frac{2(1+\bar{\rho}+\bar{\delta}+\frac{\bar{\eta}'}{2})}{\frac{\bar{\eta}'}{2}}\right)^{d(d+1)}$$
$$= C' n$$

Complexity of the algorithm

The number of resamplings executed by the algorithm is at most

$$\frac{Cn}{\Gamma} \le C'' n$$

where C'' depends on $\bar{\eta}$, $\bar{\rho}$, $\bar{\delta}$ and (exponentially) *d*

- Each resampling consists in perturbing O(1) points
- Updating the Delaunay triangulation after each resampling takes *O*(1) time
- The expected complexity is linear in the number of points