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Definition and existence of nets

Definition

Let Q be a bounded subset of R?. A finite set of points P is called an
(e,n)-net of Q iff

Density : Vxc Q,3peP: |x—p| <e
Separation : Vp,q € P: |p —q|| > ¢

Lemma Q admits an (e, 1)-net.

Proof. While there exists a point p € 2, d(p,P) > ¢, insertp in P
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Size of a net

Lemma The number of points of an (e, 7)-net is at most

where the constant in the O depends on the geometry of Q and on 7.

Proof. Consider the balls B(p, 7) of radius 7 that are centered at the
points p € P. These balls are disjoint by definition of an (e, 77)-sample
and they are all contained in Q2
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Delaunay complex of a net

lemma Let 2 be a bounded subset of R?, P an (e, 7)-net of 2, and
assume that d and 7 are positive constants. The restriction of the
Delaunay triangulation of P to Q has linear size O(n) where

n=|P|=0(z)

ed

Proof. 1. First bound the number of neighbours of p is n, = O(1) using a
volume argument

2. Bound the number of simplices incident on a vertex is at most
d+1 n np n

P < P — oy
(1) =x(r)->

3. For the construction, use a grid G. of resolution ¢ and compute, for each
p € P, the subset N(p) C P of points that lie at distance at most 2¢ from the
cell that contains p. We have

IN(p)| = O(1) and star(p,Del|o(P)) = star(p, Deljo(N(p))
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Nets in discrete metric spaces

We are only given the distance of interpoint distances (not the
locations of the points)

Lemma Let W be a finite set of points such that the distance of any

point g € Wto W\ {¢} is at most ¢ and let A\ > . One can extract from
W a subsample L that is a (), 1)-net of W.
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Farthest point insertion

Input: the distance matrix of a finite point set W and either a positive
constant A (Case 1) or an integer k (Case 2)

1.L:=0
2. L(w) :=ps forallwe w
3. A i=maxyew ||w— L(w)]|
4. w* := apoint p € W such that ||p — L(p)|| = \*
5. while either \* > X\ (Case 1) or |L| < k (Case 2)
51addw*toL
5.2 for each point w of W such that ||w — w*|| < ||w — L(w)|| do
521 L(w)) :==w*
5.2.2 update w*
6. Output : L C W, a (), 1)-net of W (Case 1), an approximate solution
to the k-centers problem (Case 2)
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Analysis of the algorithm

Foranyi>0,L; = {pi,...,pi} and \; = d(pi, Li—1)
Since L; grows withi: j>i = N <\

Lemma At each iterationi > 0, L; is a (\;, 1)-net of W.

Proof
1. L;is A\;-dense in W ...

2. L; is \;-separated:  p,p, closest parin L;, ||ps — poll = Ao > i
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The k-centers problem

Problem : Select from W a subset L of k points so as to maximize the
minimum pairwise distance between the points of L.

Lemma The farthest insertion algorithm (Case 2) provides a
2-approximation to the k-centers problem.

Proof
o W UZ!B(li\)
= Two points of Ly lie in the same ball B(l;, \¢), i <k—1

= 3p,q € Loy L. [|p— g <2\

@ The distance between any two points of L is at least ).
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Some optimality properties of Delaunay triangulations

Among all possible triangulations of P, Del(P)

@ (2d) maximizes the smallest angle [Lawson]
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Some optimality properties of Delaunay triangulations

Among all possible triangulations of P, Del(P)

@ (2d) maximizes the smallest angle [Lawson]

© (2d) Linear interpolation of {(p;,f(p:))} that minimizes [Rippa]
2 2

R(T) =", fTi ((%ﬁ’) + (%ﬁ’) ) dx dy (Dirichlet energy)

¢; = linear interpolation of the f(p;) over triangle 7; € T

TN
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Some optimality properties of Delaunay triangulations

Among all possible triangulations of P, Del(P)

@ (2d) maximizes the smallest angle [Lawson]

© (2d) Linear interpolation of {(p;,f(p:))} that minimizes [Rippa]
2 2

R(T) =", fTi <(%ﬁ’> + (%ﬁ’) ) dx dy (Dirichlet energy)

¢; = linear interpolation of the f(p;) over triangle 7; € T

© minimizes the radius of the maximal smallest ball
enclosing a simplex ) [Rajan]

2 (@
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Optimizing the angular vector (d = 2)

Angular vector of a triangulation 7(P)

ang(T(P)):(al)"'7a3t)7 ar < .. < az

Optimality Any triangulation of a given point set P whose angular
vector is maximal (for the lexicographic order) is a Delaunay
triangulation of P

Good for matrix conditioning in FE methods
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Local characterization of Delaunay complexes

Pair of regular simplices

q1 q2
02(q1) >0 and oi(q2) >0

” & ¢ ehfand ¢ € hf

o1
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Local characterization of Delaunay complexes

Pair of regular simplices

q1 q2
02(q1) >0 and o(q2) >0

” & ¢ ehfand ¢ € hf

o1

Theorem A triangulation T(P) such that all pairs of simplexes are regular
is a Delaunay triangulation Del(P)
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Local characterization of Delaunay complexes

Pair of regular simplices
a Q2

02(q1) >0 and o(q2) >0

” & ¢ ehfand ¢ € hf

o1

Theorem A triangulation T(P) such that all pairs of simplexes are regular
is a Delaunay triangulation Del(P)

Proof The PL function whose graph G is obtained by lifting the triangles
is locally convex and has a convex support

= G=conv (Q) = T(Q)=Del(Q)
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Lawson’s proof using flips

While 3 a non regular pair (z3, 1)

[* t3 U 4 is convex */

replace (13,t4) by (1, 1)
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Lawson’s proof using flips

While 3 a non regular pair (z3, 1)
[* t3 U t4 is convex */

replace (13,t4) by (1, 1)

Regularize < improve ang (T(P))
ang (t,1,) > ang (3, 14)

a) = az +as, dr = dz + dy,
cr=>ds, by >ds, by>a4, 2203
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Lawson’s proof using flips

. ' z While 3 a non regular pair (13, 1)
‘ [* t3 U 4 is convex */
replace (13,t4) by (1, 1)
Regularize < improve ang (T(P))
ang (t,1,) > ang (3, 14)
a) = az +as, dr = dz + dy,
c1 2dy, by >dy, by >as, 2203

» The algorithm terminates since the number of triangulations of P is
finite and ang(7(P)) cannot decrease

» The obtained triangulation is a Delaunay triangulation of P since all
its edges are regular
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Flat simplices may exist in higher dimensional DT

Ier
Arsazaad!
R

@ Each square face can be circumscribed by an empty sphere

@ This remains true if the grid points are slightly perturbed
therefore creating flat tetrahedra
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The long quest for thick triangulations

Differential Topology [Cairns], [Whitehead], [Whitney], [Munkres]
Differential Geometry [Cheeger et al ]
Geometric Function Theory [Peltonen], [Saucan]
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Simplex quality

Altitudes
4 (¢,0) If o4, the face opposite g in o is

D
h / protected, The altitude of g in o is

D(q,0) = d(q; aff(0,)),

/ where o, is the face opposite g.
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Simplex quality

Altitudes
4 (¢,0) If o4, the face opposite g in o is

D
h / protected, The altitude of g in o is

D(q,0) = d(q; aff(0,)),

/ where o, is the face opposite g.

v

Definition (Thickness [Cairns, Whitney, Whitehead et al.] )
The thickness of a j-simplex o with diameter A(o) is

o) {! itj =0
= min,c, ?A(”(ﬁ)) otherwise.
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Protection

o-protection We say that a Delaunay simplex o C L is §-protected if

llco — gl > |lco —p|| +0 Vp€o and Vge L\ o.
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Protection implies separation and thickness

Let P be a (¢,7)-net, i.e.
@ VxeQ, dx,P)<ce

@ Vp,geP, |p—gqll=ne

if all d-simplices of Del(P) are je-protected, then

@ Separationof P: 7> 6

e Thickness : Vo € Del(P), ©O(0) > &
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The Lovasz Local Lemma

Motivation

Given: A set of (bad) events Ay, ..., Ay,
each happens with proba(A;) < p <1

Question : what is the probability that none of the events occur?
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The Lovasz Local Lemma

Motivation

Given: A set of (bad) events Ay, ..., Ay,
each happens with proba(A;) < p <1

Question : what is the probability that none of the events occur?

The case of independent events

proba(—A; A ... A—=Ay) > (1 =p)¥ >0
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The Lovasz Local Lemma

Motivation

Given: A set of (bad) events Ay, ..., Ay,
each happens with proba(A;) < p <1

Question : what is the probability that none of the events occur?

The case of independent events

proba(—A; A ... A—Ay) > (1 —p)VN >0

What if we allow a limited amount of dependency among the
events?
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LLL : symmetric version [Lovasz & Erdds 1975]

Under the assumptions
@ proba(4;) <p <1
@ A; depends of < T other events A;

© proba(4;) < ﬁ e=2718...

then
proba(—A; A ... A—Ay) >0
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Moser and Tardos’ constructive proof of the LLL [2010]

P a finite set of mutually independent random variables
A a finite set of events that are determined by the values of S C P
Two events are independent iff they share no variable

Algorithmic Geometry
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Moser and Tardos’ constructive proof of the LLL [2010]

P a finite set of mutually independent random variables
A a finite set of events that are determined by the values of S C P
Two events are independent iff they share no variable

Algorithm

forall P ¢ P do
vp < a random evaluation of P;

while 34 € A : A happens when (P =vp, P € P) do

pick an arbitrary happening event A € A;
for all P € variables(4) do
vp < a new random evaluation of P;

return (vp)pcp;

Algorithmic Geometry
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Moser and Tardos’ theorem

if

@ proba(A;)) <p<1
@ A; depends of < T other events 4;
© proba(4;) < e(F1+1) e=2718...

then 3 an assignment of values to the variables P such that no event
in A happens

The randomized algorithm resamples an event A € A at most !
expected times before it finds such an evaluation

The expected total number of resampling steps is at most N
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Home work

@ Read the proof of Moser & Tardos (or Spencer’s nice note)
@ Learn about the parallel and the derandomized versions

@ Listen to a talk by Aravind Srinivasan on further extensions

https://video.ias.edu/csdm/2014/0407-AravindSrinivasan
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Protecting Delaunay simplices via perturbation

Picking regions : pick p’ in B(p,p)  Hyp. p<2% (<

)

[NS110)
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Protecting Delaunay simplices via perturbation

)

[NS110)

Picking regions : pick p’ in B(p,p)  Hyp. p<2% (<

Sampling parameters of a perturbed point set

P’ is an (¢/,7)-net, where

g=¢(l+p) and 77 = =27
1+p —

If Pis an (e,7)-net,

W33

X

Notation : x = :

J-D. Boissonnat 23/29
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The LLL framework

Random variables : P’ a set of random points {p’, p’ € B(p,p),p € P}
Event: 3¢’ = (d',p') (Bad configuration)

o’ is a d simplex with R,s < e+ p
p, € Z(;(O'/) Z(g(o‘/) = B(CJ/,RU/ + 5) \B(CUI,RJ/)
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The LLL framework

Random variables : P’ a set of random points {p’, p’ € B(p,p),p € P}

Event: 3¢’ = (d',p') (Bad configuration)
o’ is a d simplex with R,s < e+ p
p, S Z(;(O'/) Zg(o‘l) = B(CJ/,RU/ + 5) \B(CUI,RJ/)

Algorithm
Input: P,p,d

while an event ¢’ = (¢’, p’) occurs do
resample the points of ¢’
update Del(P’)

Output: P’ and Del(P’)

v
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Bounding I'

Lemma : Aneventis independent of all but at most I" other bad
events where I' depends on 73, p, d and d

Proof :
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Bounding I'

Lemma : Aneventis independent of all but at most I" other bad
events where I' depends on 73, p, d and d

Proof :

@ Let ¢’ = (¢’,p’) be a bad configuration.

Vp'ed, |Ip—co| <Ry +6=R=c+p+5=c(l+p+9)
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Bounding I'

Lemma : Aneventis independent of all but at most I" other bad
events where I' depends on 73, p, d and d

Proof :

@ Let ¢’ = (¢’,p’) be a bad configuration.
Vp'ed, |Ip—co| <Ry +6=R=c+p+5=c(l+p+9)

@ the number of events that may not be independent from an event (¢/,p’)
is at most the number of subsets of (d + 1) points in B(c,,3R).
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Bounding I'

Lemma : Aneventis independent of all but at most I" other bad
events where I' depends on 73, p, d and d

Proof :

@ Let ¢’ = (¢’,p’) be a bad configuration.
Vp'ed, |Ip—co| <Ry +6=R=c+p+5=c(l+p+9)

@ the number of events that may not be independent from an event (¢/,p’)
is at most the number of subsets of (d + 1) points in B(c,,3R).

@ Since P’ is n’-sparse,

s\ d(d+1) o o\ d(d+1)
3R+ % 1+5+0)(1
r—( :2> —<1+6(+”+ +p)>
2
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Bounding proba(o, p) be a bad configuration
S(c,R) a hypersphere of R¢

Ts = B(c,R+9) \ B(c,R)

B, any d-ball of radius p < R
voly(Ts NB,) < Us_ (RO,

20 <sinf <
s

= RO

(0<% <= p<R)

/4
R
us
2

p
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Bounding proba(o, p) be a bad configuration

S(c,R) a hypersphere of R¢

Ts = B(c,R+6) \ B(c,R)

B, any d-ball of radius p < R
voly(Ts NB,) < Us_ (RO,

(0<% <= p<R)
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Main result

Under condition
2d+le

I'+1)6 < <l
( )5_P_I

the algorithm terminates.
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Main result

Under condition
2d+le

I'+1)6 < <l
( )5_P_I

the algorithm terminates.

Guarantees on the output
> dy(P,P)) < p
» the d-simplices of Del(P’) are é-protected

» and therefore have a positive thickness
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Bound on the number of events

Y (p') : number of d-simplices that can possibly make a bad
configuration with p’ € P’ for some perturbed set P’/

R=c+p+6

() < nx|PaBE 2R

pIEP/
(2( o+ g )d(d—i-l)
n =
il
2

= C'n

IN
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Complexity of the algorithm

@ The number of resamplings executed by the algorithm is at most

C
?ngcl/n

where C” depends on 7, p,  and (exponentially) d
@ Each resampling consists in perturbing O(1) points

@ Updating the Delaunay triangulation after each resampling takes
O(1) time

@ The expected complexity is linear in the number of points
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