Mesh Generation

Pierre Alliez INRIA Sophia Antipolis - Mediterranee

Definitions

- Mesh: Cellular complex partitioning an input domain into elementary cells.
- Elementary cell: Admits a bounded description.
- Cellular complex: Two cells are disjoint or share a lower dimensional face.

 Domains: 2D, 3D, nD, surfaces, manifolds, periodic vs non-periodic, etc.

 Elements: simplices (triangles, tetrahedra), quadrangles, polygons, hexahedra, arbitrary cells.

- Structured mesh: All interior nodes have an equal number of adjacent elements.
- Unstructured mesh: Any number of elements can meet at a single vertex.

Anisotropic vs Isotropic

Element distribution: Uniform vs adapted

Grading: Smooth vs fast

Required Properties

control/optimization over:

- #elements
- shape
- orientation
- size
- grading
- Boundary approximation error
- ... (application dependent)

Mesh Generation

- Input:
 - Domain boundary + internal constraints
 - Constraints
 - Sizing
 - Grading
 - Shape
 - Topology
 - ...

2D Triangle Mesh Generation

Input:

- PSLG C (planar straight line graph)
- Domain Ω bounded by edges of C

Output:

- triangle mesh T of Ω such that
 - vertices of C are vertices of T
 - edges of C are union of edges in T
 - triangles of T inside Ω have controlled size and quality

Key Idea

- Break bad elements by inserting circumcenters (Voronoi vertices) [Chew, Ruppert, Shewchuk,...]
 - "bad" in terms of size or shape

Basic Notions

C: PSLG describing the constraints T: Triangulation to be refined

Respect of the PSLG

- Edges a C are split until constrained subedges are edges of T
- Constrained subedges are required to be Gabriel edges
- An edge of a triangulation is a Gabriel edge if its smallest circumcirle encloses no vertex of T
- An edge e is encroached by point p if the smallest circumcirle of e encloses p.

Refinement Algorithm

C: PSLG bounding the domain to be meshed. T: Delaunay triangulation of the current set of vertices $T_{|\Omega}$: $T \cap \Omega$ Constrained subedges: subedges of edges of C

Initialise with T = Delaunay triangulation of vertices of C

Refine until no rule apply

- Rule 1
 if there is an encroached constrained subedge e
 insert c = midpoint(e) in T (refine-edge)
- Rule 2
 - if there is a bad facet f in $T_{\mid \Omega}$
 - c = circumcenter(f)
 - if c encroaches a constrained subedge e
 - refine-edge(e).

else

insert(c) in T

Background

Constrained Delaunay Triangulation

Pseudo-dual: Bounded Voronoi Diagram

constrained

Bounded Voronoi diagram

"blind" triangles

Delaunay Edge

An edge is said to be a **Delaunay edge**, if it is inscribed in an empty circle

Gabriel Edge

An edge is said to be a Gabriel edge, if its diametral circle is empty

Conforming Delaunay Triangulation

A constrained Delaunay triangulation is a conforming Delaunay triangulation, if every constrained edge is a Delaunay edge

non conforming

conforming

Conforming Gabriel Triangulation

A constrained Delaunay triangulation is a conforming Gabriel triangulation, if every constrained edge is a Gabriel edge

Steiner Vertices

Any constrained Delaunay triangulation can be refined into a conforming Delaunay or Gabriel triangulation by adding Steiner vertices.

Rule #1: break bad elements by inserting circumcenters (Voronoi vertices)

• "bad" in terms of size or shape (too big or skinny)

Rule #2: Midpoint vertex insertion

A constrained segment is said to be encroached, if there is a vertex inside its diametral circle

Encroached subsegments have priority over skinny triangles

Surface Mesh Generation

Mesh Generation

Key concepts:

- Voronoi/Delaunay filtering
- Delaunay refinement

Voronoi Filtering

 The Voronoi diagram restricted to a curve S, Vor_{|S}(E), is the set of edges of Vor(E) that intersect S.

Delaunay Filtering

 The restricted Delaunay triangulation restricted to a curve S is the set of edges of the Delaunay triangulation whose dual edges intersect S.

(2D)

Delaunay Filtering

Surface Mesh Generation Algorithm

repeat

{

```
pick bad facet f
insert furthest (dual(f) \cap S) in Delaunay triangulation
update Delaunay triangulation restricted to S
}
until all facets are good
```


Surface Meshing at Work

Isosurface from 3D Grey Level Image

input

Output Mesh Properties

Termination Parsimony

Output mesh properties:

- Well shaped triangles
 - Lower bound on triangle angles
- Homeomorphic to input surface
- Manifold
 - not only combinatorially, i.e., no self-intersection
- Faithful Approximation of input surface
 - Hausdorff distance
 - Normals

Delaunay Refinement vs Marching Cubes

Delaunay refinement

Marching cubes in octree

Guarantees

- Produces a good approximation of the surface
 - S is isotopic to S
 - $d_H(\hat{S}, S) = O_S(\varepsilon^2)$, error on normals, area = $O(\varepsilon)$
 - S is covered by the surface Delaunay balls of S
- Produces sparse samples of optimal size
 - the set E of vertices of Ŝ is a sparse 2ε-sample of S

•
$$|E| = O(\frac{\operatorname{area}(S)}{\varepsilon^2})$$

The aspect ratio of the facets can be controlled

Volume Mesh Generation

Volume Meshing

Couple the latter algorithm with 3D Delaunay refinement

(insert circumcenters of "bad" tetrahedra)

 Remove slivers at post-processing with sliver exudation

More Delaunay Filtering

Delaunay triangulation restricted to domain

Dual Voronoi vertex inside domain ("oracle")

Delaunay Filtering

3D Restricted Delaunay Triangulation

Steiner point O

Volume Mesh Generation Algorithm

```
repeat
```

```
pick bad simplex
if(Steiner point encroaches a facet)
refine facet
else
refine simplex
update Delaunay triangulation restricted to domain
}
until all simplices are good
Exude slivers
```


Apply the following rules with priority order

```
Rule 1: While there is a facet f in \text{Del}_{|bdO}(\mathcal{P})
with vertices \notin bdO
refine_facet(f)
```

Rule 2: While there is a bad facet f in $\text{Del}_{|bdO}(\mathcal{P})$ refine_facet(f)

Rule 3: While there is a bad tetrahedron t in $\text{Del}_{|O}(\mathcal{P})$ refine_tetrahedron_or_facet(t)

Example

RINRIA

Example

Multi-Domain Volume Mesh

Tetrahedron Zoo

Sliver

4 well-spaced vertices near the equator of their circumsphere

Slivers

Sliver Exudation [Edelsbrunner-Guoy]

- Delaunay triangulation turned into a regular triangulation with null weights.
- Small increase of weights triggers edge-facets flips to remove slivers.

Sliver Exudation Process

- Try improving all tetrahedra with an aspect ratio lower than a given bound
- Never flips a boundary facet

Example Sliver Exudation

Piecewise Smooth Surfaces

Input: Piecewise smooth complex

More Delaunay Filtering

primitive dual of test against Voronoi vertex tetrahedron inside domain Voronoi edge domain boundary facet intersect Voronoi face edge intersect crease 0

RINRIA

Steiner points

 \bigcirc

Enrich Set of Rules...

Delaunay refinement

Apply the following rules with priority order

```
Rule 1+2: While there is an edge e in some \text{Del}_{|L_j}(\mathcal{P})
with vertices \notin L_j
While there is a bad edge e in some \text{Del}_{|L_j}(\mathcal{P})
refine_edge(()e)
```

Rule 3+4: While there is a facet f in some $\text{Del}_{|S_i}(\mathcal{P})$ with vertices $\notin S_i$ While there is a bad facet f in $\text{Del}_{|\text{bd}O}(\mathcal{P})$ refine_facet_or_edge(f)

Rule 5: While there is a bad tetrahedron t in $Del_{|O}(\mathcal{P})$ refine_tetrahedron_or_facet_or_edge(t)

Sliver exudation

Delaunay refinement is followed by a sliver exudation phase

Example

Summary

Meshes

- Definition, variety
- Background
 - Voronoi
 - Delaunay
 - constrained Delaunay
 - restricted Delaunay
- Generation
 - 2D, 3D, Delaunay refinement

