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Introduction

Talk aims at showing some ties that (Computational)
Geometries share with machine learning:

1 some are obvious (3% of the talk),

2 others are related to some of the most fundamental questions of
machine learning:

What is learning ? How can an Algorithm “learn” ? (97%)

Geometries generally non Euclidean, basically non
Riemannian.

Slides available at
http://www.univ-ag.fr/∼rnock/Slides/Geotopal07/
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Supervised Learning

1 What is Supervised learning ?
2 Key components, quantities ?
3 Formal models of Supervised learning ?
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Supervised Learning > Example

Tic-tac-toe endgame configurations, X vs o, X has played first.

X O
X X X
O O

wins for X

X X
O O O

X
,

X O X
X O O
O X X

do not win for X

Input Output

Problem
Suppose you do not know the game.
(How) can you infer an accurate function Input→ Output ?
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Supervised Learning > Key concepts

Example: (x , y)

Ground information: each endgame configuration.

X O
X X X
O O

wins for X

is represented by: (XBOXXXOBO︸ ︷︷ ︸
observation

, +1︸︷︷︸
class

)

︸ ︷︷ ︸
example

Remarks:
1 Label = synonym of class (+1 = wins for X; −1 = does not

win for X)
2 We assume two classes wlog
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Supervised Learning > Key concepts (contd)

Domain: X
Let X denote the set of all board configurations (over n = 9
description variables). Some are endgames, some are not. Some are
even not admissible for tic-tac-toe (XXXXXXXXX).

Distributions: D
Example are drawn i.i.d., from some fixed and unknown distribution D
over X × {−1,+1}. Let weight vector w1 = D̂ over S.

Learning Sample: S
Suppose someone takes m endgame configurations (among the 958
distinct possible, according to D) and labels them. Let

S def
= {(x i , y∗i ) : x i ∈ X , y∗i ∈ {−1,+1}}m

i=1

be this set (+1 = wins for X, −1 = does not win for X).

Richard Nock Distortions and Learning



Supervised Learning > Key concepts (contd)

Classifier: H
Any function H : X → S ⊆ R. For example S = {−1,+1},R, ....

x ∈ X def
=

 v1 v2 v3
v4 v5 v6
v7 v8 v9


Example 1 Rule H1(x)

def
= If (v1 = X) ∧ (v5 = X) ∧ (v9 = X) Then +1 Else −1

Example 2 Rule H2(x)
def
= If (v2 = X) ∧ (v5 = O) ∧ (v9 = X) Then −1 Else +1

Example 3 Function H3(x)
def
= H1(x)H2(x)

Example 4 Function H4(x)
def
= sign(3H1(x)− 2H2(x))

(sign(z) = +1 iff z ≥ 0, and −1 otherwise)

H = set of classifiers sharing the same model.
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Supervised Learning > Another example

Geometric domain

−1

+1

X = R2

|S| = 8
4 positive, 4 negative
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Supervised Learning > Another example (contd)

Which classifier ?

decision frontier

−1
+1

+1

−1

+1

−1

−1

decision frontier:
a line piecewise linear curved,

regions not connex

Which set of classifiers H is the best ? most popular ?
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Supervised Learning > Key classifiers

Classifier: (H =)LS

w

|b|/||w||2

Linear Separators (linear models)

H(x) = 〈w ,x〉+ b ∈ R

Decision frontier: {x : H(x) = 0},
an hyperplane

Needs X ⊆ Rn, but not a constraint: find feature vector f s.t.

fi : X → R ,

and build H(x) = 〈α, f (x)〉+ β.
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Supervised Learning > Key classifiers

Classifier: DT

x2 x2

a

c

b
-3 -4

x1

< b

< a

< c

≥ a

≥ b ≥ c

+1 +2

x2

x1

s
s

Decision Trees

Decision frontier:
(portions of)
axis-⊥ hyperplanes.

Does not require X ⊆ Rn. Works with any kind of description
variable.
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Supervised Learning > Key quantities (general)

Loss function

`(y∗,H) : R2 → R+, computes to what extent the inputs match.

0

ℓ0/1(y∗, H(x))

−y∗H(x)

ℓlog(y∗, H(x))

ℓexp(y∗, H(x))

1

0

`0/1(a,b) = 1[sign(a) 6=sign(b)]

0/1 loss
(1π = 1 iff π true, 0 otherwise)
`exp(a,b) = exp(−ab)
exponential loss
`log(a,b) = log(1 + exp(−ab))
logistic loss
(+ many others)
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Supervised Learning > Key quantities (contd)

Empirical loss: εS(H)

Computes to what extent the labels match between S and H:

εw1(H)
def
=

m∑
i=1

w1,i`(y∗i ,H(x i)) = E(x ,y∗)∼w1
[`(y∗,H(x))]

True loss: εD(H)

Computes the real matching between labels, by extending the
prediction of H to D:

εD(H)
def
= E(x ,y∗)∼D[`(y∗,H(x))]

`(., .) : R2 → R+ = loss function.
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Supervised Learning > Key quantities (contd)

Consider `(., .) = 0/1 loss:

`0/1(a,b)
def
= 1[sign(a) 6=sign(b)] ,

The losses specialize to the empirical and true risks:

ε
0/1
w1

(H)
def
= E(x ,y∗)∼w1

[
1sign(H(x)) 6=y∗

]
,

ε
0/1
D (H)

def
= E(x ,y∗)∼D

[
1sign(H(x)) 6=y∗

]
Remark: if im(H) ⊆ R, it gives two informations:

1 the class, sign(H)

2 a confidence in the class, |H|

Richard Nock Distortions and Learning



Supervised Learning > Strong

Strong Learning

A is a Strong learning algorithm for some class of classifiers H
iff

Step A A takes as input 0 < ε, δ ≤ 1
Step B In time poly(1/ε, 1/δ,n, ...), A does the following:

Step B.1 A requests a set S sampled i.i.d. from D
Step B.2 A returns H ∈ H such that:

PrS∼Dm [ε
0/1
D (H) ≤ ε] ≥ 1− δ

Strong because requirements hold for any ε, δ within bounds.
δ = confidence parameter.
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Supervised Learning > Weak

Weak Learning
∼= Strong learning, but this time ε, δ are not user-fixed (Step A):

ε
def
= 1/2− γ for some small γ (e.g. cst, 1/poly(n), etc...)

δ
def
= γ

Thus, requirement in B.2 becomes:

PrS∼Dm [ε
0/1
D (H) ≤ 1/2− γ︸ ︷︷ ︸

close to 1/2

] ≥ γ︸︷︷︸
close to 0

Weak because H is only required to carry little “information”:

εD(unbiased coin) = 1/2 ,∀D

Unbiased coin carries no information about the link Input→ Output.
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Supervised Learning > Weak (contd)

The weakening on the confidence is superficial

PrS∼Dm [ε
0/1
D (H) ≤ 1/2− γ︸ ︷︷ ︸

event A

] ≥ γ

Run T ≥ (1/γ) log(1/δ) times Weak learning A (∀0 < δ ≤ 1):
the probability that event A never occurs is
≤ (1− γ)T ≤ exp(−Tγ) ≤ δ
thus, A has occurred at least once with probability ≥ 1− δ

..so we can consider that the main difference between Weak
and Strong learning relies on the (empirical, true) risks.
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Supervised Learning > Strong / Weak (summary)

To summarize, Supervised learning:

1 takes place in polynomial time,
2 means building a classifier that models a link between

inputs (observations) and outputs (classes)
3 means controlling (up to the relevant extent) the 0/1 loss

of this classifier

The third point is the most important for our purpose.

Richard Nock Distortions and Learning



Supervised Learning > Important problems

Strong learning

Is strong learning possible ?

Answers depend on H; many (early) complexity-theoretic negative results
[Kearns and Vazirani(1994)].

Weak learning

Is weak learning possible ?

Some positive answers [Mannor and Meir(2000)]; recent complexity-theoretic
negative results [Feldman(2006), Nock and Nielsen(2007b)].

Weak learning⇒ Strong learning (Boosting)

Suppose A has access to some Weak learning algorithm Wl

(Step B.1,5). (How) can A meet the requirements of Strong
learning ?

An early positive answer [Schapire(1990)].
Richard Nock Distortions and Learning



Learning Strategies

1 Most frequent strategies for Strong, Weak learning,
Boosting ?
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Learning Strategies > Strong learning

Principle
Two-step strategy for some H:

A Find a consistent classifier H, i.e. with ε0/1
w1

(H) = 0,∀S
(in P-time).

H Prove structural properties:
1 on the general H,
2 or on the subset of H in which A is guaranteed to find H.

Step 2 ensure that we can lift at low (statistical, algorithmic)
costs the consistency guarantee on S to the requirements of
Strong learning over D.
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Learning Strategies > Weak learning

Principle
Basically, computationally tractable search for a classifier
with weak guarantees on the empirical risk.

Typically, two strategies relying on exhaustive search:
1 focused inside a “good” subset of H if |H| too large

[Mannor and Meir(2000)].
- Algorithmic cost,
+ Theoretically convenient: Weak learning guaranteed.

2 inside some H of low poly-size. Main experimental
approach.

- Sometimes gives up with Weak learning,
+ Empirically convenient: Very fast.

Richard Nock Distortions and Learning



Learning Strategies > Boosting

Boosting has to solve a trick:

PrS∼Dm [ε
0/1
D (H) ≤ 1/2− γ] ≥ γ︸ ︷︷ ︸

Guaranteed on Wl

⇓

PrS∼Dm [ε
0/1
D (H) ≤ ε] ≥ 1− δ︸ ︷︷ ︸

Required on A

Recall that boosting the confidence is not a problem. So, how
can we “boost” the (empirical, true) risk: 1/2− γ → ε ?
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Learning Strategies > Boosting (contd)

(Rough, most popular) Principle, ∀H
Two-step strategy for some H:
Wl Get many (T ) classifiers from Wl:

ht ← Wl(S,w t) , t = 1,2, ...,T

(Wl is trained over weight vector that may differ from w1)
H Combine the T classifiers to get some HT ∈ H.

Very appealing properties:
for some Boosting algorithms, w t is repeatedly skewed
towards the examples that have been hard to classify so
far:

`0/1(y∗i ,ht(x i)) = 1 ⇒ wt+1,i > wt ,i
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Boosting Algorithms

1 Most popular algorithms ?
2 Common properties, differences ?
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Boosting Algorithms > LS > AdaBoost

Suppose that Wl returns ht : X → {−1,+1}.

(Discrete) AdaBoost
for t = 1,2, ...,T

1 ht ← Wl (S,w t);

2 αt ← 1
2 log

1−ε0/1
w t

(ht )

ε
0/1
w t

(ht )
;

3 ∀(x i , yi) ∈ S,wt+1,i ←
wt,i exp(−yiαt ht (x i ))

Zt
;

(Zt
def
= normalization coefficient for w t )

return HT =
∑T

t=1 αtht ;

+ Straightforward to implement, “best off the shelf classifier in the world”;

- restricted outputs for ht , {−1,+1}
(generalized in [Friedman et al.(2000)], [Nock and Nielsen(2007a)])
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Boosting Algorithms > LS > AdaBoost ∈ Boosting

A fundamental and simple property of AdaBoost:
1 Compute explicitly the normalization coefficient:

Zt = 2
√
ε

0/1
w t (ht)(1− ε0/1

w t (ht))

2 Unravel the update rule at the end of learning:
wT+1,i = w1,i exp(−y∗i HT (x i))/

∏
t Zt

3 Recall that the 0/1 loss is ≤ exponential loss:

`0/1(y∗,HT (x)) ≤ `exp(y∗,HT (x))
def
= exp(−y∗HT (x))

Sum (2) over S (this equals 1), multiply both sides by
Q

t Zt , use (1) and get with (3):

ε
0/1
w1

(HT ) ≤ 2T
∏

t

√
ε

0/1
w t (ht)(1− ε0/1

w t (ht))
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Boosting Algorithms > LS > AdaBoost ∈ Boosting

Suppose that Wl is a Weak learning algorithm, i.e.

ε
0/1
w t (ht) ≤ 1/2− γ (whp) .

We get:

ε
0/1
w1

(HT ) ≤ (1− 4γ2)T/2 ≤ exp(−2γ2T ) .

Fixing T = Ω((1/γ2) log m) makes the rhs < 1/m, i.e. (when
w1 = u def

= (1/m)1):
1 HT is consistent and AdaBoost is P-time;
2 The final LS meets the structural assumptions for Strong

learning;
hence, AdaBoost is Strong learning, and thus Boosting.
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Boosting Algorithms > DT

Property of a decision tree
The empirical risk can be decomposed at the leaves (each leaf
sign is the majority class wlog):

ε
0/1
w1

(HT ) =
∑

` leaf in HT

w1,` min{w+
1,`,1− w+

1,`}

= E`∼w1 [ min{w+
1,`,1− w+

1,`}︸ ︷︷ ︸
minority class % in `

]

x2 x2

partition of S in 4 subsets

x1

Sℓ

ℓ

S` = subset of S that reaches leaf `
w1,` = total weight of S` wrt w1
w+

1,` = total weight of class +1 in S` wrt w1, divided by w1,`

e.g. w+
1,` =

P
(x i ,+1)∈S`

w1,i/
P

(x i ,y∗i )∈S`
w1,i
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Boosting Algorithms > DT (contd)

Suppose that Wl returns stumps, i.e. depth-1 DTs.

-4

x

+2

< c ≥ c

1 These classifiers are so simple that A generally implements Wl
as well...

2 Most popular DT induction algorithms have two stages:

1 build a large tree (TDIDT),
2 prune the tree.

Here, we (deliberately) reduce them to their first stage.
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Boosting Algorithms > DT > TDIDT

Top-Down Induction of Decision Trees (TDIDT)

TDIDT (including Wl)

Initialize H0 to be a single leaf node (=root, S0 = S)
For t = 1,2, ...,T

1 pick some leaf ` in Ht−1.

Wl choose the best stump on S`:

h?t = arg min
ht

∑
` leaf in Ht−1⊕`ht

w1,` × φ(w+
1,`)︸ ︷︷ ︸

Splitting criterion = εw1
(Ht−1⊕ht ,φ)

2 Ht ← Ht−1 ⊕` h?t
return HT ∈ DT;

⊕`ht is the operation that replaces leaf ` by ht , resulting in a DT with one more leaf.
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Boosting Algorithms > DT > CART

Rewrite the splitting criterion as:

εw1
(HT , φ) = E`∼w1φ(w+

1,`)

The empirical risk satisfies ε0/1
w1

(H) = εw1
(HT , φemp) for

φemp(z)
def
= min{z,1− z}.

The first TDIDT scheme, proposed in [Breiman et al.(1984)]
proposes a different φ-criterion:

φCART(z) = 2z(1− z)

εw1
(HT , φCART) is the (expected) Gini index
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Boosting Algorithms > DT > C4.5, KM

Other popular TDIDT schemes make the difference only on the
choice of φ:

C4.5 [Quinlan(1993)] has

φC4.5(z) = −z log(z)− (1− z) log(1− z)

(log base 2)
εw1

(HT , φC4.5) is the the (expected) binary
entropy;

KM [Kearns and Mansour(1999)] has

φKM(z) = 2
√

z(1− z)

εw1
(HT , φKM) is the (expected) Matsushita error.
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Boosting Algorithms > DT > Permissible functions

Functions φemp, φCART, φC4.5, φKM have a crucial commonpoint:

Function φ is permissible iff:
• φ : [0,1]→ [0,1]
• φ(0) = φ(1) = 0
• φ sym. wrt z = 1/2

• φ concave

φ strictly permissible iff:
permissible and strictly concave

From bottom to top: 2× φemp, φCART, φC4.5, φKM.
All permissible, φemp not strictly permissible.
Normalization for φ(1/2) = 1 not necessary (only for readability).
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Boosting Algorithms > (Cart, C4.5, KM) ∈ Boosting ?

Fundamental property, easily checked from the last picture:

εw1
(HT , φemp)︸ ︷︷ ︸

empirical risk

≤ 1/2×


εw1

(HT , φCART)
εw1

(HT , φC4.5)
εw1

(HT , φKM)

Thus, minimizing any of the right criteria should amount to the
minimization of the empirical risk.

⇒Why so many criteria ?
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Boosting Algorithms > (Cart, C4.5, KM) ∈ Boosting ?

Consider the following assumption (Weak Learning Assumption):

WLA ∃γ > 0 s.t. for any set S ′, any distribution w ′ over S ′, there
exists a stump h for which:

ε
0/1
w ′ (h) ≤ 1/2− γ

-4

x

+2

< c ≥ c We basically assume that step ((1)+Wl)
is a Weak learning algorithm
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Boosting Algorithms > KM ∈ Boosting
Under assumption WLA, the following holds for KM and its output HT :

T ≥
(

1
ε

) c
γ2

⇒ ε
0/1
w1 (HT ) ≤ ε

c is a constant [Kearns and Mansour(1999), Henry et al.(2007)]
(improved c). Fixing ε < 1/m (w1 = u) makes:

1 HT consistent, and KM is P-time;

2 The final DT meets the structural assumptions for Strong
learning;

hence, KM is Strong learning, and thus Boosting.

AdaBoost needs only log calls to Wl compared to KM, but it is a
structural “difficulty” for DT

the number of calls to Wl is optimal for KM, from both the
informational and complexity-theoretic standpoints
[Kearns and Mansour(1999), Nock and Nielsen(2004)]
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Boosting Algorithms > (CART, C4.5) ∈ Boosting ?
Under assumption WLA, the following holds for C4.5 and its output
HT :

T ≥
(

1
ε

) c log(1/ε)

γ2

⇒ ε
0/1
w1 (HT ) ≤ ε

Under assumption WLA, the following holds for CART and its output
HT :

T ≥
(

1
ε

) c
γ2ε2

⇒ ε
0/1
w1 (HT ) ≤ ε

1 Fix ε < 1/m (w1 = u): the consistency is met, but C4.5 is
QP-time, while CART is EXP-time

2 Bounds above are lowerbounds. No tight bound is known, but
experimental results seem to confirm the results

3 φ = φemp would yield the poorest bounds of all (!)
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Boosting Algorithms > General Observations

Observation 1 Most DT induction algorithms do not minimize
directly the empirical risk, but (the expectation of) a
concave surrogate (an upperbound: Gini index,
entropy, Mastushita’s error)

Observation 2 AdaBoost does not minimize directly the empirical
risk, but (the expectation of) a convex surrogate, the
exponential loss:

εexp
w1 (HT ) = E(x,y)∼w1 [exp(−y∗HT (x))]

≥ ε
0/1
w1 (HT )

Observation 3 On DT induction, the more concave the permissible
function φ, the better the lowerbounds on T

Observation 4 On DT induction, the direct minimization of the
empirical risk yields the worst possible lowerbound on
T [Nock and Nielsen(2004)]
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Boosting Algorithms > Question

Supervised learning roughly aims at minimizing empirical risk.

Why focusing on surrogates ?

Numerous well known surrogates:

Concave For DT (and related classes): Gini index, entropy,
Matsushita’s error

Convex For LS:

εexp
w1 (HT ) = E(x,y)∼w1 [exp(−y∗HT (x))]

(Exponential loss: AdaBoost)

εlog
w1(HT ) = E(x,y)∼w1 [log(1 + exp(−2y∗HT (x)))]

(Logistic loss)

εsqu
w1 (HT ) = E(x,y)∼w1 [(1− y∗HT (x))2]

(Squared loss)...

Convex surrogates have the form F (y∗HT (x)).
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Boosting Algorithms > Question (contd)

Why focusing on surrogates ?

Explanations so far in this talk:

1 Algorithmic: better convergence properties. Not
satisfactory (lack of matching upperbounds).

2 Complexity-theoretic: empirical risk has more local minima
(0/1 loss takes on 2 values, thus has less discrimination).
Not satisfactory (can be hard for surrogates as well
[Nock and Nielsen(2004)]).

3 Others (statistics).

No explanation drills down into the fundamental links between
surrogates and classification.
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Bregman Divergences

1 Presentation of this class of distortion measures
2 An example of their widespread application in learning
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Bregman Divergences (contd)

Let ψ : X → R strictly convex and differentiable, X convex. The
Bregman divergence with generator ψ is:

Dψ(p||q) = ψ(p)− ψ(q)− 〈p − q,∇ψ(q)〉

ψ

Dψ(p,q)

q p

Hq

x

In general, does not satisfy symmetry, triangular inequality.
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Bregman Divergences > Example

Squared Euclidean distance

Generator ψ(p) = ‖p‖22 : strictly convex and differentiable
over Rn

Divergence

Dψ(p||q) = ψ(p)− ψ(q)− 〈p − q,∇ψ(q)〉
= ‖p‖22 − ‖q‖22 − 〈p − q,2q〉
= ‖p − q‖22
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Bregman Divergences > Example (contd)

Generalized I-Divergence

Generator ψ(p) =
∑

i pi log pi : strictly convex and
differentiable over Rn

+

Divergence

Dψ(p||q) =
∑

i

pi log
(

pi

qi

)
− pi + qi

If ψ restricted to the probability simplex, becomes
Kullback-Leibler divergence.
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Bregman Divergences > On-line learning
The first Supervised learning setting in which they have been
explicitly and extensively used.

On-line learning

a We are given a fixed set of experts {hi : X → {−1,+1}}m
i=1, a

stream of examples. w t ∈ Rm
+ is the current set of weights:

1 Receive example (x t , y∗t )
2 Make prediction Hm(x) =

∑
i wt,ihi(x)

3 Incur loss `(y∗t ,Hm(x t))
4 Modify the weights: w t+1 ← f (w t , `(y∗t ,Hm(x t)))
5 Go to 1

h1

h2

h3

hT(x, y) error ?
Objective:
Minimize the number of mistakes
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Bregman Divergences > On-line learning (contd)

On-line learning is a setting dual to Boosting (reverse the role
of the examples and hypotheses in learning). Computation of
w t+1 involves the aggregation of two Bregman divergences:

w t+1
def
= arg min

w


Dψ′(w ||w t)︸ ︷︷ ︸

regularization

+ηDψ

 T∑
t=1

wtht(x)||∇−1
ψ (y)︸ ︷︷ ︸
∈R


︸ ︷︷ ︸

matching loss


1 y def

= (1 + y∗)/2 ∈ {0,1} is the Boolean class.
2 η controls the tradeoff between the two losses.
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Axiomatization

1 What is the true loss `(y∗,H(x)) that we (really) want to
minimize on each example (x , y∗) ?
(we have seen many losses so far: 0/1, convex/concave
surrogates, Bregman divergences)

2 Can we find it based on its properties people usually
assume ?

3 Links with conventional losses ?
4 New losses, families ?
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Axiomatization > Preliminary

Lifting Classification to Estimation
Early “ages” of supervised learning usually preferred the
Boolean class:

y def
= (1 + y∗)/2 ∈ {0,1}

y is thus a 0/1 estimator for Pr[y∗ = +1|x ] (key ingredient for
Bayes rule).

1 Wlog, assume H able to return an estimator
H(x) 
 P̂rH [y∗ = +1|x ]

If im(H) ⊆ R,→ done by well-known transfo. (e.g. logistic)
If im(H) ⊆ [0,1],← done by e.g. sign(2H − 1) ∈ {−1,+1}

2 We end up with the analysis of `(., .) with dom(`) = [0,1]2
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Axiomatization > Summary

Relies on three assumptions in Supervised learning:
1 On the loss function
2 On the best possible rule
3 On the cost matrix for learning

Richard Nock Distortions and Learning



Axiomatization > Assumption 1

Non Negativity
People assume:

`(., .) ≥ 0
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Axiomatization > Assumption 2

Suppose that all examples of S share the same observation
x?. What is the best constant prediction for x? in average:

c = arg min
z∈[0,1]

E(x?,y)∼w1
[`(y , z)] =?

Bayes Optimality
People assume that the best prediction rule is Bayes rule:

sign(2Pr[y∗ = +1|x ]− 1)

Thus, the best constant prediction is the best estimator for
Pr[y∗ = +1|x ], i.e.:

c = E(x?,y)∼w1
[y ]
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Axiomatization > Assumption 3

Fundamental (often implicit) input to supervised learning: the
cost matrix L ∈ R2×2

+ .

predicted class
1 0

true class 1 `(1,1) `(1,0)
0 `(0,1) `(0,0)

The most general form for the empirical risk is:

ε
0/1
w1

(H)
def
= E(x ,y)∼w1

[`(y ,1H(x)≥1/2)]

Remark that even right classifications may incur some 6= 0 cost.
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Axiomatization > Assumption 3 (contd)

Symmetric Cost Matrix

People assume∗ that the cost matrix L satisfies the following
symmetries:

Diagonal `(1,1) = `(0,0) (= 0: no cost for right classifications)

Outside `(1,0) = `(0,1) (same cost for misclassifications)

(this simplifies the empirical risk to the one we have used since the
beginning). We thus have:

`(y , z) = `(1− y ,1− z)

(∗) Holds for domains that have no class-dependent misclassification
costs. The others are much less formalized.

Richard Nock Distortions and Learning



Axiomatization > BLFSP

Theorem

(here, φ = −φ)

Loss function `(., .) : [0,1]2 → R+

satisfies assumptions 1, 2, 3

if and only if

`(y , z) = D−φ(y , z)
with φ strictly permissible

(recall DT induction ?)
Strict subclass of Bregman divergences:
Strictly Permissible Bregman Loss Functions (BLFSP)
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Axiomatization > BLFSP (contd)

The loss we minimize has thus the general form (∀φ strictly
permissible):

εw1(H) = εw1,φ
(H)

def
= E(x ,y)∼w1

[Dφ(y ||P̂rH [y = 1|x ])]︸ ︷︷ ︸
(expectation of) BLFSP

and we can show:

ε
0/1
w1

(H) ≤ εw1,φ
(H)/φ(1/2)

Since φ(1/2) 6= 0, minimizing any BLFSP should amount to
minimizing the empirical risk as well.
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Axiomatization > BLFSP (contd)

Thus, supervised classification aims at minimizing (the
expectation of) some BLFSP.

Up to a large extent, this means minimizing the empirical risk
as well.

What else ?
1 links with surrogates ?
2 minimization algorithms ?
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Axiomatization > BLFSP > Convex conjugates...

Definition
Suppose ψ strictly convex, differentiable over X. Unique Convex
conjugate function ψ? obtained by the Legendre transformation:

ψ?(q) = sup
p∈X
{〈q,p〉 − F (p)}

Solve via ∇ψ?(q) = ∇(〈q,p〉 − ψ(p)) = 0, implying q = ∇ψ(p),
p = ∇−1

ψ (q), and ψ?(q) = 〈q,∇−1
ψ (q)〉 − ψ(∇−1

ψ (q)).

Dual Bregman divergence

Fundamental link between Bregman divergences:

Dψ(p||q) = Dψ∗(∇ψ(q)||∇ψ(p))
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Axiomatization > BLFSP > ...and Supervised learning

Convex conjugates bring the link between [0,1] classification
(y ) and real-valued classification (y∗). In the BLFSP εw1,φ

(H),
we can write:

Dφ

(
y ||P̂rH [y = 1|x ]

)
︸ ︷︷ ︸
BLFSP: [0,1] values

= Dφ
?

(
∇φ(P̂rH [y = 1|x ])||∇φ(y)

)
︸ ︷︷ ︸

divergence of real values

Because φ strictly permissible, ∇φ symmetric wrt (1/2,0):
1 ∇φ(y), the Real class, takes on two opposite values
2 Suppose im(H) ⊆ R. We obtain the transformation rule for

the [0,1] values:

P̂rH [y = 1|x ]
def
= ∇−1

φ
(H(x))
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Axiomatization > BLFSP > Example of plots for ∇φ
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∇φ(z), for various strictly permissible φ, depending

on its “concavity regime”

“mu” = upper regime

φM=KM(z) = 2
p

z(1 − z)

φQ=C4.5(z) = −z log(z) − (1 − z) log(1 − z)

φB=CART(z) = 4z(1 − z)

“zeta” = lower regime
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Axiomatization > BLFSP > Convex Surrogates (more)

Let im(H) ⊆ R.

Lemma

Dφ

(
y ||∇−1

φ
(H(x))

)
︸ ︷︷ ︸

[0,1] prediction

= φ
?
(−y∗H(x))︸ ︷︷ ︸

Real prediction

For any strictly permissible φ, Fφ(z) = φ
?
(−z)/φ(1/2) is called a

Permissible Convex Loss (PCL).

Of course:

ε
0/1
w1

(H) ≤ E(x ,y∗)∼w1
[Fφ(y∗H(x))]︸ ︷︷ ︸

(expectation of) PCL

Minimizing any PCL⇒ minimizing the empirical risk.
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Axiomatization > BLFSP > PCL

PCL take on well known special expressions.

φ(z) imH Fφ(y∗H) p̂H [y = y1|o]

= im(∇φ) = φ
?
(−y∗H)/φ(1/2) = ∇−1

φ
(H)

−z log z R log(1 + exp(−y∗H))* exp(H)
1+exp(H)

*

−(1− z) log(1− z)

z(1− z) [−1, 1]** (1− y∗H)2***
(1/2)(1 + H)p

z(1− z) R −y∗H +
p

1 + (y∗H)2 1
2

„
1 + H√

1+H2

«

* Logistic loss and logistic transform

** Explains why problems when H ∈ LS.

*** Squared loss

Many other examples
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Axiomatization > BLFSP > Example of plots for PCL
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Axiomatization > BLFSP — PCL : The link

We have seen

Supervised Learning⇔ min. BLFSP ⇔ min. PCL

Different standpoints on Supervised classification:
BLFSP: [0,1] classification, H computes probability
estimates
PCL: Real classification, H computes classes and
confidences

Lemma
AdaBoost’s exponential loss is not a PCL:

E(x ,y∗)∼w1
[exp(−y∗HT (x))]
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Minimization Algorithms

1 Algorithms that minimize some (any) BLFSP, PCL ?
2 Link with existing algorithms ? New algorithms ?
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Minimization Algorithms (contd)

Universal Minimization Algorithm

Let A(S,w1, φ) an algorithm that outputs classifiers from set H
1 If, for any S,w1, for any strictly permissible φ, A provably

minimizes the corresponding PCL/BLFSP (see below),
2 then A is called a Universal Minimization Algorithm for H.

E(x ,y∗)∼w1
[Fφ(y∗H(x))]︸ ︷︷ ︸

PCL: im(H)⊆R

or E(x ,y)∼w1
[Dφ(y ||P̂rH [y = 1|x ])]︸ ︷︷ ︸

BLFSP: im(H)=[0,1]

(No P-time complexity requirement)
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Minimization Algorithms > LS
Any BLFSP is convex in its first argument.

Convex conjugates for BLFSP

Let φ strictly permissible. ∀p ∈ R,∀q ∈ [0,1], the Legendre dual p � q
of the ordered pair (p,q) is:
p � q def

= argq′∈[0,1] sup{pq′ − Dφ(q
′||q)} (= ∇−1

φ
(p +∇φ(q)))

∇φ

0

p

q

1

p ⋄ q1/2

Legendre dual:

1- lifts q to im∇φ
2- combines with p
3- maps back to [0,1]
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Minimization Algorithms > ULS

A Universal Minimization Algorithm for LS: ULS.
1 suppose that we already know the set {h1,h2, ...,hT}, for

which im(ht) ⊆ R.
2 matrix M ∈ Rm×T defined as:

mit
def
= −y∗i ht(x i) , (x i , y∗i ) ∈ S

3 vector notation (Mα)i
def
= −y∗i

T∑
t=1

αtht(x i)︸ ︷︷ ︸
H(x i )

, ∀α ∈ RT

4 Uniform distribution w1
def
= u = (1/m)1 wlog (duplicate examples)

A None of the ht has zero empirical risk (otherwise learning not
necessary !)
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Minimization Algorithms > ULS

ULS is mainly a two-step iterative algorithm:
For j = 1,2, ..., J, do

1 update the weights over the examples
2 pick a subset Tj ⊆ {1,2, ...,T}, update the leveraging

coefficients of the classifiers ht , t ∈ Tj

“AdaBoosting flavor”. ULS specializes in different Boosting
schemes:

classical Boosting framework when |Tj | = 1,
totally corrective Boosting algorithm when
|Tj | = {1,2, ..., j}, etc.
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Minimization Algorithms > ULS

ULS

Input: M ∈ Rm×T , strictly permissible φ;
Initialize: α1 ← 0; (leveraging coefficient vector)
Initialize: w0 ← (1/2)1; (uniform, non-unit weights)
For j = 1,2, ..., J:

1 w j ← (Mαj) �w0; (Legendre dual componentwise)
2 Pick Tj ⊆ {1,2, ...,T} and let δj ← 0;
3 ∀t ∈ Tj , find δj,t such that:∑m

i=1 mit((Mδj) �w j)i = 0
4 αj+1 ← αj + δj ;

Output: H(x)
def
=

∑T
t=1 αJ+1,tht(x);

Property: (3) has always a solution under A.
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Minimization Algorithms > ULS

Theorem
If Tj is chosen as in classical Boosting, totally

corrective Boosting (and others),
Then ULS is a Universal Minimization Algorithm.

1 Full Theorem gives the necessary and sufficient conditions
on the choice of Tj for ULS to remain Universal.

2 ULS is the largest possible generalization to approaches in
[Collins et al.(2002)] (generalizing more implies violating
assumptions 1, 2 or 3)

3 Proof unveils the prominent role of “Bregman geometries”
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Minimization Algorithms > ULS > Proof technique

(1): Shift from (P-time) Learning to (Computational) Geometry

min
α∈RT

m∑
i=1

Fφ(y∗i H(x i))︸ ︷︷ ︸
PCL of the LS

= min
w∈U

m∑
i=1

Dφ(0||wi )︸ ︷︷ ︸
Dφ(0||w)

with U def
= {(Mα) �w0 : α ∈ RT} (recall w0

def
= (1/2)1)

w

0 Dφ(0||w)

IU

[0, 1]m

0 6∈ U under A
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Minimization Algorithms > ULS > Proof tech. (contd)

(2): Existence of a particular point in U

∀w? ∈ Rm,w? ∈ P ∩ U ⇔ w? = arg minw∈U Dφ(0||w)

with P def
= {z ∈ Rm : Mz = 0} = KerM

(recall U def
= {(Mα) �w0 : α ∈ RT} and w0

def
= (1/2)1)

0

IU

[0, 1]m

w⋆

IP

(w? is unique)

Objective: find w?
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Minimization Algorithms > ULS > Proof sketch

(3): ULS is a constrained minimization algorithm

Recall that ULS builds a sequence w0,w1, ...,wJ ∈ U.
Let an auxiliary function u : [0,1]m × [0,1]m → R for algorithm ULS
be a function that would satisfy:

Dφ(0||w j+1)− Dφ(0||w j) ≤ u(w j+1,w j) ≤ 0 (i)
u(w j+1,w j) = 0 ⇒ Mw j+1 = 0 (ii)

0

IU

[0, 1]m

w⋆

IP

w0

w1Dφ(0, .)

If u exists,
(i) ULS provably minimizes Dφ(0||w),
and in U.
(ii) upon convergence, ULS ends up
with some wJ ∈ P
Hence, wJ ∈ U ∩ P
Hence, wJ = w? = arg minw Dφ(0||w)
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Minimization Algorithms > ULS > Proof sketch (contd)

(4): The auxiliary function for ULS

The computation of w j and δj in ULS yields

Dφ(0||w j+1)− Dφ(0||w j) = −Dφ(w j+1||w j)︸ ︷︷ ︸
u(w j+1,w j )

u(w j+1,w j) ≤ 0, equality iff w j+1 = w j (prop of Bregman div.)

0

IU

wj+1

wj

Dφ(0,wj+1)

Dφ(0,wj)

Generalized Pythagoras Theorem

Dφ(0||w j) =

Dφ(0||w j+1) + Dφ(w j+1||w j)
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Minimization Algorithms > ULS > Summary

Summary:
1 ULS is a Universal Minimization Algorithm
2 Uses geometric properties on the weight vectors w to

converge
3 Under some Weak Learning Assumption about the ht ,

(loose) convergence rates
What about DT ? Any Universal minimization algorithm for DT ?
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Minimization Algorithms > LDT

We do not have to think everything from scratch: use
Linearized Decision Trees [Henry et al.(2007)]

x2 = 1

x1 = 1x1 = 0

+1 −1

+1

h1

h2

h5

h3

h4

x2 = 1

x1 = 0 x1 = 1

(α3, h3) = (3, +1)
(α1, h1) = (−2,+1)
(α2, h2) = (3, +1)
(α4, h4) = (0, +1)(α5, h5) = (2,−1)

x2

x1

x2 = 0x2 = 0

In a LDT,
1 reals on every node (not just leaves)
2 sum the reals over a path to decide the class
3 each path is a constant LS
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Minimization Algorithms > LDT (contd)

Twin DT
From any LDT, find the twin DT: for each path root — leaf,

1 computes the constant LS,
2 put the value at the leaf

At the end, remove in all internal nodes any couple (α, h). We
obtain a DT equivalent to the LDT.

h1

h2

h5

h3

h4

x2 = 1

x1 = 0 x1 = 1

(α3, h3) = (3, +1)
(α1, h1) = (−2, +1)
(α2, h2) = (3, +1)
(α4, h4) = (0, +1)(α5, h5) = (2,−1)

x2 = 1

x1 = 1x1 = 0

x2

x1

α1h1 + α2h2 + α4h4 = +1

α1h1 + α2h2 + α5h5 = −1

α1h1 + α3h3 = +1

x2 = 0 x2 = 0
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Minimization Algorithms > UDT

UDT recycles ULS on a strategy that minimizes the
corresponding PCL

To fit the internal couples (α, h), use ULS(S`,w1,`, φ)

h1

h2 h3

x2 = 1

x1 = 0 x1 = 1

(α3, h3) = (3, +1)
(α1, h1) = (−2, +1)
(α2, h2) = (3, +1)
(α4, h4) = (?, ?)

?ℓ

Sℓ
x2 = 0

To find the splits, further minimize the global PCL over the
choice of splits:

find the split replacing leaf ` which minimizes E(x,y∗)∼w1 [Fφ(y
∗H(x))]
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Minimization Algorithms > UDT (contd)

Lemma
UDT is a Universal Minimization Algorithm

Is it known ?...
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Minimization Algorithms > UDT =...

Theorem
Suppose we replace the LDT output by its twin DT.
UDT(S,w1, φ) simplifies exactly to the general TDIDT scheme
that minimizes εw1

(HT , φ) over the DT

Consequences (examples):
1 binds the most popular induction schemes for LS and DT

as the same (master) algorithm, that uses the same
geometric properties

2 AdaBoost and KM are the same algorithm
3 the exact optimization of the logistic loss

[Friedman et al.(2000)] is the same algorithm as C4.5
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What about AdaBoost ?

Recall that the exponential loss of AdaBoost is not
permissible... but:

Theorem
(a very slight) modification of AdaBoost is a Universal
Minimization Algorithm

1 A single loss helps to minimize all !
2 Not surprising: minimizing any BLFSP amounts to a

Maximum Likelihood estimation to fit Bernoulli or Laplace
priors.
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Perspectives

1 Transfer positive results: we can use this master
algorithm to obtain (new) formal Boosting algorithm for well
known other classes H:

The algorithm fits local linear separators on a particular
decision graph
We can combine the same algorithm in a recursive
fashion:

1 we obtain A,
2 we obtain Wl with the same algorithm,
3 and we can drill down even further...
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Perspectives (contd)

2 Transfer negative results: we can translate back and
forth bounds to get hint on the hardness of learning for
particular H

Example: bounds of [Kearns and Mansour(1999)] on DT
can be translated to LS
We get explicit bounds for the fact that the exact
minimization of the logistic loss [Friedman et al.(2000)] may
not be as efficient as AdaBoost
Optimizing the squared loss would be even less efficient
optimizing the empirical would be the less efficient of all
criteria (!)
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Perspectives (contd)

3 No-Free lunch Theorems: any algorithm has hard
problems

Find a good parameterization for φ: can we learn it while
learning the data (self improving algorithms) ?
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Thank you for your attention

For more information:
1 see paper [Henry et al.(2007)] and longer version:

Boosting does not get Lost in Translation
(Nock, Henry, Nielsen), 45pp, submitted

2 see also:
On Permissible Surrogates for Classification
(Nock, Nielsen), 52pp, submitted

(available upon request)
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