
Distortions and Learning

Richard Nock

Centre d’Etudes et de Recherches en Economie,
Gestion, Mathématiques et Informatique Appliquée

Université des Antilles-Guyane
Richard.Nock@martinique.univ-ag.fr

May 2007

Richard Nock Distortions and Learning

Introduction

Talk aims at showing some ties that (Computational)
Geometries share with machine learning:

1 some are obvious (3% of the talk),

2 others are related to some of the most fundamental questions of
machine learning:

What is learning ? How can an Algorithm “learn” ? (97%)

Geometries generally non Euclidean, basically non
Riemannian.

Slides available at
http://www.univ-ag.fr/∼rnock/Slides/Geotopal07/

Richard Nock Distortions and Learning

Outline

1 (What is) Supervised Learning ?
2 Learning Strategies
3 Boosting algorithms
4 Distortions for Learning: Bregman Divergences
5 Axiomatization (of Supervised Learning)
6 Minimization Algorithms
7 Related Questions and Perspectives

Richard Nock Distortions and Learning

Supervised Learning

1 What is Supervised learning ?
2 Key components, quantities ?
3 Formal models of Supervised learning ?

Richard Nock Distortions and Learning

Supervised Learning > Example

Tic-tac-toe endgame configurations, X vs o, X has played first.

X O
X X X
O O

wins for X

X X
O O O

X
,

X O X
X O O
O X X

do not win for X

Input Output

Problem
Suppose you do not know the game.
(How) can you infer an accurate function Input→ Output ?

Richard Nock Distortions and Learning

Supervised Learning > Key concepts

Example: (x , y)

Ground information: each endgame configuration.

X O
X X X
O O

wins for X

is represented by: (XBOXXXOBO︸ ︷︷ ︸
observation

, +1︸︷︷︸
class

)

︸ ︷︷ ︸
example

Remarks:
1 Label = synonym of class (+1 = wins for X; −1 = does not

win for X)
2 We assume two classes wlog

Richard Nock Distortions and Learning

Supervised Learning > Key concepts (contd)

Domain: X
Let X denote the set of all board configurations (over n = 9
description variables). Some are endgames, some are not. Some are
even not admissible for tic-tac-toe (XXXXXXXXX).

Distributions: D
Example are drawn i.i.d., from some fixed and unknown distribution D
over X × {−1,+1}. Let weight vector w1 = D̂ over S.

Learning Sample: S
Suppose someone takes m endgame configurations (among the 958
distinct possible, according to D) and labels them. Let

S def
= {(x i , y∗i) : x i ∈ X , y∗i ∈ {−1,+1}}m

i=1

be this set (+1 = wins for X, −1 = does not win for X).

Richard Nock Distortions and Learning

Supervised Learning > Key concepts (contd)

Classifier: H
Any function H : X → S ⊆ R. For example S = {−1,+1},R,

x ∈ X def
=

 v1 v2 v3
v4 v5 v6
v7 v8 v9


Example 1 Rule H1(x)

def
= If (v1 = X) ∧ (v5 = X) ∧ (v9 = X) Then +1 Else −1

Example 2 Rule H2(x)
def
= If (v2 = X) ∧ (v5 = O) ∧ (v9 = X) Then −1 Else +1

Example 3 Function H3(x)
def
= H1(x)H2(x)

Example 4 Function H4(x)
def
= sign(3H1(x)− 2H2(x))

(sign(z) = +1 iff z ≥ 0, and −1 otherwise)

H = set of classifiers sharing the same model.

Richard Nock Distortions and Learning

Supervised Learning > Another example

Geometric domain

−1

+1

X = R2

|S| = 8
4 positive, 4 negative

Richard Nock Distortions and Learning

Supervised Learning > Another example (contd)

Which classifier ?

decision frontier

−1
+1

+1

−1

+1

−1

−1

decision frontier:
a line piecewise linear curved,

regions not connex

Which set of classifiers H is the best ? most popular ?

Richard Nock Distortions and Learning

Supervised Learning > Key classifiers

Classifier: (H =)LS

w

|b|/||w||2

Linear Separators (linear models)

H(x) = 〈w ,x〉+ b ∈ R

Decision frontier: {x : H(x) = 0},
an hyperplane

Needs X ⊆ Rn, but not a constraint: find feature vector f s.t.

fi : X → R ,

and build H(x) = 〈α, f (x)〉+ β.

Richard Nock Distortions and Learning

Supervised Learning > Key classifiers

Classifier: DT

x2 x2

a

c

b
-3 -4

x1

< b

< a

< c

≥ a

≥ b ≥ c

+1 +2

x2

x1

s
s

Decision Trees

Decision frontier:
(portions of)
axis-⊥ hyperplanes.

Does not require X ⊆ Rn. Works with any kind of description
variable.

Richard Nock Distortions and Learning

Supervised Learning > Key quantities (general)

Loss function

`(y∗,H) : R2 → R+, computes to what extent the inputs match.

0

ℓ0/1(y∗, H(x))

−y∗H(x)

ℓlog(y∗, H(x))

ℓexp(y∗, H(x))

1

0

`0/1(a,b) = 1[sign(a) 6=sign(b)]

0/1 loss
(1π = 1 iff π true, 0 otherwise)
`exp(a,b) = exp(−ab)
exponential loss
`log(a,b) = log(1 + exp(−ab))
logistic loss
(+ many others)

Richard Nock Distortions and Learning

Supervised Learning > Key quantities (contd)

Empirical loss: εS(H)

Computes to what extent the labels match between S and H:

εw1(H)
def
=

m∑
i=1

w1,i`(y∗i ,H(x i)) = E(x ,y∗)∼w1
[`(y∗,H(x))]

True loss: εD(H)

Computes the real matching between labels, by extending the
prediction of H to D:

εD(H)
def
= E(x ,y∗)∼D[`(y∗,H(x))]

`(., .) : R2 → R+ = loss function.

Richard Nock Distortions and Learning

Supervised Learning > Key quantities (contd)

Consider `(., .) = 0/1 loss:

`0/1(a,b)
def
= 1[sign(a) 6=sign(b)] ,

The losses specialize to the empirical and true risks:

ε
0/1
w1

(H)
def
= E(x ,y∗)∼w1

[
1sign(H(x)) 6=y∗

]
,

ε
0/1
D (H)

def
= E(x ,y∗)∼D

[
1sign(H(x)) 6=y∗

]
Remark: if im(H) ⊆ R, it gives two informations:

1 the class, sign(H)

2 a confidence in the class, |H|

Richard Nock Distortions and Learning

Supervised Learning > Strong

Strong Learning

A is a Strong learning algorithm for some class of classifiers H
iff

Step A A takes as input 0 < ε, δ ≤ 1
Step B In time poly(1/ε, 1/δ,n, ...), A does the following:

Step B.1 A requests a set S sampled i.i.d. from D
Step B.2 A returns H ∈ H such that:

PrS∼Dm [ε
0/1
D (H) ≤ ε] ≥ 1− δ

Strong because requirements hold for any ε, δ within bounds.
δ = confidence parameter.

Richard Nock Distortions and Learning

Supervised Learning > Weak

Weak Learning
∼= Strong learning, but this time ε, δ are not user-fixed (Step A):

ε
def
= 1/2− γ for some small γ (e.g. cst, 1/poly(n), etc...)

δ
def
= γ

Thus, requirement in B.2 becomes:

PrS∼Dm [ε
0/1
D (H) ≤ 1/2− γ︸ ︷︷ ︸

close to 1/2

] ≥ γ︸︷︷︸
close to 0

Weak because H is only required to carry little “information”:

εD(unbiased coin) = 1/2 ,∀D

Unbiased coin carries no information about the link Input→ Output.

Richard Nock Distortions and Learning

Supervised Learning > Weak (contd)

The weakening on the confidence is superficial

PrS∼Dm [ε
0/1
D (H) ≤ 1/2− γ︸ ︷︷ ︸

event A

] ≥ γ

Run T ≥ (1/γ) log(1/δ) times Weak learning A (∀0 < δ ≤ 1):
the probability that event A never occurs is
≤ (1− γ)T ≤ exp(−Tγ) ≤ δ
thus, A has occurred at least once with probability ≥ 1− δ

..so we can consider that the main difference between Weak
and Strong learning relies on the (empirical, true) risks.

Richard Nock Distortions and Learning

Supervised Learning > Strong / Weak (summary)

To summarize, Supervised learning:

1 takes place in polynomial time,
2 means building a classifier that models a link between

inputs (observations) and outputs (classes)
3 means controlling (up to the relevant extent) the 0/1 loss

of this classifier

The third point is the most important for our purpose.

Richard Nock Distortions and Learning

Supervised Learning > Important problems

Strong learning

Is strong learning possible ?

Answers depend on H; many (early) complexity-theoretic negative results
[Kearns and Vazirani(1994)].

Weak learning

Is weak learning possible ?

Some positive answers [Mannor and Meir(2000)]; recent complexity-theoretic
negative results [Feldman(2006), Nock and Nielsen(2007b)].

Weak learning⇒ Strong learning (Boosting)

Suppose A has access to some Weak learning algorithm Wl

(Step B.1,5). (How) can A meet the requirements of Strong
learning ?

An early positive answer [Schapire(1990)].
Richard Nock Distortions and Learning

Learning Strategies

1 Most frequent strategies for Strong, Weak learning,
Boosting ?

Richard Nock Distortions and Learning

Learning Strategies > Strong learning

Principle
Two-step strategy for some H:

A Find a consistent classifier H, i.e. with ε0/1
w1

(H) = 0,∀S
(in P-time).

H Prove structural properties:
1 on the general H,
2 or on the subset of H in which A is guaranteed to find H.

Step 2 ensure that we can lift at low (statistical, algorithmic)
costs the consistency guarantee on S to the requirements of
Strong learning over D.

Richard Nock Distortions and Learning

Learning Strategies > Weak learning

Principle
Basically, computationally tractable search for a classifier
with weak guarantees on the empirical risk.

Typically, two strategies relying on exhaustive search:
1 focused inside a “good” subset of H if |H| too large

[Mannor and Meir(2000)].
- Algorithmic cost,
+ Theoretically convenient: Weak learning guaranteed.

2 inside some H of low poly-size. Main experimental
approach.

- Sometimes gives up with Weak learning,
+ Empirically convenient: Very fast.

Richard Nock Distortions and Learning

Learning Strategies > Boosting

Boosting has to solve a trick:

PrS∼Dm [ε
0/1
D (H) ≤ 1/2− γ] ≥ γ︸ ︷︷ ︸

Guaranteed on Wl

⇓

PrS∼Dm [ε
0/1
D (H) ≤ ε] ≥ 1− δ︸ ︷︷ ︸

Required on A

Recall that boosting the confidence is not a problem. So, how
can we “boost” the (empirical, true) risk: 1/2− γ → ε ?

Richard Nock Distortions and Learning

Learning Strategies > Boosting (contd)

(Rough, most popular) Principle, ∀H
Two-step strategy for some H:
Wl Get many (T) classifiers from Wl:

ht ← Wl(S,w t) , t = 1,2, ...,T

(Wl is trained over weight vector that may differ from w1)
H Combine the T classifiers to get some HT ∈ H.

Very appealing properties:
for some Boosting algorithms, w t is repeatedly skewed
towards the examples that have been hard to classify so
far:

`0/1(y∗i ,ht(x i)) = 1 ⇒ wt+1,i > wt ,i

Richard Nock Distortions and Learning

Boosting Algorithms

1 Most popular algorithms ?
2 Common properties, differences ?

Richard Nock Distortions and Learning

Boosting Algorithms > LS > AdaBoost

Suppose that Wl returns ht : X → {−1,+1}.

(Discrete) AdaBoost
for t = 1,2, ...,T

1 ht ← Wl (S,w t);

2 αt ← 1
2 log

1−ε0/1
w t

(ht)

ε
0/1
w t

(ht)
;

3 ∀(x i , yi) ∈ S,wt+1,i ←
wt,i exp(−yiαt ht (x i))

Zt
;

(Zt
def
= normalization coefficient for w t)

return HT =
∑T

t=1 αtht ;

+ Straightforward to implement, “best off the shelf classifier in the world”;

- restricted outputs for ht , {−1,+1}
(generalized in [Friedman et al.(2000)], [Nock and Nielsen(2007a)])

Richard Nock Distortions and Learning

Boosting Algorithms > LS > AdaBoost ∈ Boosting

A fundamental and simple property of AdaBoost:
1 Compute explicitly the normalization coefficient:

Zt = 2
√
ε

0/1
w t (ht)(1− ε0/1

w t (ht))

2 Unravel the update rule at the end of learning:
wT+1,i = w1,i exp(−y∗i HT (x i))/

∏
t Zt

3 Recall that the 0/1 loss is ≤ exponential loss:

`0/1(y∗,HT (x)) ≤ `exp(y∗,HT (x))
def
= exp(−y∗HT (x))

Sum (2) over S (this equals 1), multiply both sides by
Q

t Zt , use (1) and get with (3):

ε
0/1
w1

(HT) ≤ 2T
∏

t

√
ε

0/1
w t (ht)(1− ε0/1

w t (ht))

Richard Nock Distortions and Learning

Boosting Algorithms > LS > AdaBoost ∈ Boosting

Suppose that Wl is a Weak learning algorithm, i.e.

ε
0/1
w t (ht) ≤ 1/2− γ (whp) .

We get:

ε
0/1
w1

(HT) ≤ (1− 4γ2)T/2 ≤ exp(−2γ2T) .

Fixing T = Ω((1/γ2) log m) makes the rhs < 1/m, i.e. (when
w1 = u def

= (1/m)1):
1 HT is consistent and AdaBoost is P-time;
2 The final LS meets the structural assumptions for Strong

learning;
hence, AdaBoost is Strong learning, and thus Boosting.

Richard Nock Distortions and Learning

Boosting Algorithms > DT

Property of a decision tree
The empirical risk can be decomposed at the leaves (each leaf
sign is the majority class wlog):

ε
0/1
w1

(HT) =
∑

` leaf in HT

w1,` min{w+
1,`,1− w+

1,`}

= E`∼w1 [min{w+
1,`,1− w+

1,`}︸ ︷︷ ︸
minority class % in `

]

x2 x2

partition of S in 4 subsets

x1

Sℓ

ℓ

S` = subset of S that reaches leaf `
w1,` = total weight of S` wrt w1
w+

1,` = total weight of class +1 in S` wrt w1, divided by w1,`

e.g. w+
1,` =

P
(x i ,+1)∈S`

w1,i/
P

(x i ,y∗i)∈S`
w1,i

Richard Nock Distortions and Learning

Boosting Algorithms > DT (contd)

Suppose that Wl returns stumps, i.e. depth-1 DTs.

-4

x

+2

< c ≥ c

1 These classifiers are so simple that A generally implements Wl
as well...

2 Most popular DT induction algorithms have two stages:

1 build a large tree (TDIDT),
2 prune the tree.

Here, we (deliberately) reduce them to their first stage.

Richard Nock Distortions and Learning

Boosting Algorithms > DT > TDIDT

Top-Down Induction of Decision Trees (TDIDT)

TDIDT (including Wl)

Initialize H0 to be a single leaf node (=root, S0 = S)
For t = 1,2, ...,T

1 pick some leaf ` in Ht−1.

Wl choose the best stump on S`:

h?t = arg min
ht

∑
` leaf in Ht−1⊕`ht

w1,` × φ(w+
1,`)︸ ︷︷ ︸

Splitting criterion = εw1
(Ht−1⊕ht ,φ)

2 Ht ← Ht−1 ⊕` h?t
return HT ∈ DT;

⊕`ht is the operation that replaces leaf ` by ht , resulting in a DT with one more leaf.

Richard Nock Distortions and Learning

Boosting Algorithms > DT > CART

Rewrite the splitting criterion as:

εw1
(HT , φ) = E`∼w1φ(w+

1,`)

The empirical risk satisfies ε0/1
w1

(H) = εw1
(HT , φemp) for

φemp(z)
def
= min{z,1− z}.

The first TDIDT scheme, proposed in [Breiman et al.(1984)]
proposes a different φ-criterion:

φCART(z) = 2z(1− z)

εw1
(HT , φCART) is the (expected) Gini index

Richard Nock Distortions and Learning

Boosting Algorithms > DT > C4.5, KM

Other popular TDIDT schemes make the difference only on the
choice of φ:

C4.5 [Quinlan(1993)] has

φC4.5(z) = −z log(z)− (1− z) log(1− z)

(log base 2)
εw1

(HT , φC4.5) is the the (expected) binary
entropy;

KM [Kearns and Mansour(1999)] has

φKM(z) = 2
√

z(1− z)

εw1
(HT , φKM) is the (expected) Matsushita error.

Richard Nock Distortions and Learning

Boosting Algorithms > DT > Permissible functions

Functions φemp, φCART, φC4.5, φKM have a crucial commonpoint:

Function φ is permissible iff:
• φ : [0,1]→ [0,1]
• φ(0) = φ(1) = 0
• φ sym. wrt z = 1/2

• φ concave

φ strictly permissible iff:
permissible and strictly concave

From bottom to top: 2× φemp, φCART, φC4.5, φKM.
All permissible, φemp not strictly permissible.
Normalization for φ(1/2) = 1 not necessary (only for readability).

Richard Nock Distortions and Learning

Boosting Algorithms > (Cart, C4.5, KM) ∈ Boosting ?

Fundamental property, easily checked from the last picture:

εw1
(HT , φemp)︸ ︷︷ ︸

empirical risk

≤ 1/2×


εw1

(HT , φCART)
εw1

(HT , φC4.5)
εw1

(HT , φKM)

Thus, minimizing any of the right criteria should amount to the
minimization of the empirical risk.

⇒Why so many criteria ?

Richard Nock Distortions and Learning

Boosting Algorithms > (Cart, C4.5, KM) ∈ Boosting ?

Consider the following assumption (Weak Learning Assumption):

WLA ∃γ > 0 s.t. for any set S ′, any distribution w ′ over S ′, there
exists a stump h for which:

ε
0/1
w ′ (h) ≤ 1/2− γ

-4

x

+2

< c ≥ c We basically assume that step ((1)+Wl)
is a Weak learning algorithm

Richard Nock Distortions and Learning

Boosting Algorithms > KM ∈ Boosting
Under assumption WLA, the following holds for KM and its output HT :

T ≥
(

1
ε

) c
γ2

⇒ ε
0/1
w1 (HT) ≤ ε

c is a constant [Kearns and Mansour(1999), Henry et al.(2007)]
(improved c). Fixing ε < 1/m (w1 = u) makes:

1 HT consistent, and KM is P-time;

2 The final DT meets the structural assumptions for Strong
learning;

hence, KM is Strong learning, and thus Boosting.

AdaBoost needs only log calls to Wl compared to KM, but it is a
structural “difficulty” for DT

the number of calls to Wl is optimal for KM, from both the
informational and complexity-theoretic standpoints
[Kearns and Mansour(1999), Nock and Nielsen(2004)]

Richard Nock Distortions and Learning

Boosting Algorithms > (CART, C4.5) ∈ Boosting ?
Under assumption WLA, the following holds for C4.5 and its output
HT :

T ≥
(

1
ε

) c log(1/ε)

γ2

⇒ ε
0/1
w1 (HT) ≤ ε

Under assumption WLA, the following holds for CART and its output
HT :

T ≥
(

1
ε

) c
γ2ε2

⇒ ε
0/1
w1 (HT) ≤ ε

1 Fix ε < 1/m (w1 = u): the consistency is met, but C4.5 is
QP-time, while CART is EXP-time

2 Bounds above are lowerbounds. No tight bound is known, but
experimental results seem to confirm the results

3 φ = φemp would yield the poorest bounds of all (!)

Richard Nock Distortions and Learning

Boosting Algorithms > General Observations

Observation 1 Most DT induction algorithms do not minimize
directly the empirical risk, but (the expectation of) a
concave surrogate (an upperbound: Gini index,
entropy, Mastushita’s error)

Observation 2 AdaBoost does not minimize directly the empirical
risk, but (the expectation of) a convex surrogate, the
exponential loss:

εexp
w1 (HT) = E(x,y)∼w1 [exp(−y∗HT (x))]

≥ ε
0/1
w1 (HT)

Observation 3 On DT induction, the more concave the permissible
function φ, the better the lowerbounds on T

Observation 4 On DT induction, the direct minimization of the
empirical risk yields the worst possible lowerbound on
T [Nock and Nielsen(2004)]

Richard Nock Distortions and Learning

Boosting Algorithms > Question

Supervised learning roughly aims at minimizing empirical risk.

Why focusing on surrogates ?

Numerous well known surrogates:

Concave For DT (and related classes): Gini index, entropy,
Matsushita’s error

Convex For LS:

εexp
w1 (HT) = E(x,y)∼w1 [exp(−y∗HT (x))]

(Exponential loss: AdaBoost)

εlog
w1(HT) = E(x,y)∼w1 [log(1 + exp(−2y∗HT (x)))]

(Logistic loss)

εsqu
w1 (HT) = E(x,y)∼w1 [(1− y∗HT (x))2]

(Squared loss)...

Convex surrogates have the form F (y∗HT (x)).

Richard Nock Distortions and Learning

Boosting Algorithms > Question (contd)

Why focusing on surrogates ?

Explanations so far in this talk:

1 Algorithmic: better convergence properties. Not
satisfactory (lack of matching upperbounds).

2 Complexity-theoretic: empirical risk has more local minima
(0/1 loss takes on 2 values, thus has less discrimination).
Not satisfactory (can be hard for surrogates as well
[Nock and Nielsen(2004)]).

3 Others (statistics).

No explanation drills down into the fundamental links between
surrogates and classification.

Richard Nock Distortions and Learning

Bregman Divergences

1 Presentation of this class of distortion measures
2 An example of their widespread application in learning

Richard Nock Distortions and Learning

Bregman Divergences (contd)

Let ψ : X → R strictly convex and differentiable, X convex. The
Bregman divergence with generator ψ is:

Dψ(p||q) = ψ(p)− ψ(q)− 〈p − q,∇ψ(q)〉

ψ

Dψ(p,q)

q p

Hq

x

In general, does not satisfy symmetry, triangular inequality.

Richard Nock Distortions and Learning

Bregman Divergences > Example

Squared Euclidean distance

Generator ψ(p) = ‖p‖22 : strictly convex and differentiable
over Rn

Divergence

Dψ(p||q) = ψ(p)− ψ(q)− 〈p − q,∇ψ(q)〉
= ‖p‖22 − ‖q‖22 − 〈p − q,2q〉
= ‖p − q‖22

Richard Nock Distortions and Learning

Bregman Divergences > Example (contd)

Generalized I-Divergence

Generator ψ(p) =
∑

i pi log pi : strictly convex and
differentiable over Rn

+

Divergence

Dψ(p||q) =
∑

i

pi log
(

pi

qi

)
− pi + qi

If ψ restricted to the probability simplex, becomes
Kullback-Leibler divergence.

Richard Nock Distortions and Learning

Bregman Divergences > On-line learning
The first Supervised learning setting in which they have been
explicitly and extensively used.

On-line learning

a We are given a fixed set of experts {hi : X → {−1,+1}}m
i=1, a

stream of examples. w t ∈ Rm
+ is the current set of weights:

1 Receive example (x t , y∗t)
2 Make prediction Hm(x) =

∑
i wt,ihi(x)

3 Incur loss `(y∗t ,Hm(x t))
4 Modify the weights: w t+1 ← f (w t , `(y∗t ,Hm(x t)))
5 Go to 1

h1

h2

h3

hT(x, y) error ?
Objective:
Minimize the number of mistakes

Richard Nock Distortions and Learning

Bregman Divergences > On-line learning (contd)

On-line learning is a setting dual to Boosting (reverse the role
of the examples and hypotheses in learning). Computation of
w t+1 involves the aggregation of two Bregman divergences:

w t+1
def
= arg min

w


Dψ′(w ||w t)︸ ︷︷ ︸

regularization

+ηDψ

 T∑
t=1

wtht(x)||∇−1
ψ (y)︸ ︷︷ ︸
∈R


︸ ︷︷ ︸

matching loss


1 y def

= (1 + y∗)/2 ∈ {0,1} is the Boolean class.
2 η controls the tradeoff between the two losses.

Richard Nock Distortions and Learning

Axiomatization

1 What is the true loss `(y∗,H(x)) that we (really) want to
minimize on each example (x , y∗) ?
(we have seen many losses so far: 0/1, convex/concave
surrogates, Bregman divergences)

2 Can we find it based on its properties people usually
assume ?

3 Links with conventional losses ?
4 New losses, families ?

Richard Nock Distortions and Learning

Axiomatization > Preliminary

Lifting Classification to Estimation
Early “ages” of supervised learning usually preferred the
Boolean class:

y def
= (1 + y∗)/2 ∈ {0,1}

y is thus a 0/1 estimator for Pr[y∗ = +1|x] (key ingredient for
Bayes rule).

1 Wlog, assume H able to return an estimator
H(x)
 P̂rH [y∗ = +1|x]

If im(H) ⊆ R,→ done by well-known transfo. (e.g. logistic)
If im(H) ⊆ [0,1],← done by e.g. sign(2H − 1) ∈ {−1,+1}

2 We end up with the analysis of `(., .) with dom(`) = [0,1]2

Richard Nock Distortions and Learning

Axiomatization > Summary

Relies on three assumptions in Supervised learning:
1 On the loss function
2 On the best possible rule
3 On the cost matrix for learning

Richard Nock Distortions and Learning

Axiomatization > Assumption 1

Non Negativity
People assume:

`(., .) ≥ 0

Richard Nock Distortions and Learning

Axiomatization > Assumption 2

Suppose that all examples of S share the same observation
x?. What is the best constant prediction for x? in average:

c = arg min
z∈[0,1]

E(x?,y)∼w1
[`(y , z)] =?

Bayes Optimality
People assume that the best prediction rule is Bayes rule:

sign(2Pr[y∗ = +1|x]− 1)

Thus, the best constant prediction is the best estimator for
Pr[y∗ = +1|x], i.e.:

c = E(x?,y)∼w1
[y]

Richard Nock Distortions and Learning

Axiomatization > Assumption 3

Fundamental (often implicit) input to supervised learning: the
cost matrix L ∈ R2×2

+ .

predicted class
1 0

true class 1 `(1,1) `(1,0)
0 `(0,1) `(0,0)

The most general form for the empirical risk is:

ε
0/1
w1

(H)
def
= E(x ,y)∼w1

[`(y ,1H(x)≥1/2)]

Remark that even right classifications may incur some 6= 0 cost.

Richard Nock Distortions and Learning

Axiomatization > Assumption 3 (contd)

Symmetric Cost Matrix

People assume∗ that the cost matrix L satisfies the following
symmetries:

Diagonal `(1,1) = `(0,0) (= 0: no cost for right classifications)

Outside `(1,0) = `(0,1) (same cost for misclassifications)

(this simplifies the empirical risk to the one we have used since the
beginning). We thus have:

`(y , z) = `(1− y ,1− z)

(∗) Holds for domains that have no class-dependent misclassification
costs. The others are much less formalized.

Richard Nock Distortions and Learning

Axiomatization > BLFSP

Theorem

(here, φ = −φ)

Loss function `(., .) : [0,1]2 → R+

satisfies assumptions 1, 2, 3

if and only if

`(y , z) = D−φ(y , z)
with φ strictly permissible

(recall DT induction ?)
Strict subclass of Bregman divergences:
Strictly Permissible Bregman Loss Functions (BLFSP)

Richard Nock Distortions and Learning

Axiomatization > BLFSP (contd)

The loss we minimize has thus the general form (∀φ strictly
permissible):

εw1(H) = εw1,φ
(H)

def
= E(x ,y)∼w1

[Dφ(y ||P̂rH [y = 1|x])]︸ ︷︷ ︸
(expectation of) BLFSP

and we can show:

ε
0/1
w1

(H) ≤ εw1,φ
(H)/φ(1/2)

Since φ(1/2) 6= 0, minimizing any BLFSP should amount to
minimizing the empirical risk as well.

Richard Nock Distortions and Learning

Axiomatization > BLFSP (contd)

Thus, supervised classification aims at minimizing (the
expectation of) some BLFSP.

Up to a large extent, this means minimizing the empirical risk
as well.

What else ?
1 links with surrogates ?
2 minimization algorithms ?

Richard Nock Distortions and Learning

Axiomatization > BLFSP > Convex conjugates...

Definition
Suppose ψ strictly convex, differentiable over X. Unique Convex
conjugate function ψ? obtained by the Legendre transformation:

ψ?(q) = sup
p∈X
{〈q,p〉 − F (p)}

Solve via ∇ψ?(q) = ∇(〈q,p〉 − ψ(p)) = 0, implying q = ∇ψ(p),
p = ∇−1

ψ (q), and ψ?(q) = 〈q,∇−1
ψ (q)〉 − ψ(∇−1

ψ (q)).

Dual Bregman divergence

Fundamental link between Bregman divergences:

Dψ(p||q) = Dψ∗(∇ψ(q)||∇ψ(p))

Richard Nock Distortions and Learning

Axiomatization > BLFSP > ...and Supervised learning

Convex conjugates bring the link between [0,1] classification
(y) and real-valued classification (y∗). In the BLFSP εw1,φ

(H),
we can write:

Dφ

(
y ||P̂rH [y = 1|x]

)
︸ ︷︷ ︸
BLFSP: [0,1] values

= Dφ
?

(
∇φ(P̂rH [y = 1|x])||∇φ(y)

)
︸ ︷︷ ︸

divergence of real values

Because φ strictly permissible, ∇φ symmetric wrt (1/2,0):
1 ∇φ(y), the Real class, takes on two opposite values
2 Suppose im(H) ⊆ R. We obtain the transformation rule for

the [0,1] values:

P̂rH [y = 1|x]
def
= ∇−1

φ
(H(x))

Richard Nock Distortions and Learning

Axiomatization > BLFSP > Example of plots for ∇φ

-6

-4

-2

 0

 2

 4

 6

 0 0.2 0.4 0.6 0.8 1

mu = 0.6
mu = 0.3

M
Q
B

zeta = -10
zeta = -40

∇φ(z), for various strictly permissible φ, depending

on its “concavity regime”

“mu” = upper regime

φM=KM(z) = 2
p

z(1 − z)

φQ=C4.5(z) = −z log(z) − (1 − z) log(1 − z)

φB=CART(z) = 4z(1 − z)

“zeta” = lower regime

Richard Nock Distortions and Learning

Axiomatization > BLFSP > Convex Surrogates (more)

Let im(H) ⊆ R.

Lemma

Dφ

(
y ||∇−1

φ
(H(x))

)
︸ ︷︷ ︸

[0,1] prediction

= φ
?
(−y∗H(x))︸ ︷︷ ︸

Real prediction

For any strictly permissible φ, Fφ(z) = φ
?
(−z)/φ(1/2) is called a

Permissible Convex Loss (PCL).

Of course:

ε
0/1
w1

(H) ≤ E(x ,y∗)∼w1
[Fφ(y∗H(x))]︸ ︷︷ ︸

(expectation of) PCL

Minimizing any PCL⇒ minimizing the empirical risk.

Richard Nock Distortions and Learning

Axiomatization > BLFSP > PCL

PCL take on well known special expressions.

φ(z) imH Fφ(y∗H) p̂H [y = y1|o]

= im(∇φ) = φ
?
(−y∗H)/φ(1/2) = ∇−1

φ
(H)

−z log z R log(1 + exp(−y∗H))* exp(H)
1+exp(H)

*

−(1− z) log(1− z)

z(1− z) [−1, 1]** (1− y∗H)2***
(1/2)(1 + H)p

z(1− z) R −y∗H +
p

1 + (y∗H)2 1
2

„
1 + H√

1+H2

«

* Logistic loss and logistic transform

** Explains why problems when H ∈ LS.

*** Squared loss

Many other examples

Richard Nock Distortions and Learning

Axiomatization > BLFSP > Example of plots for PCL

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-4 -3 -2 -1 0 1 2 3 4

mu = 0.6
mu = 0.3

M
Q
B

zeta = -10
zeta = -40

φ
?
(z), for various strictly permissible φ, depending

on its “concavity regime”

“mu” = upper regime

φM=KM(z) = 2
p

z(1 − z)

φQ=C4.5(z) = −z log(z) − (1 − z) log(1 − z)

φB=CART(z) = 4z(1 − z)

“zeta” = lower regime

Richard Nock Distortions and Learning

Axiomatization > BLFSP — PCL : The link

We have seen

Supervised Learning⇔ min. BLFSP ⇔ min. PCL

Different standpoints on Supervised classification:
BLFSP: [0,1] classification, H computes probability
estimates
PCL: Real classification, H computes classes and
confidences

Lemma
AdaBoost’s exponential loss is not a PCL:

E(x ,y∗)∼w1
[exp(−y∗HT (x))]

Richard Nock Distortions and Learning

Minimization Algorithms

1 Algorithms that minimize some (any) BLFSP, PCL ?
2 Link with existing algorithms ? New algorithms ?

Richard Nock Distortions and Learning

Minimization Algorithms (contd)

Universal Minimization Algorithm

Let A(S,w1, φ) an algorithm that outputs classifiers from set H
1 If, for any S,w1, for any strictly permissible φ, A provably

minimizes the corresponding PCL/BLFSP (see below),
2 then A is called a Universal Minimization Algorithm for H.

E(x ,y∗)∼w1
[Fφ(y∗H(x))]︸ ︷︷ ︸

PCL: im(H)⊆R

or E(x ,y)∼w1
[Dφ(y ||P̂rH [y = 1|x])]︸ ︷︷ ︸

BLFSP: im(H)=[0,1]

(No P-time complexity requirement)

Richard Nock Distortions and Learning

Minimization Algorithms > LS
Any BLFSP is convex in its first argument.

Convex conjugates for BLFSP

Let φ strictly permissible. ∀p ∈ R,∀q ∈ [0,1], the Legendre dual p � q
of the ordered pair (p,q) is:
p � q def

= argq′∈[0,1] sup{pq′ − Dφ(q
′||q)} (= ∇−1

φ
(p +∇φ(q)))

∇φ

0

p

q

1

p ⋄ q1/2

Legendre dual:

1- lifts q to im∇φ
2- combines with p
3- maps back to [0,1]

Richard Nock Distortions and Learning

Minimization Algorithms > ULS

A Universal Minimization Algorithm for LS: ULS.
1 suppose that we already know the set {h1,h2, ...,hT}, for

which im(ht) ⊆ R.
2 matrix M ∈ Rm×T defined as:

mit
def
= −y∗i ht(x i) , (x i , y∗i) ∈ S

3 vector notation (Mα)i
def
= −y∗i

T∑
t=1

αtht(x i)︸ ︷︷ ︸
H(x i)

, ∀α ∈ RT

4 Uniform distribution w1
def
= u = (1/m)1 wlog (duplicate examples)

A None of the ht has zero empirical risk (otherwise learning not
necessary !)

Richard Nock Distortions and Learning

Minimization Algorithms > ULS

ULS is mainly a two-step iterative algorithm:
For j = 1,2, ..., J, do

1 update the weights over the examples
2 pick a subset Tj ⊆ {1,2, ...,T}, update the leveraging

coefficients of the classifiers ht , t ∈ Tj

“AdaBoosting flavor”. ULS specializes in different Boosting
schemes:

classical Boosting framework when |Tj | = 1,
totally corrective Boosting algorithm when
|Tj | = {1,2, ..., j}, etc.

Richard Nock Distortions and Learning

Minimization Algorithms > ULS

ULS

Input: M ∈ Rm×T , strictly permissible φ;
Initialize: α1 ← 0; (leveraging coefficient vector)
Initialize: w0 ← (1/2)1; (uniform, non-unit weights)
For j = 1,2, ..., J:

1 w j ← (Mαj) �w0; (Legendre dual componentwise)
2 Pick Tj ⊆ {1,2, ...,T} and let δj ← 0;
3 ∀t ∈ Tj , find δj,t such that:∑m

i=1 mit((Mδj) �w j)i = 0
4 αj+1 ← αj + δj ;

Output: H(x)
def
=

∑T
t=1 αJ+1,tht(x);

Property: (3) has always a solution under A.

Richard Nock Distortions and Learning

Minimization Algorithms > ULS

Theorem
If Tj is chosen as in classical Boosting, totally

corrective Boosting (and others),
Then ULS is a Universal Minimization Algorithm.

1 Full Theorem gives the necessary and sufficient conditions
on the choice of Tj for ULS to remain Universal.

2 ULS is the largest possible generalization to approaches in
[Collins et al.(2002)] (generalizing more implies violating
assumptions 1, 2 or 3)

3 Proof unveils the prominent role of “Bregman geometries”

Richard Nock Distortions and Learning

Minimization Algorithms > ULS > Proof technique

(1): Shift from (P-time) Learning to (Computational) Geometry

min
α∈RT

m∑
i=1

Fφ(y∗i H(x i))︸ ︷︷ ︸
PCL of the LS

= min
w∈U

m∑
i=1

Dφ(0||wi)︸ ︷︷ ︸
Dφ(0||w)

with U def
= {(Mα) �w0 : α ∈ RT} (recall w0

def
= (1/2)1)

w

0 Dφ(0||w)

IU

[0, 1]m

0 6∈ U under A

Richard Nock Distortions and Learning

Minimization Algorithms > ULS > Proof tech. (contd)

(2): Existence of a particular point in U

∀w? ∈ Rm,w? ∈ P ∩ U ⇔ w? = arg minw∈U Dφ(0||w)

with P def
= {z ∈ Rm : Mz = 0} = KerM

(recall U def
= {(Mα) �w0 : α ∈ RT} and w0

def
= (1/2)1)

0

IU

[0, 1]m

w⋆

IP

(w? is unique)

Objective: find w?

Richard Nock Distortions and Learning

Minimization Algorithms > ULS > Proof sketch

(3): ULS is a constrained minimization algorithm

Recall that ULS builds a sequence w0,w1, ...,wJ ∈ U.
Let an auxiliary function u : [0,1]m × [0,1]m → R for algorithm ULS
be a function that would satisfy:

Dφ(0||w j+1)− Dφ(0||w j) ≤ u(w j+1,w j) ≤ 0 (i)
u(w j+1,w j) = 0 ⇒ Mw j+1 = 0 (ii)

0

IU

[0, 1]m

w⋆

IP

w0

w1Dφ(0, .)

If u exists,
(i) ULS provably minimizes Dφ(0||w),
and in U.
(ii) upon convergence, ULS ends up
with some wJ ∈ P
Hence, wJ ∈ U ∩ P
Hence, wJ = w? = arg minw Dφ(0||w)

Richard Nock Distortions and Learning

Minimization Algorithms > ULS > Proof sketch (contd)

(4): The auxiliary function for ULS

The computation of w j and δj in ULS yields

Dφ(0||w j+1)− Dφ(0||w j) = −Dφ(w j+1||w j)︸ ︷︷ ︸
u(w j+1,w j)

u(w j+1,w j) ≤ 0, equality iff w j+1 = w j (prop of Bregman div.)

0

IU

wj+1

wj

Dφ(0,wj+1)

Dφ(0,wj)

Generalized Pythagoras Theorem

Dφ(0||w j) =

Dφ(0||w j+1) + Dφ(w j+1||w j)

Richard Nock Distortions and Learning

Minimization Algorithms > ULS > Summary

Summary:
1 ULS is a Universal Minimization Algorithm
2 Uses geometric properties on the weight vectors w to

converge
3 Under some Weak Learning Assumption about the ht ,

(loose) convergence rates
What about DT ? Any Universal minimization algorithm for DT ?

Richard Nock Distortions and Learning

Minimization Algorithms > LDT

We do not have to think everything from scratch: use
Linearized Decision Trees [Henry et al.(2007)]

x2 = 1

x1 = 1x1 = 0

+1 −1

+1

h1

h2

h5

h3

h4

x2 = 1

x1 = 0 x1 = 1

(α3, h3) = (3, +1)
(α1, h1) = (−2,+1)
(α2, h2) = (3, +1)
(α4, h4) = (0, +1)(α5, h5) = (2,−1)

x2

x1

x2 = 0x2 = 0

In a LDT,
1 reals on every node (not just leaves)
2 sum the reals over a path to decide the class
3 each path is a constant LS

Richard Nock Distortions and Learning

Minimization Algorithms > LDT (contd)

Twin DT
From any LDT, find the twin DT: for each path root — leaf,

1 computes the constant LS,
2 put the value at the leaf

At the end, remove in all internal nodes any couple (α, h). We
obtain a DT equivalent to the LDT.

h1

h2

h5

h3

h4

x2 = 1

x1 = 0 x1 = 1

(α3, h3) = (3, +1)
(α1, h1) = (−2, +1)
(α2, h2) = (3, +1)
(α4, h4) = (0, +1)(α5, h5) = (2,−1)

x2 = 1

x1 = 1x1 = 0

x2

x1

α1h1 + α2h2 + α4h4 = +1

α1h1 + α2h2 + α5h5 = −1

α1h1 + α3h3 = +1

x2 = 0 x2 = 0

Richard Nock Distortions and Learning

Minimization Algorithms > UDT

UDT recycles ULS on a strategy that minimizes the
corresponding PCL

To fit the internal couples (α, h), use ULS(S`,w1,`, φ)

h1

h2 h3

x2 = 1

x1 = 0 x1 = 1

(α3, h3) = (3, +1)
(α1, h1) = (−2, +1)
(α2, h2) = (3, +1)
(α4, h4) = (?, ?)

?ℓ

Sℓ
x2 = 0

To find the splits, further minimize the global PCL over the
choice of splits:

find the split replacing leaf ` which minimizes E(x,y∗)∼w1 [Fφ(y
∗H(x))]

Richard Nock Distortions and Learning

Minimization Algorithms > UDT (contd)

Lemma
UDT is a Universal Minimization Algorithm

Is it known ?...

Richard Nock Distortions and Learning

Minimization Algorithms > UDT =...

Theorem
Suppose we replace the LDT output by its twin DT.
UDT(S,w1, φ) simplifies exactly to the general TDIDT scheme
that minimizes εw1

(HT , φ) over the DT

Consequences (examples):
1 binds the most popular induction schemes for LS and DT

as the same (master) algorithm, that uses the same
geometric properties

2 AdaBoost and KM are the same algorithm
3 the exact optimization of the logistic loss

[Friedman et al.(2000)] is the same algorithm as C4.5

Richard Nock Distortions and Learning

What about AdaBoost ?

Recall that the exponential loss of AdaBoost is not
permissible... but:

Theorem
(a very slight) modification of AdaBoost is a Universal
Minimization Algorithm

1 A single loss helps to minimize all !
2 Not surprising: minimizing any BLFSP amounts to a

Maximum Likelihood estimation to fit Bernoulli or Laplace
priors.

Richard Nock Distortions and Learning

Perspectives

1 Transfer positive results: we can use this master
algorithm to obtain (new) formal Boosting algorithm for well
known other classes H:

The algorithm fits local linear separators on a particular
decision graph
We can combine the same algorithm in a recursive
fashion:

1 we obtain A,
2 we obtain Wl with the same algorithm,
3 and we can drill down even further...

Richard Nock Distortions and Learning

Perspectives (contd)

2 Transfer negative results: we can translate back and
forth bounds to get hint on the hardness of learning for
particular H

Example: bounds of [Kearns and Mansour(1999)] on DT
can be translated to LS
We get explicit bounds for the fact that the exact
minimization of the logistic loss [Friedman et al.(2000)] may
not be as efficient as AdaBoost
Optimizing the squared loss would be even less efficient
optimizing the empirical would be the less efficient of all
criteria (!)

Richard Nock Distortions and Learning

Perspectives (contd)

3 No-Free lunch Theorems: any algorithm has hard
problems

Find a good parameterization for φ: can we learn it while
learning the data (self improving algorithms) ?

Richard Nock Distortions and Learning

Thank you for your attention

Acknowledgments:
work done in collaboration with

1 Frank Nielsen @ Sony CSL Tokyo
2 Claudia Henry (ANR/MESR PhD student)

support from ANR, programme “Jeunes Chercheurs” JC
9009

Richard Nock Distortions and Learning

Thank you for your attention

For more information:
1 see paper [Henry et al.(2007)] and longer version:

Boosting does not get Lost in Translation
(Nock, Henry, Nielsen), 45pp, submitted

2 see also:
On Permissible Surrogates for Classification
(Nock, Nielsen), 52pp, submitted

(available upon request)

Richard Nock Distortions and Learning

Bibliography
Breiman, L., Freidman, J. H., Olshen, R. A., Stone, C. J., 1984. Classification and regression trees.
Wadsworth.

Collins, M., Schapire, R., Singer, Y., 2002. Logistic regression, adaboost and Bregman distances. Machine
Learning , 253–285.

Feldman, V., 2006. Optimal hardness results for maximizing agreements with monomials. In: Proc. of the

21 st IEEE International Conference on Computational Complexity.

Friedman, J., Hastie, T., Tibshirani, R., 2000. Additive Logistic Regression : a Statistical View of Boosting.
Ann. of Stat. 28, 337–374.

Henry, C., Nock, R., Nielsen, F., 2007. IReal boosting a la Carte with an application to boosting Oblique

Decision Trees. In: Proc. of the 21 st International Joint Conference on Artificial Intelligence.

Kearns, M., Mansour, Y., 1999. On the boosting ability of top-down decision tree learning algorithms. Journal
of Computer and System Sciences 58, 109–128.

Kearns, M. J., Vazirani, U. V., 1994. An Introduction to Computational Learning Theory. M.I.T. Press.

Mannor, S., Meir, R., 2000. Weak learners and improved rates of convergence in boosting. In: Advances in
Neural Information Processing Systems 13.

Nock, R., Nielsen, F., 2004. On Domain-Partitioning Induction Criteria: Worst-case Bounds for the
Worst-case Based. Theoretical Computer Science 321, 371–382.

Nock, R., Nielsen, F., 2007a. A Real Generalization of discrete AdaBoost. Artificial Intelligence 171, 25–41.

Nock, R., Nielsen, F., 2007b. Self-Improved gaps Almost Everywhere for the Agnostic Approximation of
Monomials. Theoretical Computer Science 377, 139–150.

Quinlan, J. R., 1993. C4.5 : programs for machine learning. Morgan Kaufmann.

Schapire, R. E., 1990. The strength of weak learnability. Machine Learning , 197–227.
Richard Nock Distortions and Learning

