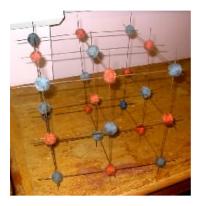
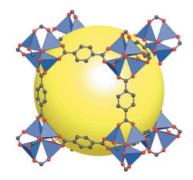
From symmetric tilings of 2D hyperbolic space to 3D euclidean crystalline patterns: EPINET

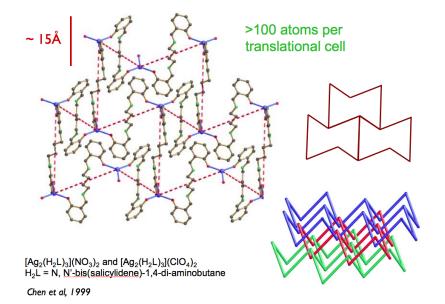

Stephen Hyde, Stuart Ramsden, Vanessa Robins


Applied Mathematics, RSPE, ANU

November 17, 2009

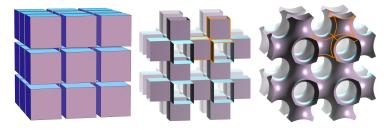
Stephen Hyde, Stuart Ramsden, Vanessa Robins From symmetric tilings of 2D hyperbolic space to 3D euclidean

Nets model structure



Crum-Brown (1883) NaCl

Yaghi, O'Keeffe (2003) metal-organic frameworks

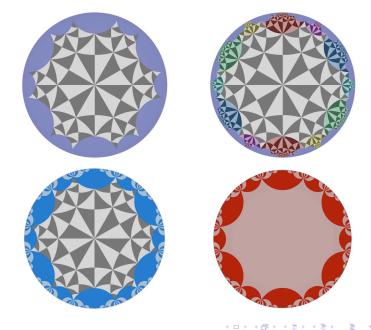

2D Hyperbolic tilings

э

Triply Periodic Minimal Surfaces.

We use TPMS as scaffolds for 3-periodic nets. Example: the primitive cubic net is carried by

- A 3D tiling by cubes.
- The edges of an infinite polyhedron.
- ► A 2D tiling of Schwarz's Primitive (P) surface.


Hyperbolic geometry

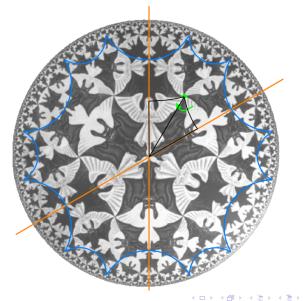
The intrinsic geometry of a TPMS is hyperbolic.

The asymmetric unit of the P surface is a hyperbolic triangle with angles $\frac{\pi}{2}$, $\frac{\pi}{4}$, $\frac{\pi}{6}$. The primitive translational unit cell is a dodecagon. With opposite sides identified, the dodecagon glues up into a genus-3 surface.

2D Hyperbolic tilings

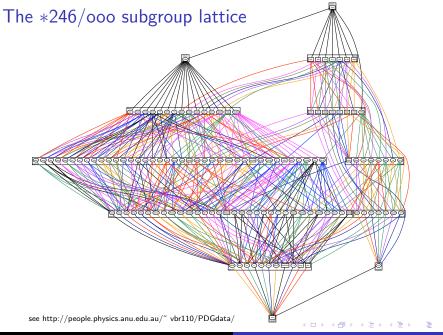
Stephen Hyde, Stuart Ramsden, Vanessa Robins From symmetric tilings of 2D hyperbolic space to 3D euclidean

2D Hyperbolic tilings


... play Stu's Escher animation

Stephen Hyde, Stuart Ramsden, Vanessa Robins From symmetric tilings of 2D hyperbolic space to 3D euclidean

同 ト イヨ ト イヨ ト


Symmetries of the hyperbolic plane

Reflection Rotation Translation

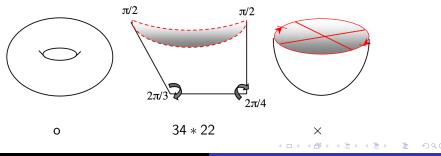
From symmetric tilings of 2D hyperbolic space to 3D euclidean

Stephen Hyde, Stuart Ramsden, Vanessa Robins

From symmetric tilings of 2D hyperbolic space to 3D euclidean

131 subgroups of *246 that preserve the dodecagon (ooo)

000	o22	22*x	3xx	*2*2	44x	2*222	434
22222222	22xx	22*2222					
XXXX	22**	22*x	222x 2222	*22x **22	2xx 4224	*22222 *22222	2*33 2322
XXXX	o22	***					
XXXX	22**	**x	*222222	222*	4224	*2442	*3232
0**	2222*	*xx	2xx	2*x	2**	2*222	266
•			2*2222	2**	22*22	**2	23x
o2222	022	*xx	222x	44*	2*2222	4*22	2*62
00	*22*22	22*x	2**	22*22	*22*	*4422	*2422
**XX	22xx	o22	-				
**XX	222222	222222	**22	22222	2323	2*44	*2232
02222	*22*22	*xx	o2	22222	6222	24*	*434
		_	44*	2442	62x	24*	6*2
00	22xx	3xx	2*x	222x	*3x	22*2	*662
o33	0*	*3*3	*4444	*2*2	*6262	**2	4*3
222222	XXX	*3*3				-	
2222x	22xx	32222	222*	22*22	22*3	22*2	2*32
222222	**x	6226	22*22	*22x	*3x	2224	462
			22*22	*222222	22*3	3*22	*642
4444	*2222x	o3			•		


A B A A B A

3

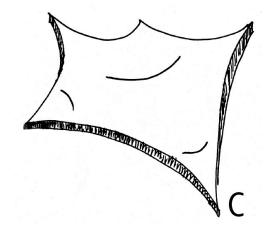
Orbifold symbols

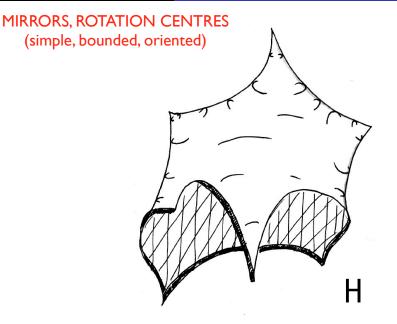
An orbifold is the quotient of a manifold by a discrete group acting on it. Orbifolds derived from 2D manifolds of constant curvature (the sphere, Euclidean plane, and hyperbolic plane) have a canonical symbol encoding their topology and orders of rotational points. Conway's notation for this is:

 $ooo\ldots c_1c_2c_3\ldots * m_1m_2\ldots [*m_4m_5\ldots]\ldots \times \times \times$

Stephen Hyde, Stuart Ramsden, Vanessa Robins From symmetric tilings of 2D hyperbolic space to 3D euclidean

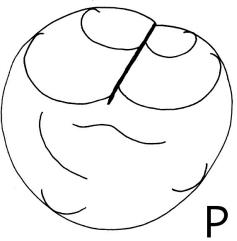
Divide orbifolds into 8 classes:

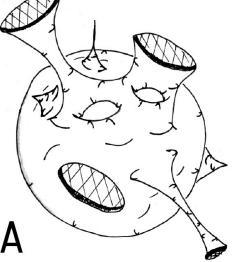

*	Coxeter		
	Hat	ainmly compacted	
-	Stellate	simply connected	
X	Projective		
**	Annulus		
*x	Möbius		
0	Torus	multiply connected	
XX	Klein		

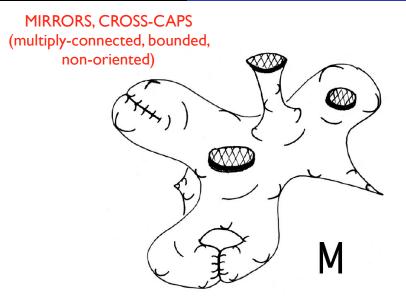

Stephen Hyde, Stuart Ramsden, Vanessa Robins From symmetric tilings of 2D hyperbolic space to 3D euclidean

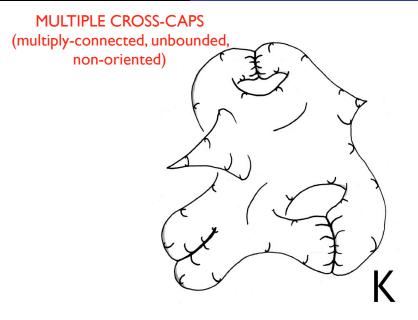
<ロ> <同> <同> < 同> < 同>

æ


MIRRORS ONLY (simple, bounded, oriented)




SINGLE CROSS-CAP (simple, unbounded, non-oriented)


→ 3 → < 3</p>

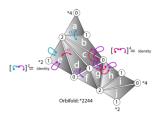
DISJOINT MIRRORS (multiply-connected, bounded, oriented)

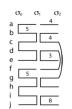
TRANSLATIONS ONLY (multiply-connected, unbounded, oriented)

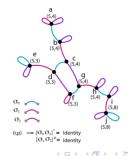
- ₹ 🖬 🕨

э

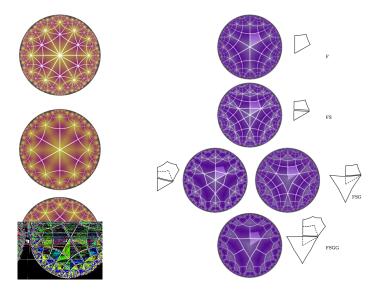
Delaney-Dress tiling theory


An algorithmic approach to encoding the symmetries and topology of periodic tilings, using triangulations of orbifolds. Developed by Dress, Huson, Delgado-Friedrichs, mid 1980's to mid 1990's.




See O.D.-F. (2003) Theoret. Comp. Sci. 303:431-445

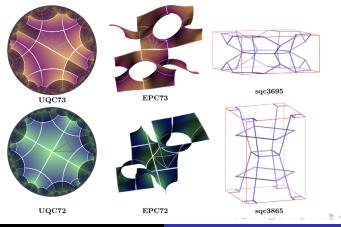
Delaney-Dress symbols



-

э

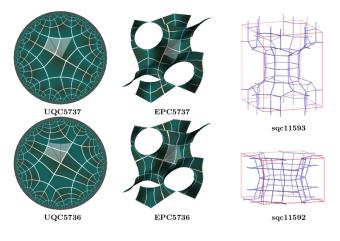
Stephen Hyde, Stuart Ramsden, Vanessa Robins From symmetric tilings of 2D hyperbolic space to 3D euclidean


Enumeration of D-symbols via splits and glues

From symmetric tilings of 2D hyperbolic space to 3D euclidean of

Embedding D-symbols

To get a tiling of \mathbb{H}^2 that is compatible with the surface covering map we must match the combinatorics of the D-symbol to the geometry of a specific group of isometries. There may be more than one way to do this. e.g. Two distinct $*2^5$ subgroups of *246:



Stephen Hyde, Stuart Ramsden, Vanessa Robins

From symmetric tilings of 2D hyperbolic space to 3D euclidean

Embedding D-symbols

Automorphisms of the D-symbol that are not *246 isometries. e.g. sides of different length in *2224:

EPINET — http://epinet.anu.edu.au

Results from our enumeration of tilings and nets derived from Coxeter orbifolds are available online.

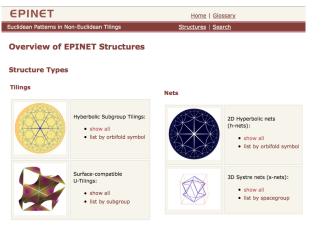
EPINET	Home Glossary
Euclidean Patterns in Non-Euclidean Tilings	Structures Search

Welcome to the EPINET project

The EPINET project explores 2D hyperbolic (*H*²) *tilings* as a source of crystalline frameworks (or networks) in 30 euclidean (*E*³) space. Our aim is to enumerate networks with a broad spectrum of properties that are of possible interest to geometers, structural chemists, and statistical physicists. The guiding principal is one of *hyperbolic surface tiling*, where the 3D crystallinity of an underlying surface induces 3-periodic networks. The extraordinary wealth of hyperbolic tilings allows us to enumerate networks and their spatial realisations ("embeddings") with greater breadth than conventional approaches.

Search the databases

- Hyperbolic Subgroup Tilings
- U-Tilings
- Hyperbolic Nets
- Systre Nets

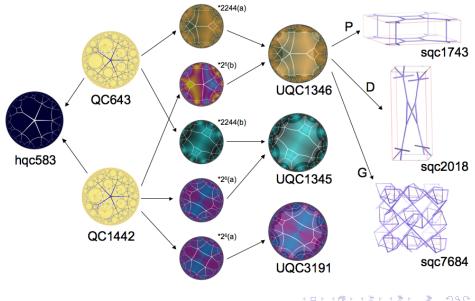

Explore the databases

Structure Taxonomy

イロト イポト イヨト イヨト

EPINET — http://epinet.anu.edu.au

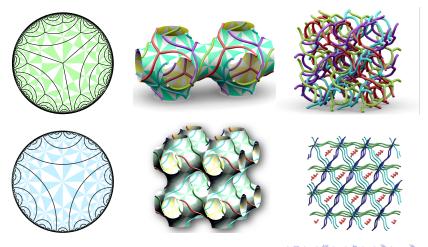
2706 Hyperbolic tilings with 2451 net topologies 6095 Surface-compatible tilings generate 14532 3-periodic nets.



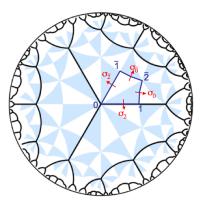
Stephen Hyde, Stuart Ramsden, Vanessa Robins From symmetric tilings of 2D hyperbolic space to 3D euclidean

-

2D Hyperbolic tilings


Structure relationships in Epinet

Stephen Hyde, Stuart Ramsden, Vanessa Robins From symmetric tilings of 2D hyperbolic space to 3D euclidean


Free tilings

Surface reticulations derived from packings of trees or lines in \mathbb{H}^2 give multi-component interwoven nets and (helical) rod packings.

Free tilings

We extend Delaney-Dress tiling theory to a quadrangulation decomposition of the infinite-sided polygons. These new quadrangulations can be enumerated via regular D-symbols.

