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Motivation

[' < Isom(R"™) or H” discrete and acts properly discontinuously
(e.g. a group of symmetries of a tessellation).

If I" has no fixed points — I'\R" is a manifold.

If I" has fixed points = I"\R" is an orbifold.
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Motivation

[' < Isom(R"™) or H” discrete and acts properly discontinuously
(e.g. a group of symmetries of a tessellation).

If I" has no fixed points — I'\R" is a manifold.

If I" has fixed points = I"\R" is an orbifold.

.- - (there are other notions of orbifold in algebraic geometry,
string theory or using grupoids)
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Examples: tessellations of Euclidean plane

T'={((z,y) = (z+1,9),(z,y) = (z,y + 1)) 2 Z?
MR2 =72 = 8! x 8

An introduction to orbifolds — p.3/20



Examples: tessellations of Euclidean plane

Rotations of angle = around red points (order 2)
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Examples: tessellations of Euclidean plane

Rotations of angle = around red points (order 2)
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Examples: tessellations of Euclidean plane

Rotations of angle = around red points (order 2)
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Example: tessellations of hyperbolic plane

Rotations of angle 7, 7/2 and 7 /3 around vertices (order 2, 4, and 6)
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Example: tessellations of hyperbolic plane

Rotations of angle 7, 7/2 and 7 /3 around vertices (order 2, 4, and 6)

>
N

An introduction to orbifolds — p.4/20



Definition

Informal Definition

An orbifold O is a metrizable topological space
equipped with an atlas modelled on R"/T", I' < O(n) finite,
with some compatibility condition.

We keep track of the local action of I' < O(n).
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Definition

Informal Definition
An orbifold O is a metrizable topological space

equipped with an atlas modelled on R"/T", I' < O(n) finite,
with some compatibility condition.

We keep track of the local action of I' < O(n).

Singular (or branching) locus: = points modelled on Fix(T")/T".

[',, (the minimal I'): isotropy group of a point x € O.

|O| underlying topological space (possibly not a manifold).
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Definition

Formal Definition

An orbifold O is a metrizable top. space with a (maximal) atlas

{Ui7 (77;7 Fi? gbz}
UUz =0, I;< O(n)
(77; C R™is I';-invariant
¢; U = (77;/1“7; homeo
(71' C R"
= U, /T;

QO
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Definition

Formal Definition

An orbifold O is a metrizable top. space with a (maximal) atlas
(U, Ui, Ty, 6}

UU;, =0, T;<0(n)

(77; C R™is I';-invariant

- If y € U; NUj, then there is Uy,
gbi U, = Uz/Fz homeo

st.ye U, CU;NU; and

U, CR® ®ix: Iy — T}
S i - U, — U, diffeo with the image,
iy x) =i(y) - i)

12

U/T;

QQ

(] T isotropy group of a point Yo ={x | ', # 1}
xzeU;
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Dimension 2

Finite subgroups of O(2):

) . ) I
cyclic group of rotations reflexion along a line dihedral group
with n elements rots. and reflex.

Local picture of 2-orbifolds:

C :

I',. cyclic order n I', has 2 elements [', dihedral
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Dimension 2

Finite subgroups of O(2):

cyclic group of rotations reflexion along a line dihedral group
with n elements rots. and reflex.
General picture in dim 2
2my 2
2m1
|O?| surface,
2m2

Y2 = 0|O?| and points
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Dimension 3 (loc.orientable)

Finite subgroups of SO(3) (all elements are rotations):

\

Ch Dy, T1o Oa4 Ieo

cyclic dihedral tetrahedral octahedral icosahedral

O dim 3 and orientable: |O| = manifold, > trivalent graph

Chn

Do, T O24 g0
Yo locally: |, n 3 4 g
2 2 2 3 2 3 2 3
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Dimension 3 (loc.orientable)

O dim 3 and orientable: |O| = manifold, > trivalent graph

Chn

Doy, 112 O24 Igo
Yo locally: |, n 3 4 °
2 2 2 3 2 3 2 3

Non orientable case: combine this with reflections along planes
and antipodal map: a(x,y, z) = (—x, —y, —2)

R’ /a = cone on RP?, is not a manifold.

In dim 4 and larger, 3O orientable and O possibly not a manifold.
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More examples: tessellation by cubes

» Z3 translation group, R?/Z3 = St x S x St
o But we can also consider other groups
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More examples: tessellation by cubes

O = R3/(reflections on the sides of the cube)
|O| is the cube and ¥» boundary of the cube

x in aface = I', = Z/2Z reflexion
rinan edge— I', = (Z/27)?
zinavertex — I', = (Z/27)°
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More examples: tessellation by cubes

Consider the group generated by order 2 rotations around axis as in:

N
,,,,,,,,,,,,,,,,
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More examples: tessellation by cubes

Consider the group generated by order 2 rotations around axis as in:

...............

O] =S Yo = Borromean rings.

N
,,,,,,,,,,,,,,,,

[', = Z /27 acting by rotations.
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More examples: tessellation by cubes

R?/{ Full isometry group of the tessellation }

/

x in aface = I', = Z/2Z reflexion
x In an edge — I', = dihedral (extension by reflections of
cyclic group of rotations)

x In a vertex — I', = extension by reflections of dihedral, 7175 or Oy4
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More examples: hyperbolic tessellation

,,,,,,,,,,,,,,,
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More examples: hyperbolic tessellation

,,,,,,,,,,,,,,,

(/’D

1 \JJ
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Fundamental domain

If I" acts on R or H"
Dirichlet domain: Voronoi cell of the orbit of a point o withT",,, = 1.

—1
€T
.72 0

—1
° Y3 Lo

Y10

* 3% o 1270

The points with nontrivial stabilizer are on the boundary
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Fundamental domain

If I" acts on R or H"
Dirichlet domain: Voronoi cell of the orbit of a point o withT",,, = 1.

Y10

The points with nontrivial stabilizer are on the boundary
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Fundamental domain

If I" acts on R or H"
Dirichlet domain: Voronoi cell of the orbit of a point o withT",,, = 1.

/7/1550

L 72%o

The points with nontrivial stabilizer are on the boundary
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Fundamental domain

If I" acts on R or H"
Dirichlet domain: Voronoi cell of the orbit of a point o withT",,, = 1.

/7/1550

Y3%0 120

The points with nontrivial stabilizer are on the boundary
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If I acts on R or H"

Fundamental domain

Dirichlet domain: Voronoi cell of the orbit of a point o withT",,, = 1.

—1
Y1 To

2

Y3Z0

/"Y/lil?o

Y20

The points with nontrivial stabilizer are on the boundary
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Fundamental domain

If I" acts on R or H"
Dirichlet domain: Voronoi cell of the orbit of a point o withT",,, = 1.

1
T
+ Yo To s
Wflxo
X0
/"7/1370
Y3%0 20

The points with nontrivial stabilizer are on the boundary
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Fundamental domain

If I" acts on R or H"
Dirichlet domain: Voronoi cell of the orbit of a point o withT",,, = 1.

—1
Yo Lo

—1
Y3 Lo

Y1 Zo

Y120

Y3%0 20

The points with nontrivial stabilizer are on the boundary
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Fundamental domain

If I" acts on R or H"
Dirichlet domain: Voronoi cell of the orbit of a point o withT",,, = 1.

—1
Yo X0

Y120

The points with nontrivial stabilizer are on the boundary
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Structures on orbifolds

Can define geometric structures on orbifolds by taking
equivariant definitions on charts U;, I';.

A Riemanian metric on the charts ((71-, I';) requires:
U’ has a Riemannian metric
coordinate changes are isometries
I; acts isometrically on U,

e.g. Analytic, flat, hyperbolic, etc...
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Structures on orbifolds

Can define geometric structures on orbifolds by taking
equivariant definitions on charts U;, I';.

A Riemanian metric on the charts ((71-, I';) requires:
U’ has a Riemannian metric
coordinate changes are isometries
I; acts isometrically on U,

e.g. Analytic, flat, hyperbolic, etc...
2 2

|

2 2

has a flat metric (Euclidean) has a metric of curv —1 (hyperbolic)
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Structures on orbifolds

Can define geometric structures on orbifolds by taking
equivariant definitions on charts U;, I';.

has a flat metric (Euclidean) has a metric of curv —1 (hyperbolic)
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Coverings

p: Og — O Is an orbifold covering if
Every x € O isinsome U C O; s.t. if V = component of p~1(U):
then V — V & U is a chart for U

VeV/Ty<—7V cR" Ty < Ty

ip

Ugﬁ/Iﬂ%(N]CRn

I'o —equiv

Branched coverings can be seen as orbifold coverings
If I" acts properly discontinuously on A manifold
then M — M/T" is an orbifold covering.
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Coverings

Branched coverings can be seen as orbifold coverings
If I" acts properly discontinuously on A manifold
then M — M /T is an orbifold covering.

Examples
=r -
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Coverings

Branched coverings can be seen as orbifold coverings
If I" acts properly discontinuously on A manifold

then M — M /T is an orbifold covering.

Examples
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Good and bad

Definition

Oisgoodif O = M/T
' acts properly discontinuously on a manifold M

O is good iff O has a covering that is a manifold.

Question| When is an orbifold good?
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Good and bad

Definition

Oisgoodif O = M/T
' acts properly discontinuously on a manifold M

O is good iff O has a covering that is a manifold.

Question| When is an orbifold good?

n P

are BAD

q
Teardrop T'(n) Spindle S(p, q) (p # q)
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Good and bad

Definition
Oisgoodif O = M/T
' acts properly discontinuously on a manifold M

O is good iff O has a covering that is a manifold.

n P

are BAD

q
Teardrop T'(n) Spindle S(p, q) (p # q)

Those and their nonorientable quotients are the only bad 2-orbifolds
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Fundamental group

Aloop based atz € O\ Yp:
v:10,1] - O suchthatv(0) =~(1) ==«
with a choice of lifts at branchings

é‘@ ﬁ
> '

Define homotopies as continuous 1-parameter families of paths.
71 (O, x) = { loops based at x up to homotopy relative to =}
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Fundamental group

71 (O, x) = { loops based at z up to homotopy relative to =}

71 (D? /rotation order n) = Z /nZ

— O

|
= &
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Fundamental group

71 (O, x) = { loops based at = up to homotopy relative to =}

Seifert-Van Kampen theorem (Haéfliger):
IfO=UUV,UnNYV conected, then:

m(0) =7 (U) ¥ (UNV) T (V)

w1 O = free product of 71 (U) and 71 (V') quotiented by = (U NV)
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Fundamental group

71 (O, x) = { loops based at = up to homotopy relative to =}

Seifert-Van Kampen theorem (Haéfliger):
IfO=UUV,UnNYV conected, then:

m(0) =7 (U) ¥ (UNV) T (V)

w1 O = free product of 71 (U) and 71 (V') quotiented by = (U NV)

= {1}

%

unv
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Fundamental group

71 (O, x) = { loops based at = up to homotopy relative to =}

Seifert-Van Kampen theorem (Haéfliger):
IfO=UUV,UnNYV conected, then:

m(0) =7 (U) ¥ (UNV) T (V)

w1 O = free product of 71 (U) and 71 (V') quotiented by = (U NV)

p |p
q
|q U V unv
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Universal covering

Universal covering © — O such that every other covering O' — O:

~

O

|\

O —=0

~

Existence: O = {rel. homotopy classes of paths starting at =}
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Universal covering

Universal covering © — O such that every other covering O' — O:

~

~

O

|\

O —=0

Existence: O = {rel. homotopy classes of paths starting at =}

m1(©O) = deck transformation group of O — O.

m(T(n)) = {1} and 71 (5(p,q)) = Z/ ged(p, 9)Z,

hence

T(n)and S(p,q), p # q, are bad.
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Developable orbifolds

Theorem
1. If an orbifold has a metric of constant curvature, then it is good.

2. If an orbifold has a metric of nonpositive curvature, then it is good.

Proof 1: use developing maps U — H", S*, R"
Proof 2: use developing maps, convexity, unigueness of geodesics.
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Developable orbifolds

Theorem
1. If an orbifold has a metric of constant curvature, then it is good.

2. If an orbifold has a metric of nonpositive curvature, then it is good.

Proof 1: use developing maps U — H", S*, R"
Proof 2: use developing maps, convexity, unigueness of geodesics.

Corollary:
All orientable 2-orbifolds other than T'(n) and S(p, q), p # q

have a constant curvature metric, hence are good.

Can put an orbifold metric of constant curvature by using polygons.
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2 dim example: turnovers

hyperbolic ifa+ 8+ v < 27
The triangle £ ~is ¢ Euclidean if o+ 8+~ =2r
spherical ifa+ 3+ v > 2«
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2 dim example: turnovers

hyperbolic ifa+ 8+ v < 27
The triangle £ ~is ¢ Euclidean if o+ 8+~ =2r
spherical ifa+ 3+ v > 2«

Glue two triangles along the boundaries, set o = 2=, § = & 271

n_21/y: ns’

|O| = 5%, X =three points, cyclic isotropy groups of orders n, na, ns.

The orbifold na
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2 dim example: turnovers

hyperbolic ifa+ 8+ v < 27
The triangle £ ~is ¢ Euclidean if o+ 8+~ =2r
spherical ifa+ 3+ v > 2«

Glue two triangles along the boundaries, set o = 2=, § = & 271

ne! | T gy

|O| = 5%, X =three points, cyclic isotropy groups of orders n, na, ns.

The orbifold na

spherical
The metric on S? is singular, but not in O
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Euler characteristic

The sum runs over the cells of a cellulation of O
that preserves the stratification of the branching locus.
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Euler characteristic

The sum runs over the cells of a cellulation of O
that preserves the stratification of the branching locus.

Properties
If O — O is a covering of degree n — x(O) = nx(O’)

Gauss-Bonnet formula. If dim O = 2, then:

/O K = 2my(0)

where K = curvature.
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Ricci flow on two orbifolds

Normalized Ricci flow:

0 2
a—i = —QRiC—FEFg

g Riemmannian metric,
r= |, scal/ [, 1 average scalar curvature
Ric Ricci curvature.

In dim 2, Ric = K g.
So write g; = e go for some function u = u(z, t).
The conformal class is preserved and

0
-
—u=e€ Vgu

ot
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Ricci flow on two orbifolds

Normalized Ricci flow:

0 2
a—i = —QRiC—FEFg

Hamilton, Chow, Wu, Chen-Lu-Tian:

Either it converges to a metric of constant curvature,
or to a gradient soliton on T'(n) or S(p, q)

n p

Gradient soliton: g, = a;¢; 9o,

with & ¢, = grad(F)

q
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Dimension 3

A 3-orbifold is good iff it does not contain bad 2-suborbifolds.
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Dimension 3

A 3-orbifold is good iff it does not contain bad 2-suborbifolds.

Thurston’s orbifold theorem
If @ has no bad 2-suborbifolds, then

O decomposes canonically into locally homogeneous pieces

O Locally homogeneous, if O = M/T,
M = homogeneous manifold eg. R3, H?, S°, H2 x R, PSLy(R)...

Canonical decomposition:

Orbifold connected sum: (O; \ B*/T") Ugzr (02 \ B*/T)
Cut along T2 /TI" -injective in O (orbifold JSJ-theory)
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Dimension 3

A 3-orbifold is good iff it does not contain bad 2-suborbifolds.

Thurston’s orbifold theorem
If @ has no bad 2-suborbifolds, then

O decomposes canonically into locally homogeneous pieces

O Locally homogeneous, if O = M/T,
M = homogeneous manifold eg. R3, H?, S°, H2 x R, PSLy(R)...

Canonical decomposition:
Orbifold connected sum: (O; \ B*/T") Ugzr (02 \ B*/T)
Cut along T2 /TI" -injective in O (orbifold JSJ-theory)

~

O >« R3, S3 or infinite connected sums.
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Dimension 3

A 3-orbifold is good iff it does not contain bad 2-suborbifolds.

O = 01#05 , O1, Oy hyperbolic, then O infinite connected sum
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Dimension 3

A 3-orbifold is good iff it does not contain bad 2-suborbifolds.

O = 01#05 , O1, Oy hyperbolic, then O infinite connected sum
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Dimension 3

A 3-orbifold is good iff it does not contain bad 2-suborbifolds.

~

hyperbolic, then O infinite connected sum:

O1, Oy

01702 ,

o D=
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Dimension 3

A 3-orbifold is good iff it does not contain bad 2-suborbifolds.

~

hyperbolic, then O infinite connected sum:

O1, Oy

01702 ,

o D=
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