Subdivide and Tile:
 Triangulating spaces for understanding the world
 Leiden, Nov. 2009

Geometric Inference

F. Chazal
Geometrica Group
INRIA Saclay

Introduction and motivations

What can we say about the topology/geometry of spaces known only through a finite set of measurements?

What is the relevant topology/geometry of a point cloud data set?

Motivations: Reconstruction, Manifold Learning and NLDR, Clustering and Segmentation,...

Geometric Inference

Question: Given an approximation C of a geometric object K, is it possible to reliably estimate the topological and geometric properties of K, knowing only the approximation C ?
Question *: Given a point cloud C (or some other more complicated set), is it possible to infer some robust topological or geometric information of C ?

- The answer depends on:
- the considered class of objects (no hope to get a positive answer in full generality),
- a notion of distance between the objects (approximation).

Outline

1. Distance functions for geometric inference

- class of objects: (some) compact subsets of \mathbb{R}^{d}
- approximation with respect to Hausdorff distance

2. (Practical) algorithms for topological inference

- persistence-based algorithm
- multiscale inference

3. Dealing with outliers: the measure point of view

- class of objects: probability measures
- approximation with respect to Wasserstein distance

Distance functions for geometric inference

Considered objects: compact subsets K of \mathbb{R}^{d}

Distance:

distance function to a compact $K \subset \mathbb{R}^{d}: d_{K}: x \rightarrow \inf _{p \in K}\|x-p\|$
Hausdorf distance between two compact sets:

$$
d_{H}\left(K, K^{\prime}\right)=\sup _{x \in \mathbb{R}^{d}}\left|d_{K}(x)-d_{K^{\prime}}(x)\right|
$$

Distance functions for geometric inference

Considered objects: compact subsets K of \mathbb{R}^{d}

Distance:

distance function to a compact $K \subset \mathbb{R}^{d}: d_{K}: x \rightarrow \inf _{p \in K}\|x-p\|$
Hausdorf distance between two compact sets:

$$
d_{H}\left(K, K^{\prime}\right)=\sup _{x \in \mathbb{R}^{d}}\left|d_{K}(x)-d_{K^{\prime}}(x)\right|
$$

- Replace K and C by d_{K} and d_{C}
- Compare the topology of the offsets $K^{r}=d_{K}^{-1}([0, r])$ and $C^{r}=d_{C}^{-1}([0, r])$

Distance functions for geometric inference

Considered objects: compact subsets K of \mathbb{R}^{d}

Distance:

distance function to a compact $K \subset \mathbb{R}^{d}: d_{K}: x \rightarrow \inf _{p \in K}\|x-p\|$
Hausdorf distance between two compact sets:

$$
d_{H}\left(K, K^{\prime}\right)=\sup _{x \in \mathbb{R}^{d}}\left|d_{K}(x)-d_{K^{\prime}}(x)\right|
$$

- Replace K and C by d_{K} and d_{C}
- Compare the topology of the offsets $K^{r}=d_{K}^{-1}([0, r])$ and $C^{r}=d_{C}^{-1}([0, r])$

The gradient of the distance function

- $\Gamma_{K}(x)=\left\{y \in K: d(x, y)=d_{K}(x)\right\}$
- $\theta_{K}(x)$: center and radius of the smallest ball enclosing $\Gamma_{K}(x)$

$$
\nabla d_{K}(x)=\frac{x-\theta_{K}(x)}{d_{K}(x)}
$$

\rightarrow Although not continuous, it can be integrated in a continuous flow.

Definition: x is a critical point of d_{K} iff $\nabla d_{K}(x)=0$

The gradient of the distance function

- $\Gamma_{K}(x)=\left\{y \in K: d(x, y)=d_{K}(x)\right\}$
- $\theta_{K}(x)$: center and radius of the smallest ball enclosing $\Gamma_{K}(x)$

$$
\nabla d_{K}(x)=\frac{x-\theta_{K}(x)}{d_{K}(x)}
$$

Can be generalized to distances to compact subsets of complete Riemannian manifolds

Definition: x is a critical point of d_{K} iff $\nabla d_{K}(x)=0$

Critical points and offsets topology

For $\alpha \geq 0$, the α-offset of K is $K^{\alpha}=\left\{x \in \mathbb{R}^{d}: d_{K}(x) \leq \alpha\right\}$
Theorem: [Grove, Cheeger,...] Let $K \subset \mathbb{R}^{d}$ be a compact set.

- Let r be a regular value of d_{K}. Then $d_{K}^{-1}(r)$ is a topological submanifold of \mathbb{R}^{d} of codimension 1 .
- Let $0<r_{1}<r_{2}$ be such that $\left[r_{1}, r_{2}\right]$ does not contain any critical value of d_{K}. Then all the level sets $d_{K}^{-1}(r), r \in\left[r_{1}, r_{2}\right]$ are isotopic and

$$
K^{r_{2}} \backslash K^{r_{1}}=\left\{x \in \mathbb{R}^{d}: r_{1}<d_{K}(x) \leq r_{2}\right\}
$$

is homeomorphic to $d_{K}^{-1}\left(r_{1}\right) \times\left(r_{1}, r_{2}\right]$.
\square

Critical points and offsets topology

For $\alpha \geq 0$, the α-offset of K is $K^{\alpha}=\left\{x \in \mathbb{R}^{d}: d_{K}(x) \leq \alpha\right\}$
Theorem: [Grove, Cheeger,...] Let $K \subset \mathbb{R}^{d}$ be a compact set.

- Let r be a regular value of d_{K}. Then $d_{K}^{-1}(r)$ is a topological sutbmanifold of \mathbb{R}^{d} of codimension 1 .
- Let $0<r_{1}<r_{2}$ be such that $\left[r_{1}, r_{2}\right]$ does not contain any critical value of d_{K}. Then all the level sets $d_{K}^{-1}(r), r \in\left[r_{1}, r_{2}\right]$ are isotopic and

$$
K^{r_{2}} \backslash K^{r_{1}}=\left\{x \in \mathbb{R}^{d}: r_{1}<d_{K}(x) \leq r_{2}\right\}
$$

is homeomorphic to $d_{K}^{-1}\left(r_{1}\right) \times\left(r_{1}, r_{2}\right]$.

These results still hold for compact sets in (complete) Riemannian manifolds.

Weak feature size and stability

The weak feature size of a compact $K \subset \mathbb{R}^{d}$:

$$
\mathrm{wfs}(K)=\inf \left\{c>0: c \text { is a critical value of } d_{K}\right\}
$$

Proposition: [C-Lieutier'05] Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be such that

$$
d_{H}\left(K, K^{\prime}\right)<\varepsilon:=\frac{1}{2} \min \left(\operatorname{wfs}(K), \mathrm{wfs}\left(K^{\prime}\right)\right)
$$

Then for all $0<r \leq 2 \varepsilon, K^{r}$ and $K^{\prime r}$ are homotopy equivalent.

Weak feature size and stability

The weak feature size of a compact $K \subset \mathbb{R}^{d}$:

$$
\mathrm{wfs}(K)=\inf \left\{c>0: c \text { is a critical value of } d_{K}\right\}
$$

Proposition: [C-Lieutier'05] Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be such that

$$
d_{H}\left(K, K^{\prime}\right)<\varepsilon:=\frac{1}{2} \min \left(\mathrm{wfs}(K), \mathrm{wfs}\left(K^{\prime}\right)\right)
$$

Then for all $0<r \leq 2 \varepsilon, K^{r}$ and $K^{\prime r}$ are homotopy equivalent

Weaker than homeomorphy but "share the same topological invariants" (e.g. Betti numbers)

- Two continuous maps $f, f^{\prime}: X \rightarrow Y$ are homotopic if there exist a continuous map $H: X \times[0,1] \rightarrow Y$ s.t. $H(., 0)=f$ and $H(., 1)=f^{\prime}$.
- Two topological spaces X and Y are homotopy equivalent if there exist two continuous maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ s. t. $f \circ g$ and $g \circ f$ are homotopic to $i d_{Y}$ and $i d_{X}$.

Weak feature size and stability

The weak feature size of a compact $K \subset \mathbb{R}^{d}$:

$$
\mathrm{wfs}(K)=\inf \left\{c>0: c \text { is a critical value of } d_{K}\right\}
$$

Proposition: [C-Lieutier'05] Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be such that

$$
d_{H}\left(K, K^{\prime}\right)<\varepsilon:=\frac{1}{2} \min \left(\mathrm{wfs}(K), \mathrm{wfs}\left(K^{\prime}\right)\right)
$$

Then for all $0<r \leq 2 \varepsilon, K^{r}$ and $K^{\prime r}$ are homotopy equivalent.

Proof: Use the gradient vector field (and its flow) to build an explicit homotopy equivalence.

Weak feature size and stability

The weak feature size of a compact $K \subset \mathbb{R}^{d}$:

$$
\mathrm{wfs}(K)=\inf \left\{c>0: c \text { is a critical value of } d_{K}\right\}
$$

Proposition: [C-Lieutier'05] Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be such that

$$
d_{H}\left(K, K^{\prime}\right)<\varepsilon:=\frac{1}{2} \min \left(\mathrm{wfs}(K), \mathrm{wfs}\left(K^{\prime}\right)\right)
$$

Then for all $0<r \leq 2 \varepsilon, K^{r}$ and $K^{\prime r}$ are homotopy equivalent.

Compact set with positive wfs:
Stability properties
[-] Large class of compact sets (including subanalytic sets)
\because © $K \rightarrow \mathrm{wfs}(K)$ is not continuous (unstability of critical points).

Overcoming the discontinuity of wfs

Proposition: [C-Lieutier'05] Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be such that

$$
d_{H}\left(K, K^{\prime}\right)<\varepsilon:=\frac{1}{2} \min \left(\mathrm{wfs}(K), \mathrm{wfs}\left(K^{\prime}\right)\right)
$$

Then for all $0<r \leq 2 \varepsilon, K^{r}$ and $K^{\prime r}$ are homotopy equivalent.
$\because K \rightarrow \mathrm{wfs}(K)$ is not continuous (unstability of critical points).

Option 1:

Try to get topological information about K without any assumption on wfs (K^{\prime}).

Option 2:

Restrict to a smaller class of compact sets with some stability properties of the critical points.

Overcoming the discontinuity of wfs

Proposition: [C-Lieutier'05] Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be such that

$$
d_{H}\left(K, K^{\prime}\right)<\varepsilon:=\frac{1}{2} \min \left(\mathrm{wfs}(K), \mathrm{wfs}\left(K^{\prime}\right)\right)
$$

Then for all $0<r \leq 2 \varepsilon, K^{r}$ and $K^{\prime r}$ are homotopy equivalent.
$\because K \rightarrow \mathrm{wfs}(K)$ is not continuous (unstability of critical points).

Option 1:

Try to get topological information about K without any assumption on wfs $\left(K^{\prime}\right)$.

Persistence-based inference

Option 2:

Restrict to a smaller class of compact sets with some stability properties of the critical points.

Notion of μ-critical points. Strong reconstruction results.

Option 1

Theorem: [C-Lieutier'05-Cohen-Steiner et al '05]
Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be compact and let $\varepsilon>0$ be s.t. $d_{H}\left(K, K^{\prime}\right)<\varepsilon$ and $\mathrm{wfs}(K)>4 \varepsilon$. For $\alpha>0$ s.t. $\alpha+4 \varepsilon<\operatorname{wfs}(K)$, let $i: K^{\prime \alpha+\varepsilon} \hookrightarrow K^{\prime \alpha+3 \varepsilon}$ be the canonical inclusion.For any $0<r<\operatorname{wfs}(K)$,

$$
\begin{gathered}
H_{k}\left(K^{r}\right) \cong i m\left(i_{*}: H_{k}\left(K^{\prime \alpha+\varepsilon}\right) \rightarrow H_{k}\left(K^{\alpha+3 \varepsilon}\right)\right) \\
\pi_{1}\left(K^{r}, x\right) \cong i m\left(i_{*}: \pi_{1}\left(K^{\alpha+\varepsilon}, x\right) \rightarrow \pi_{1}\left(K^{\alpha+3 \varepsilon}, x\right)\right)
\end{gathered}
$$

Option 1

Theorem: [C-Lieutier'05-Cohen-Steiner et al '05]
Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be compact and let $\varepsilon>0$ be s.t. $d_{H}\left(K, K^{\prime}\right)<\varepsilon$ and $\mathrm{wfs}(K)>4 \varepsilon$. For $\alpha>0$ s.t. $\alpha+4 \varepsilon<\operatorname{wfs}(K)$, let $i: K^{\prime \alpha+\varepsilon} \hookrightarrow K^{\prime \alpha+3 \varepsilon}$ be the canonical inclusion. For any $0<r<\operatorname{wfs}(K)$,

$$
\begin{gathered}
H_{k}\left(K^{r}\right) \cong i m\left(i_{*}: H_{k}\left(K^{\prime \alpha+\varepsilon}\right) \rightarrow H_{k}\left(K^{\alpha+3 \varepsilon}\right)\right) \\
\pi_{1}\left(K^{r}, x\right) \cong i m\left(i_{*}: \pi_{1}\left(K^{\alpha+\varepsilon}, x\right) \rightarrow \pi_{1}\left(K^{\alpha+3 \varepsilon}, x\right)\right)
\end{gathered}
$$

Option 1

Theorem: [C-Lieutier'05-Cohen-Steiner et al '05]
Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be compact and let $\varepsilon>0$ be s.t. $d_{H}\left(K, K^{\prime}\right)<\varepsilon$ and $\mathrm{wfs}(K)>4 \varepsilon$. For $\alpha>0$ s.t. $\alpha+4 \varepsilon<\operatorname{wfs}(K)$, let $i: K^{\prime \alpha+\varepsilon} \hookrightarrow K^{\prime \alpha+3 \varepsilon}$ be the canonical inclusion. For any $0<r<\operatorname{wfs}(K)$,

$$
\begin{gathered}
H_{k}\left(K^{r}\right) \cong i m\left(i_{*}: H_{k}\left(K^{\prime \alpha+\varepsilon}\right) \rightarrow H_{k}\left(K^{\alpha+3 \varepsilon}\right)\right) \\
\pi_{1}\left(K^{r}, x\right) \cong i m\left(i_{*}: \pi_{1}\left(K^{\prime \alpha+\varepsilon}, x\right) \rightarrow \pi_{1}\left(K^{\alpha+3 \varepsilon}, x\right)\right)
\end{gathered}
$$

Option 1

Theorem: [C-Lieutier'05-Cohen-Steiner et al '05]
Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be compact and let $\varepsilon>0$ be s.t. $d_{H}\left(K, K^{\prime}\right)<\varepsilon$ and $\mathrm{wfs}(K)>4 \varepsilon$. For $\alpha>0$ s.t. $\alpha+4 \varepsilon<\operatorname{wfs}(K)$, let $i: K^{\prime \alpha+\varepsilon} \hookrightarrow K^{\prime \alpha+3 \varepsilon}$ be the canonical inclusion. For any $0<r<\operatorname{wfs}(K)$,

$$
\begin{gathered}
H_{k}\left(K^{r}\right) \cong i m\left(i_{*}: H_{k}\left(K^{\prime \alpha+\varepsilon}\right) \rightarrow H_{k}\left(K^{\alpha+3 \varepsilon}\right)\right) \\
\pi_{1}\left(K^{r}, x\right) \cong i m\left(i_{*}: \pi_{1}\left(K^{\prime \alpha+\varepsilon}, x\right) \rightarrow \pi_{1}\left(K^{\alpha+3 \varepsilon}, x\right)\right)
\end{gathered}
$$

Option 1

Theorem: [C-Lieutier'05-Cohen-Steiner et al '05]
Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be compact and let $\varepsilon>0$ be s.t. $d_{H}\left(K, K^{\prime}\right)<\varepsilon$ and $\mathrm{wfs}(K)>4 \varepsilon$. For $\alpha>0$ s.t. $\alpha+4 \varepsilon<\operatorname{wfs}(K)$, let $i: K^{\prime \alpha+\varepsilon} \hookrightarrow K^{\prime \alpha+3 \varepsilon}$ be the canonical inclusion. For any $0<r<\operatorname{wfs}(K)$,

$$
\begin{gathered}
H_{k}\left(K^{r}\right) \cong i m\left(i_{*}: H_{k}\left(K^{\prime \alpha+\varepsilon}\right) \rightarrow H_{k}\left(K^{\alpha+3 \varepsilon}\right)\right) \\
\pi_{1}\left(K^{r}, x\right) \cong i m\left(i_{*}: \pi_{1}\left(K^{\alpha+\varepsilon}, x\right) \rightarrow \pi_{1}\left(K^{\alpha+3 \varepsilon}, x\right)\right)
\end{gathered}
$$

Option 2: μ-critical points and μ-reach

Critical points

Option 2: μ-critical points and μ-reach

A point $x \in \mathbb{R}^{d}$ is μ-critical for K if $\left\|\nabla d_{K}(x)\right\| \leq \mu$

Critical points

Option 2: μ-critical points and μ-reach

A point $x \in \mathbb{R}^{d}$ is μ-critical for K if $\left\|\nabla d_{K}(x)\right\| \leq \mu$

Theorem: [C-Cohen-Steiner-Lieutier'06] Let $K, K^{\prime} \subset \mathbb{R}^{d}$ be two compact sets s. t. $d_{H}\left(K, K^{\prime}\right) \leq \varepsilon$. For any μ-critical point x for K, there exists a $\left(2 \sqrt{\varepsilon / d_{K}(x)}+\mu\right)$-critical point for K^{\prime} at distance at most $2 \sqrt{\varepsilon d_{K}(x)}$ from x.

Option 2: μ-critical points and μ-reach

- $r_{\mu}(K)=0$ if $\mu \geq \sqrt{2} / 2$
- $r_{\mu}(K)=a$ if $\mu<\sqrt{2} / 2$
- $\mathrm{wfs}(K)=a$
μ-reach of a compact $K \subset \mathbb{R}^{d}$:

$$
r_{\mu}(K)=\inf \left\{d_{K}(x):\left\|\nabla d_{K}(x)\right\|<\mu\right\}
$$

- $\forall \mu \in(0,1), r_{\mu}(K) \leq w f s(K)$
- for $\mu=1, r_{\mu}(K)$ is the reach introduced by Federer in Geometric Measure Theory

Option 2: μ-critical points and μ-reach

A reconstruction theorem: [C-Cohen-Steiner-Lieutier'06] Let $K \subset \mathbb{R}^{d}$ be a compact set s.t. $r_{\mu}=r_{\mu}(K)>0$ for some $\mu>0$. Let $K \subset \mathbb{R}^{d}$ be such that $d_{H}\left(K, K^{\prime}\right)<\kappa r_{\mu}(K)$ with $\kappa<\min \left(\frac{\sqrt{5}}{2}-1, \frac{\mu^{2}}{16+2 \mu^{2}}\right)$ Then for any d, d^{\prime} s.t.

$$
0<d<\operatorname{wfs}(K) \text { and } \frac{4 \kappa r_{\mu}}{\mu^{2}} \leq d^{\prime}<r_{\mu}-3 \kappa r_{\mu}
$$

the hypersurfaces $d_{K^{\prime}}^{-1}\left(d^{\prime}\right)$ and $d_{K}^{-1}(d)$ are isotopic.

Option 2: μ-critical points and μ-reach

Topological/geometric properties of the offsets of K are stable with respect to Hausdorff approximation:

1. Topological stability of the offsets of K (CCSL'06, NSW'06).
2. Approximate normal cones (CCSL'08).
3. Boundary measures (CCSM'07), curvature measures (CCSLT'09), Voronoi covariance measures (GMO'09).

Distance-based inference: the algorithmic side

Topological/geometric inference in practice (from point cloud data sets) ?

Option 2: strong reconstruction results but.....

- Rely on the construction of Voronoï diagram and α-shapes.
- Critical issues in dimension >3 and non-euclidean spaces.

Option 1:

- Rely on topological persistence theory (at least to infer the homology)
- Efficient algorithms in dimension >3 and in Riemannian manifolds (or more general metric spaces).

An algorithm for geometric inference

- $X \subset \mathbb{R}^{d}$ be a compact set such that $\operatorname{wfs}(X)>0$.
- $L \subset \mathbb{R}^{d}$ be a finite set such that $d_{H}(X, L)<\varepsilon$ for some $\varepsilon>0$.

An algorithm for geometric inference

- $X \subset \mathbb{R}^{d}$ be a compact set such that $\mathrm{wfs}(X)>0$.
- $L \subset \mathbb{R}^{d}$ be a finite set such that $d_{H}(X, L)<\varepsilon$ for some $\varepsilon>0$.

Can be replaced in the following by (complete) Riemannian manifold or a (totally bounded) metric space but require some extra assumptions \rightarrow see next slides.

An algorithm for geometric inference

- $X \subset \mathbb{R}^{d}$ be a compact set such that $\operatorname{wfs}(X)>0$.
- $L \subset \mathbb{R}^{d}$ be a finite set such that $d_{H}(X, L)<\varepsilon$ for some $\varepsilon>0$.

Theorem:

Assume that $\mathrm{wfs}(X)>4 \varepsilon$. For $\alpha>0$ s.t. $\alpha+4 \varepsilon<\mathrm{wfs}(X)$, let $i: L^{\alpha+\varepsilon} \hookrightarrow$ $L^{\alpha+3 \varepsilon}$ be the canonical inclusion.For any $0<r<\operatorname{wfs}(X)$,

$$
\begin{gathered}
H_{k}\left(X^{r}\right) \cong i m\left(i_{*}: H_{k}\left(L^{\alpha+\varepsilon}\right) \rightarrow H_{k}\left(L^{\alpha+3 \varepsilon}\right)\right) \\
\pi_{1}\left(X^{r}, x\right) \cong i m\left(i_{*}: \pi_{1}\left(L^{\alpha+\varepsilon}, x\right) \rightarrow \pi_{1}\left(L^{\alpha+3 \varepsilon}, x\right)\right)
\end{gathered}
$$

An algorithm for geometric inference

- $X \subset \mathbb{R}^{d}$ be a compact set such that $\operatorname{wfs}(X)>0$.
- $L \subset \mathbb{R}^{d}$ be a finite set such that $d_{H}(X, L)<\varepsilon$ for some $\varepsilon>0$.

Theorem:

Assume that $\operatorname{wfs}(X)>4 \varepsilon$. For $\alpha>0$ s.t. $\alpha+4 \varepsilon<\mathrm{wfs}(X)$, let $i: L^{\alpha+\varepsilon} \hookrightarrow$ $L^{\alpha+3 \varepsilon}$ be the canonical inclusion. For any $0<r<\operatorname{wfs}(X)$,

$$
\left.\left.\begin{array}{c}
H_{k}\left(X^{r}\right) \cong i m\left(i_{*}:\left(H_{k}\left(L^{\alpha+\varepsilon}\right) \rightarrow H_{k}\left(L^{\alpha+3 \varepsilon}\right)\right)\right. \\
\pi_{1}\left(X^{r}, x \cong i m\left(i_{*}: \pi\left(L^{\alpha+\varepsilon}, x\right) \rightarrow \pi_{1}\left(L^{\alpha+3 \varepsilon}\right.\right.\right.
\end{array}, x\right)\right)
$$

An algorithm for geometric inference

For any $\alpha>0, \quad X^{\alpha} \subseteq L^{\alpha+\varepsilon} \subseteq X^{\alpha+2 \varepsilon} \subseteq L^{\alpha+3 \varepsilon} \subseteq X^{\alpha+4 \varepsilon} \subseteq \cdots$

An algorithm for geometric inference

For any $\alpha>0, \quad X^{\alpha} \subseteq L^{\alpha+\varepsilon} \subseteq X^{\alpha+2 \varepsilon} \subseteq L^{\alpha+3 \varepsilon} \subseteq X^{\alpha+4 \varepsilon} \subseteq \cdots$
At homology level:

$$
H_{k}\left(X^{\alpha}\right) \rightarrow H_{k}\left(L^{\alpha+\varepsilon}\right) \rightarrow H_{k}\left(X^{\alpha+2 \varepsilon}\right) \rightarrow H_{k}\left(L^{\alpha+3 \varepsilon}\right) \rightarrow H_{k}\left(X^{\alpha+4 \varepsilon}\right) \rightarrow \cdots
$$

An algorithm for geometric inference

For any $\alpha>0, \quad X^{\alpha} \subseteq L^{\alpha+\varepsilon} \subseteq X^{\alpha+2 \varepsilon} \subseteq L^{\alpha+3 \varepsilon} \subseteq X^{\alpha+4 \varepsilon} \subseteq \cdots$
At homology level:

An algorithm for geometric inference

For any $\alpha>0, \quad X^{\alpha} \subseteq L^{\alpha+\varepsilon} \subseteq X^{\alpha+2 \varepsilon} \subseteq L^{\alpha+3 \varepsilon} \subseteq X^{\alpha+4 \varepsilon} \subseteq \cdots$
At homology level:
Cannot be directly compouted !

Using the Čech complex

The Čech complex $\mathcal{C}^{\alpha}(L)$:

$$
\text { for } p_{0}, \cdots p_{k} \in L, \quad \sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{C}^{\alpha}(L) \text { iff } \bigcap_{i=0}^{\kappa} B\left(p_{i}, \alpha\right) \neq \emptyset
$$

Using the Čech complex

The Čech complex $\mathcal{C}^{\alpha}(L)$:

$$
\text { for } p_{0}, \cdots p_{k} \in L, \quad \sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{C}^{\alpha}(L) \quad \text { iff } \bigcap_{i=0} B\left(p_{i}, \alpha\right) \neq \emptyset
$$

Nerve theorem: For any $\alpha>0, L^{\alpha}$ and $\mathcal{C}^{\alpha}(L)$ are homotopy equivalent and the homotopy equivalences can be chosen to commute with inclusions.

Using the Čech complex

The Čech complex $\mathcal{C}^{\alpha}(L)$:

$$
\text { for } p_{0}, \cdots p_{k} \in L, \quad \sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{C}^{\alpha}(L) \text { iff } \bigcap_{i=0} B\left(p_{i}, \alpha\right) \neq \emptyset
$$

Nerve theorem: For any $\alpha>0, L^{\alpha}$ and $\mathcal{C}^{\alpha}(L)$ are homotopy equivalent and the homotopy equivalences can be chosen to commute with inclusions.

Still true when L is a subset of a Riemannian manifold or a metric space IF all the intersections $\cap_{i=0}^{k} B\left(p_{i}, \alpha\right)$ are either empty or contractible!

Using the Čech complex

The Čech complex $\mathcal{C}^{\alpha}(L)$:

$$
\text { for } p_{0}, \cdots p_{k} \in L, \quad \sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{C}^{\alpha}(L) \quad \text { iff } \bigcap_{i=0}^{n} B\left(p_{i}, \alpha\right) \neq \emptyset
$$

Nerve theorem: For any $\alpha>0, L^{\alpha}$ and $\mathcal{C}^{\alpha}(L)$ are homotopy equivalent and the homotopy equivalences can be chosen to commute with inclusions.

$$
\begin{aligned}
& \cdots \quad \rightarrow \quad H_{k}\left(L^{\alpha+\varepsilon}\right) \quad \rightarrow \quad H_{k}\left(L^{\alpha+3 \varepsilon}\right) \quad \rightarrow \quad \cdots \\
& \cdots \rightarrow H_{k}\left(\mathcal{C}^{\alpha+\varepsilon}(L)\right) \quad \rightarrow \quad H_{k}\left(\mathcal{C}^{\alpha+3 \varepsilon}(L) D \rightarrow \cdots\right.
\end{aligned}
$$

Allow to work with simplicial complexes but... still too difficult to compute

Using the Rips complex

Rips vs Čech

The Rips complex $\mathcal{R}^{\alpha}(L)$: for $p_{0}, \cdots p_{k} \in L$,

$$
\sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{R}^{\alpha}(L) \quad \text { iff } \forall i, j \in\{0, \cdots k\}, d\left(p_{i}, p_{j}\right) \leq \alpha
$$

- Easy to compute and fully determined by its 1 -skeleton
- Rips-Čech interleaving: for any $\alpha>0$,

$$
\mathcal{C}^{\frac{\alpha}{2}}(L) \subseteq \mathcal{R}^{\alpha}(L) \subseteq \mathcal{C}^{\alpha}(L) \subseteq \mathcal{R}^{2 \alpha}(L) \subseteq \cdots
$$

Using the Rips complex

Rips vs Čech

The Rips complex $\mathcal{R}^{\alpha}(L)$: for $p_{0}, \cdots p_{k} \in L$,

$$
\sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{R}^{\alpha}(L) \text { iff } \forall i, j \in\{0, \cdots k\}, d\left(p_{i}, p_{j}\right) \leq \alpha
$$

Theorem: [C-Oudot'08]
Let $X \subset \mathbb{R}^{d}$ be a compact set and $L \subset \mathbb{R}^{d}$ a finite set such that $d_{H}(X, L)<\varepsilon$ for some $\varepsilon<\frac{1}{9} \operatorname{wfs}(X)$. Then for all $\alpha \in\left[2 \varepsilon, \frac{1}{4}(\operatorname{wfs}(X)-\varepsilon)\right]$ and all $\lambda \in(0, \mathrm{wfs}(X)))$, one has: $\forall k \in \mathbb{N}$

$$
\beta_{k}\left(X^{\lambda}\right)=\operatorname{dim}\left(H_{k}\left(X^{\lambda}\right)\right)=\operatorname{rk}\left(\mathcal{R}^{\alpha}(L) \rightarrow \mathcal{R}^{4 \alpha}(L)\right)
$$

Using the Rips complex

Rips vs Čech

The Rips complex $\mathcal{R}^{\alpha}(L)$: for $p_{0}, \cdots p_{k} \in L$,

$$
\sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{R}^{\alpha}(L) \quad \text { iff } \forall i, j \in\{0, \cdots k\}, d\left(p_{i}, p_{j}\right) \leq \alpha
$$

Theorem: [C-Oudot'08]
Let $X \subset \mathbb{R}^{d}$ be a compact set and $L \subset \mathbb{R}^{d}$ a finite set such that $d_{H}(X, L)<\varepsilon$ for some $\varepsilon<\frac{1}{9} \operatorname{wfs}(X)$. Then for all $\alpha \in\left[2 \varepsilon, \frac{1}{4}(\operatorname{wfs}(X)-\varepsilon)\right]$ and all $\lambda \in(0, \operatorname{wfs}(X)))$, one has: $\forall k \in \mathbb{N}$

$$
\beta_{k}\left(X^{\lambda}\right)=\operatorname{dim}\left(H_{k}\left(X^{\lambda}\right)\right)=\begin{array}{|cc|}
\hline \operatorname{rk}\left(\mathcal{R}^{\alpha}(L) \rightarrow \mathcal{R}^{4 \alpha}(L)\right) \\
\begin{array}{c}
\text { Easy to compute using per- } \\
\text { sistence algo. }
\end{array}
\end{array}
$$

Using the Rips complex

Rips vs Čech

The Rips complex $\mathcal{R}^{\alpha}(L)$: for $p_{0}, \cdots p_{k} \in L$,

$$
\sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{R}^{\alpha}(L) \text { iff } \forall i, j \in\{0, \cdots k\}, d\left(p_{i}, p_{j}\right) \leq \alpha
$$

Theorem: [C-Oudot'08]
Let $X \subseteq \mathbb{R}^{d}$ be a compact set and $L \subset \mathbb{R}^{d}$ a finite set such that $d_{H}(X, L)<\varepsilon$ for sone $\varepsilon<\frac{1}{9} \operatorname{wfs}(X)$. Then for all $\alpha \in\left[2 \varepsilon, \frac{1}{4}(\operatorname{wfs}(X)-\varepsilon)\right]$ and all $\lambda \in(0, \operatorname{wfs}(X)))$, one has: $\forall k \in \mathbb{N}$

$$
\beta_{k}\left(X^{\lambda}\right)=\operatorname{dim}\left(H_{k}\left(X^{\lambda}\right)\right)=\operatorname{rk}\left(\mathcal{R}^{\alpha}(L) \rightarrow \mathcal{R}^{4 \alpha}(L)\right)
$$

Can be replace by a Riemmanian manifold
BUT take care of convexity radius!
Also some stability results in metric spaces...

Using the Rips complex

Rips vs Čech

The Rips complex $\mathcal{R}^{\alpha}(L)$: for $p_{0}, \cdots p_{k} \in L$,

$$
\sigma=\left[p_{0} p_{1} \cdots p_{k}\right] \in \mathcal{R}^{\alpha}(L) \text { iff } \forall i, j \in\{0, \cdots k\}, d\left(p_{i}, p_{j}\right) \leq \alpha
$$

Theorem: [C-Oudot'08]
Let $X \subset \mathbb{R}^{d}$ be a compact set and $L \subset \mathbb{R}^{d}$ a finite set such that $d_{H}(X, L)<\varepsilon$ for some $\varepsilon<\frac{1}{9} \operatorname{wfs}(X)$. Then for all $\alpha \in\left[2 \varepsilon, \frac{1}{4}(\operatorname{wfs}(X)-\varepsilon)\right]$ and all $\lambda \in(0, \mathrm{wfs}(X)))$, one has: $\forall k \in \mathbb{N}$

$$
\beta_{k}\left(X^{\lambda}\right)=\operatorname{dim}\left(H_{k}\left(X^{\lambda}\right)\right)=\operatorname{rk}\left(\mathcal{R}^{\alpha}(L) \rightarrow \mathcal{R}^{4 \alpha}(L)\right)
$$

$\longrightarrow \mathbf{P b}$: Choice of α when $\operatorname{wfs}(X)$ is unknown?

Multiscale inference

Input: A point cloud W and its pairewise distances $\left\{d\left(w, w^{\prime}\right)\right\}_{w, w^{\prime} \in W}$. \rightarrow Maintain a nested pair $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$ where $L=L(\varepsilon)$.

Init.: $L=\emptyset ; \varepsilon=+\infty$
WHILE $L \subset W$
insert $p=\operatorname{argmax}_{w \in W} d(w, L)$ in L
update $\varepsilon=\max _{w \in W} d(w, L)$
update $\mathcal{R}^{4 \varepsilon}(L)$ and $\mathcal{R}^{16 \varepsilon}(L)$
Persistence $\left(\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)\right)$ END_WHILE

Output: Sequence of persitent Betti numbers of $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$

Multiscale inference

Input: A point cloud W and its pairewise distances $\left\{d\left(w, w^{\prime}\right)\right\}_{w, w^{\prime} \in W}$. \rightarrow Maintain a nested pair $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$ where $L=L(\varepsilon)$.

Init.: $L=\emptyset ; \varepsilon=+\infty$
WHILE $L \subset W$
insert $p=\operatorname{argmax}_{w \in W} d(w, L)$ in L
update $\varepsilon=\max _{w \in W} d(w, L)$
update $\mathcal{R}^{4 \varepsilon}(L)$ and $\mathcal{R}^{16 \varepsilon}(L)$
Persistence $\left(\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)\right)$ END_WHILE

Output: Sequence of persitent Betti numbers of $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$

Multiscale inference

Input: A point cloud W and its pairewise distances $\left\{d\left(w, w^{\prime}\right)\right\}_{w, w^{\prime} \in W}$. \rightarrow Maintain a nested pair $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$ where $L=L(\varepsilon)$.

Init.: $L=\emptyset ; \varepsilon=+\infty$
WHILE $L \subset W$
insert $p=\operatorname{argmax}_{w \in W} d(w, L)$ in L
update $\varepsilon=\max _{w \in W} d(w, L)$
update $\mathcal{R}^{4 \varepsilon}(L)$ and $\mathcal{R}^{16 \varepsilon}(L)$
Persistence $\left(\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)\right)$ END_WHILE

Output: Sequence of persitent Betti numbers of $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$

Multiscale inference

Input: A point cloud W and its pairewise distances $\left\{d\left(w, w^{\prime}\right)\right\}_{w, w^{\prime} \in W}$. \rightarrow Maintain a nested pair $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$ where $L=L(\varepsilon)$.

Init.: $L=\emptyset ; \varepsilon=+\infty$
WHILE $L \subset W$
insert $p=\operatorname{argmax}_{w \in W} d(w, L)$ in L
update $\varepsilon=\max _{w \in W} d(w, L)$
update $\mathcal{R}^{4 \varepsilon}(L)$ and $\mathcal{R}^{16 \varepsilon}(L)$
Persistence $\left(\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)\right)$ END_WHILE

Output: Sequence of persitent Betti numbers of $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$

Multiscale inference

Input: A point cloud W and its pairewise distances $\left\{d\left(w, w^{\prime}\right)\right\}_{w, w^{\prime} \in W}$. \rightarrow Maintain a nested pair $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$ where $L=L(\varepsilon)$.

Init.: $L=\emptyset ; \varepsilon=+\infty$
WHILE $L \subset W$
insert $p=\operatorname{argmax}_{w \in W} d(w, L)$ in L
update $\varepsilon=\max _{w \in W} d(w, L)$
update $\mathcal{R}^{4 \varepsilon}(L)$ and $\mathcal{R}^{16 \varepsilon}(L)$
Persistence $\left(\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)\right)$ END_WHILE

Output: Sequence of persitent Betti numbers of $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$

Multiscale inference

Input: A point cloud W and its pairewise distances $\left\{d\left(w, w^{\prime}\right)\right\}_{w, w^{\prime} \in W}$. \rightarrow Maintain a nested pair $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$ where $L=L(\varepsilon)$.

Init.: $L=\emptyset ; \varepsilon=+\infty$
WHILE $L \subset W$
insert $p=\operatorname{argmax}_{w \in W} d(w, L)$ in L
update $\varepsilon=\max _{w \in W} d(w, L)$
update $\mathcal{R}^{4 \varepsilon}(L)$ and $\mathcal{R}^{16 \varepsilon}(L)$
Persistence $\left(\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)\right)$
END_WHILE
Output: Sequence of persitent Betti numbers of $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$

Multiscale inference

Input: A point cloud W and its pairewise distances $\left\{d\left(w, w^{\prime}\right)\right\}_{w, w^{\prime} \in W}$. \rightarrow Maintain a nested pair $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$ where $L=L(\varepsilon)$.

Init.: $L=\emptyset ; \varepsilon=+\infty$
WHILE $L \subset W$
insert $p=\operatorname{argmax}_{w \in W} d(w, L)$ in L
update $\varepsilon=\max _{w \in W} d(w, L)$
update $\mathcal{R}^{4 \varepsilon}(L)$ and $\mathcal{R}^{16 \varepsilon}(L)$
Persistence $\left(\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)\right)$
END_WHILE
Output: Sequence of persitent Betti numbers of $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$

Multiscale inference

Input: A point cloud W and its pairewise distances $\left\{d\left(w, w^{\prime}\right)\right\}_{w, w^{\prime} \in W}$. \rightarrow Maintain a nested pair $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$ where $L=L(\varepsilon)$.

Init.: $L=\emptyset ; \varepsilon=+\infty$
WHILE $L \subset W$
insert $p=\operatorname{argmax}_{w \in W} d(w, L)$ in L update $\varepsilon=\max _{w \in W} d(w, L)$
update $\mathcal{R}^{4 \varepsilon}(L)$ and $\mathcal{R}^{16 \varepsilon}(L)$
Persistence $\left(\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)\right)$ END_WHILE

Output: Sequence of persitent Betti numbers of $\mathcal{R}^{4 \varepsilon}(L) \hookrightarrow \mathcal{R}^{16 \varepsilon}(L)$

Multiscale inference

Theorem: [C-Oudot'08]
If $d_{H}(W, X)<\delta$ for $\delta<\frac{1}{18} \mathrm{wfs}(X)$, than at every iteration of the algorithm such that $\delta<\varepsilon<\frac{1}{18} \mathrm{wfs}(X)$,

$$
\beta_{k}\left(X^{\lambda}\right)=\operatorname{dim} H_{k}\left(X^{\lambda}\right)=\operatorname{rk}\left(H_{k}\left(\mathcal{R}^{4 \varepsilon}(L)\right) \rightarrow H_{k}\left(\mathcal{R}^{4 \varepsilon}(L)\right)\right)
$$

for any $\lambda \in(0, \operatorname{wfs}(X))$ and any $k \in \mathbb{N}$.

Multiscale inference

Complexity of the algorithm:

- If $X \subset \mathbb{R}^{d}$ is non smooth the running time of the algorithm is

$$
O\left(8^{33^{d}}|W|^{5}\right)
$$

- If X is a smooth submanifold of \mathbb{R}^{d} dimension m the running time is

$$
O\left(8^{35^{m}}|W|\right)
$$

Multiscale inference

Complexity of the algorithm:

- If $X \subset \mathbb{R}^{d}$ is non smooth the running time of the algorithm is

$$
O\left(8^{33^{d}}|W|^{5}\right)
$$

- If X is a smooth submanifold of \mathbb{R}^{d} dimension m the running time is

A synthetic example

50,000 points sampled uniformly at random from a curve drawn on the 2-torus $\mathbb{S}^{1} \times \mathbb{S}^{1}$.

A synthetic example

Output: sequence of Betti numbers on a log-log scale

A synthetic example

Output: sequence of Betti numbers on a log-log scale

Generalization(s)

Previous approach can be generalized, leading to robust algorithms to compute the topological persistence of functions defined over point clouds sampled around unknown shapes

Ref:

- F. Chazal, L. Guibas, S. Oudot, P. Skraba, Analysis of Scalar Fields over Point Cloud Data, proc. ACM Symposium on Discrete Algorithms 2009.
- F. Chazal, S. Oudot, Toward Persistence-Based Reconstruction in Euclidean Spaces, proc. ACM Symposium on Computational Geometry 2008.

Generalization(s)

Applications to clustering, segmentations, sensor networks,...

Ref:

- F. Chazal, L. Guibas, S. Oudot, P. Skraba, Analysis of Scalar Fields over Point Cloud Data, proc. ACM Symposium on Discrete Algorithms 2009.
- F. Chazal, S. Oudot, Toward Persistence-Based Reconstruction in Euclidean Spaces, proc. ACM Symposium on Computational Geometry 2008.

The problem of "outliers"

If $K^{\prime}=K \cup\{x\}$ where $d_{K}(x)>R$, then $\left\|d_{K}-d_{K^{\prime}}\right\|_{\infty}>R$: offset-based inference methods fail!

Question: Can we generalized the previous approach by replacing the distance function by a "distance-like" function having a better behavior with respect to "'noise" and "outliers"?

Distance-like functions: the three main ingredients of stability

- the stability of the map $K \mapsto d_{K}$: $\left\|d_{K}-d_{K^{\prime}}\right\|_{\infty}=d_{H}\left(K, K^{\prime}\right)$

Distance-like functions: the three main ingredients of stability

- the stability of the map $K \mapsto d_{K}$: $\left\|d_{K}-d_{K^{\prime}}\right\|_{\infty}=d_{H}\left(K, K^{\prime}\right)$
- the 1-Lipschitz property for d_{K};
d_{K} is differentiable almost everywhere.

Distance-like functions: the three main ingredients of stability

- the stability of the map $K \mapsto d_{K}$:
$\left\|d_{K}-d_{K^{\prime}}\right\|_{\infty}=d_{H}\left(K, K^{\prime}\right)$
- the 1-Lipschitz property for d_{K}; d_{K} is differentiable almost everywhere.
- the 1-concavity of the function d_{K}^{2} : $x \rightarrow\|x\|^{2}-d_{K}^{2}(x)$ is convex.
- the gradient vector field ∇d_{K} is well defined and integrable (although not continuous).
- d_{K} admits a second derivative almost everywhere.

Replacing compact sets by measures

A measure μ is a mass distribution on \mathbb{R}^{d} : mathematically, it is defined as a map μ that takes a (Borel) subset $B \subset \mathbb{R}^{d}$ and outputs a nonnegative number $\mu(B)$. Moreover we ask that if $\left(B_{i}\right)$ are disjoint subsets, $\mu\left(\bigcup_{i \in \mathbb{N}} B_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(B_{i}\right)$.

- $\mu(B)$ corresponds to to the mass of μ contained in B
- a point cloud $C=\left\{p_{1}, \ldots, p_{n}\right\}$ defines a measure $\mu_{C}=\frac{1}{n} \sum_{i} \delta_{p_{i}}$
- the volume form on a k-dimensional submanifold M of \mathbb{R}^{d} defines a measure $\operatorname{vol}_{k \mid M}$.
- etc...

Distance between measures

The Wasserstein distance $d_{W}(\mu, \nu)$ between two probability measures μ, ν quantifies the optimal cost of pushing μ onto ν, the cost of moving a small mass $d x$ from x to y being $\|x-y\|^{2} d x$.

1. μ and ν are discrete measures: $\mu=\sum_{i} c_{i} \delta_{x_{i}}, \nu=\sum_{j} d_{j} \delta_{y_{j}}$ with
$\sum_{j} d_{j}=\sum_{i} c_{i}$.
2. Transport plan: set of coefficients $\pi_{i j} \geq 0$ with $\sum_{i} \pi_{i j}=$ d_{j} and $\sum_{j} \pi_{i j}=c_{i}$.
3. Cost of a transport plan

$$
C(\pi)=\left(\sum_{i j}\left\|x_{i}-y_{j}\right\|^{2} \pi_{i j}\right)^{1 / 2}
$$

4. $d_{W}(\mu, \nu):=\inf _{\pi} C(\pi)$

Distance between measures

The Wasserstein distance $d_{W}(\mu, \nu)$ between two probability measures μ, ν quantifies the optimal cost of pushing μ onto ν, the cost of moving a small mass $d x$ from x to y being $\|x-y\|^{2} d x$.

1. μ and ν are proba measures in \mathbb{R}^{d}
2. Transport plan: π a proba measure on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ s.t. $\pi\left(A \times \mathbb{R}^{d}\right)=\mu(A)$ and $\pi\left(\mathbb{R}^{d} \times B\right)=\nu(B)$.
3. Cost of a transport plan

$$
C(\pi)=\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|^{2} d \pi(x, y)\right)^{\frac{1}{2}}
$$

4. $d_{W}(\mu, \nu):=\inf _{\pi} C(\pi)$

Wasserstein distance

Examples:

- If C_{1} and C_{2} are two point clouds, with $\# C_{1}=\# C_{2}$, then $d_{W}\left(\mu_{C_{1}}, \mu_{C_{2}}\right)$ is the square root of the cost of a minimal least-square matching between C_{1} and C_{2}.
- If $C=\left\{p_{1}, \ldots, p_{n}\right\}$ is a point cloud, and $C^{\prime}=$ $\left\{p_{1}, \ldots, p_{n-k-1}, o_{1}, \ldots, o_{k}\right\}$ with $d\left(o_{i}, C\right)=R$, then

$$
d_{H}\left(C, C^{\prime}\right) \geq R \quad \text { but } \quad d_{W}\left(\mu_{C}, \mu_{C^{\prime}}\right) \leq \frac{k}{n}(R+\operatorname{diam}(C))
$$

The distance to a measure

Distance function to a measure, first attempt:
Let $m \in] 0,1\left[\right.$ be a positive mass, and μ a probability measure on \mathbb{R}^{d} :
$\delta_{\mu, m}(x)=\inf \{r>0: \mu(\mathbb{B}(x, r))>m\}$.

- $\delta_{\mu, m}$ is the smallest distance needed to capture a mass of at least m;
- Coincides with the distance to the k-th neighbor when $m=k / n$ and $\mu=$ $\frac{1}{n} \sum_{i=1}^{n} \delta_{p_{i}}$:

$$
\delta_{\mu, k / n}(\mu)=\left\|x-p_{C}^{k}(x)\right\|
$$

Unstability of $\mu \mapsto \delta_{\mu, m}$

Distance function to a measure, first attempt:
Let $m \in] 0,1\left[\right.$ be a positive mass, and μ a probability measure on \mathbb{R}^{d} :
$\delta_{\mu, m}(x)=\inf \{r>0: \mu(\mathbb{B}(x, r))>m\}$.

Unstability under Wasserstein perturbations:

$$
\begin{gathered}
\mu_{\varepsilon}=(1 / 2-\varepsilon) \delta_{0}+(1 / 2+\varepsilon) \delta_{1} \\
\text { for } \varepsilon>0: \forall x<0, \delta_{\mu_{\varepsilon}, 1 / 2}(x)=|x-1| \\
\text { for } \varepsilon=0: \forall x<0, \delta_{\mu_{0}, 1 / 2}(x)=|x-0|
\end{gathered}
$$

Consequence: the map $\mu \mapsto \delta_{\mu, m} \in \mathcal{C}^{0}\left(\mathbb{R}^{d}\right)$ is discontinuous whatever the (reasonable) topology on $\mathcal{C}^{0}\left(\mathbb{R}^{d}\right)$.

The distance function to a measure

Definition: If μ is a probability measure on \mathbb{R}^{d} and $m_{0}>0$, one let:

$$
d_{\mu, m_{0}}: x \in \mathbb{R}^{d} \mapsto\left(\frac{1}{m_{0}} \int_{0}^{m_{0}} \delta_{\mu, m}^{2}(x) d m\right)^{1 / 2}
$$

The distance function to a measure

Definition: If μ is a probability measure on \mathbb{R}^{d} and $m_{0}>0$, one let:

$$
d_{\mu, m_{0}}: x \in \mathbb{R}^{d} \mapsto\left(\frac{1}{m_{0}} \int_{0}^{m_{0}} \delta_{\mu, m}^{2}(x) d m\right)^{1 / 2}
$$

Example. Let $C=\left\{p_{1}, \ldots, p_{n}\right\}$ and $\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{p_{i}}$. Let $p_{C}^{k}(x)$ denote the k th nearest neighbor to x in C, and set $m_{0}=k_{0} / n$:

$$
d_{\mu, m_{0}}(x)=\left(\frac{1}{k_{0}} \sum_{k=1}^{k_{0}}\left\|x-p_{C}^{k}(x)\right\|^{2}\right)^{1 / 2}
$$

Another expression for $d_{\mu, m_{0}}$

$$
d_{\mu, m_{0}}(x)=\min _{\tilde{\mu}}\left\{d_{W}\left(\delta_{x}, \frac{1}{m_{0}} \tilde{\mu}\right): \tilde{\mu}\left(\mathbb{R}^{d}\right)=m_{0} \text { and } \tilde{\mu} \leq \mu\right\}
$$

"The projection submeasure": $\tilde{\mu}_{x, m_{0}}=$ the restriction of μ on the ball $B=\mathbb{B}\left(x, \delta_{\mu, m_{0}}(x)\right)$, whose trace on the sphere ∂B has been rescaled so that the total mass of $\tilde{\mu}_{x, m_{0}}$ is m_{0}.

$$
d_{\mu, m_{0}}^{2}(x)=\frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}}\|h-x\|^{2} d \tilde{\mu}_{x, m_{0}}=d_{W}^{2}\left(\delta_{x}, \frac{1}{m_{0}} \tilde{\mu}_{x, m_{0}}\right)
$$

Another expression for $d_{\mu, m_{0}}$

$$
d_{\mu, m_{0}}(x)=\min _{\tilde{\mu}}\left\{d_{W}\left(\delta_{x}, \frac{1}{m_{0}} \tilde{\mu}\right): \tilde{\mu}\left(\mathbb{R}^{d}\right)=m_{0} \text { and } \tilde{\mu} \leq \mu\right\}
$$

Proof:

Another expression for $d_{\mu, m_{0}}$

$$
d_{\mu, m_{0}}(x)=\min _{\tilde{\mu}}\left\{d_{W}\left(\delta_{x}, \frac{1}{m_{0}} \tilde{\mu}\right): \tilde{\mu}\left(\mathbb{R}^{d}\right)=m_{0} \text { and } \tilde{\mu} \leq \mu\right\}
$$

Proof:
Only one transport plan : $y \in \mathbb{R}^{d} \rightarrow x$
$\int_{\mathbb{R}^{d}}\|h-x\|^{2} d \tilde{\mu}(h)$

Another expression for $d_{\mu, m_{0}}$

$$
d_{\mu, m_{0}}(x)=\min _{\tilde{\mu}}\left\{d_{W}\left(\delta_{x}, \frac{1}{m_{0}} \tilde{\mu}\right): \tilde{\mu}\left(\mathbb{R}^{d}\right)=m_{0} \text { and } \tilde{\mu} \leq \mu\right\}
$$

Proof:

$$
\|h-x\|^{2} d \tilde{\mu}(h)=\int_{\mathbb{R}_{+}} t^{2} d \tilde{\mu}_{x}(t)=\int_{0}^{m_{0}} F_{\tilde{\mu}_{x}}^{-1}(m)^{2} d m
$$

pushforward of $\tilde{\mu}$ by the distance function to x.
$F_{\tilde{\mu}_{x}}(t)=\tilde{\mu}_{x}([0, t))$ is the cumulative function of $\tilde{\mu}_{x}$ and $F_{\tilde{\mu}_{x}}^{-1}(m)=\inf \left\{t \in \mathbb{R}: F_{\tilde{\mu}_{x}}(t)>m\right\}$ is its generalized inverse

Another expression for $d_{\mu, m_{0}}$

$$
d_{\mu, m_{0}}(x)=\min _{\tilde{\mu}}\left\{d_{W}\left(\delta_{x}, \frac{1}{m_{0}} \tilde{\mu}\right): \tilde{\mu}\left(\mathbb{R}^{d}\right)=m_{0} \text { and } \tilde{\mu} \leq \mu\right\}
$$

Proof:

$$
\begin{array}{ll}
\int_{\mathbb{R}^{d}}\|h-x\|^{2} d \tilde{\mu}(h)=\int_{\mathbb{R}_{+}} t^{2} d \tilde{\mu}_{x}(t)=\int_{0}^{m_{0}} F_{\tilde{\mu}_{x}}^{-1}(m)^{2} d m \\
\text { pushforward of } \tilde{\mu} \text { by the dis- } & \begin{array}{l}
F_{\tilde{\mu}_{x}}(t)=\tilde{\mu}_{x}([0, t)) \text { is the cumulative function of } \tilde{\mu}_{x} \text { and } \\
\text { tance function to } x .
\end{array} \\
\begin{array}{l}
F_{\tilde{\mu}_{x}}^{-1}(m)=\inf \left\{t \in \mathbb{R}: F_{\tilde{\mu}_{x}}(t)>m\right\} \text { is its generalized } \\
\text { inverse }
\end{array}
\end{array}
$$

- $\tilde{\mu} \leq \mu \Rightarrow F_{\tilde{\mu}_{x}}(t) \leq F_{\mu_{x}}(t) \Rightarrow F_{\tilde{\mu}_{x}}^{-1}(m) \geq F_{\mu_{x}}^{-1}(m)$
- $F_{\tilde{\mu}_{x}}(t)=\mu(\mathbb{B}(x, t))$ and $F_{\tilde{\mu}_{x}}^{-1}(m)=\delta_{\mu, m}(x)$

$$
\int_{\mathbb{R}^{d}}\|h-x\|^{2} d \tilde{\mu}(h) \geq \int_{0}^{m_{0}} F_{\mu_{x}}^{-1}(m)^{2} d m=\int_{0}^{m_{0}} \delta_{\mu, m}(x)^{2} d m
$$

Another expression for $d_{\mu, m_{0}}$

$$
d_{\mu, m_{0}}(x)=\min _{\tilde{\mu}}\left\{d_{W}\left(\delta_{x}, \frac{1}{m_{0}} \tilde{\mu}\right): \tilde{\mu}\left(\mathbb{R}^{d}\right)=m_{0} \text { and } \tilde{\mu} \leq \mu\right\}
$$

Proof:

$$
\begin{array}{ll}
\int_{\mathbb{R}^{d}}\|h-x\|^{2} d \tilde{\mu}(h)=\int_{\mathbb{R}_{+}} t^{2} d \tilde{\mu}_{x}(t)=\int_{0}^{m_{0}} F_{\tilde{\mu}_{x}}^{-1}(m)^{2} d m \\
\text { pushforward of } \tilde{\mu} \text { by the dis- } & \begin{array}{l}
F_{\tilde{\mu}_{x}}(t)=\tilde{\mu}_{x}([0, t)) \text { is the cumulative function of } \tilde{\mu}_{x} \text { and } \\
\text { tance function to } x .
\end{array} \\
\begin{array}{l}
F_{\tilde{\mu}_{x}}^{-1}(m)=\inf \left\{t \in \mathbb{R}: F_{\tilde{\mu}_{x}}(t)>m\right\} \text { is its generalized } \\
\text { iverse }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Equality iff } F_{\tilde{\mu}_{x}}^{-1}(m)=F_{\mu_{x}}^{-1}(m) \text { for almost every } m \\
& \Rightarrow \text { equality if } \tilde{\mu}=\tilde{\mu}_{x, m_{0}} \\
& \int_{\mathbb{R}^{d}}\|h-x\|^{2} d \tilde{\mu}(h) \sum \int_{0}^{m_{0}} F_{\mu_{x}}^{-1}(m)^{2} d m=\int_{0}^{m_{0}} \delta_{\mu, m}(x)^{2} d m
\end{aligned}
$$

Semiconcavity of $d_{\mu, m_{0}}^{2}$

Theorem: Let μ be a probability measure in \mathbb{R}^{d} and let $m_{0} \in(0,1)$.

1. $d_{\mu, m_{0}}^{2}$ is 1 -semiconcave, i.e. $\mathrm{x} \in \mathbb{R}^{d} \mapsto\|x\|^{2}-d_{\mu, m_{0}}^{2}$ is convex.
2. $d_{\mu, m_{0}}^{2}$ is differentiable almost everywhere in \mathbb{R}^{d}, with gradient defined by

$$
\nabla_{x} d_{\mu, m_{0}}^{2}=\frac{2}{m_{0}} \int_{h \in \mathbb{R}^{d}}(x-h) d \tilde{\mu}_{x, m_{0}}(h)
$$

3. the function $x \in \mathbb{R}^{d} \mapsto d_{\mu, m_{0}}(x)$ is 1-Lipschitz.

Example. Let $C=\left\{p_{1}, \ldots, p_{n}\right\}$ and $\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{p_{i}}$. Let $p_{C}^{k}(x)$ denote the k th nearest neighbor to x in C, and set $m_{0}=k_{0} / n$:

$$
\nabla d_{\mu, m_{0}}^{2}(x)=2 d_{\mu, m_{0}} \nabla d_{\mu, m_{0}}=\frac{2}{k_{0}} \sum_{k=1}^{k_{0}}\left(x-p_{C}^{k}(x)\right)
$$

Semiconcavity of $d_{\mu, m_{0}}^{2}$

Proof:

Semiconcavity of $d_{\mu, m_{0}}^{2}$

Proof:

$$
\begin{aligned}
d_{\mu, m_{0}}^{2}(y) & =\frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}}\|y-h\|^{2} d \tilde{\mu}_{y, m_{0}}(h) \\
& \leq \frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}}\|y-h\|^{2} d \tilde{\mu}_{x, m_{0}}(h) \\
& =\frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}}\left(\|x-h\|^{2}+2\langle x-h, y-x\rangle+\|y-x\|^{2}\right) d \tilde{\mu}_{x, m_{0}}(h) \\
& =d_{\mu, m_{0}}^{2}(x)+\|y-x\|^{2}+\langle V, y-x\rangle
\end{aligned}
$$

with $V=\frac{2}{m_{0}} \int_{h \in \mathbb{R}^{d}}[x-h] d \tilde{\mu}_{x, m_{0}}(h)$.

Semiconcavity of $d_{\mu, m_{0}}^{2}$

Proof:

$$
\begin{aligned}
& \qquad \begin{aligned}
& d_{\mu, m_{0}}^{2}(y)=\frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}}\|y-h\|^{2} d \tilde{\mu}_{y, m_{0}}(h) \\
& \leq \frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}}\|y-h\|^{2} d \tilde{\mu}_{x, m_{0}}(h) \\
&=\frac{1}{m_{0}} \int_{h \in \mathbb{R}^{d}}\left(\|x-h\|^{2}+2\langle x-h, y-x\rangle+\|y-x\|^{2}\right) d \tilde{\mu}_{x, m_{0}}(h) \\
&=d_{\mu, m_{0}}^{2}(x)+\|y-x\|^{2}+\langle V, y-x\rangle \\
& \text { with }=\frac{2}{m_{0}} \int_{h \in \mathbb{R}^{d}}[x-h] d \tilde{\mu}_{x, m_{0}}(h) . \\
& \Rightarrow\left(\|y\|^{2}-d_{\mu, m_{0}}^{2}(y)\right)-\left(\|x\|^{2}-d_{\mu, m_{0}}^{2}(x)\right) \geq\langle 2 x-V, x-y\rangle
\end{aligned}
\end{aligned}
$$

This is the gradient!

Stability of of $\mu \rightarrow d_{\mu, m_{0}}$

Theorem: If μ and ν are two probability measures on \mathbb{R}^{d} and $m_{0}>0$, then $\left\|d_{\mu, m_{0}}-d_{\nu, m_{0}}\right\|_{\infty} \leq \frac{1}{\sqrt{m_{0}}} d_{W}(\mu, \nu)$.

Stability of of $\mu \rightarrow d_{\mu, m_{0}}$

Theorem: If μ and ν are two probability measures on \mathbb{R}^{d} and $m_{0}>0$, then $\left\|d_{\mu, m_{0}}-d_{\nu, m_{0}}\right\|_{\infty} \leq \frac{1}{\sqrt{m_{0}}} d_{W}(\mu, \nu)$.

Proof: for $x \in \mathbb{R}^{d}$, let $\mu^{x}=\left(d_{x}\right)_{\sharp} \mu, \nu^{x}=\left(d_{x}\right)_{\sharp} \nu$ where $d_{x}: y \in \mathbb{R}^{d} \mapsto\|y-x\|$.

- $d_{W}\left(\mu^{x}, \nu^{x}\right)=\left\|F_{\mu^{x}}^{-1}-F_{\nu^{x}}^{-1}\right\|_{L^{2}([0,1])}$

Classical result for measures on \mathbb{R}

Stability of of $\mu \rightarrow d_{\mu, m_{0}}$

Theorem: If μ and ν are two probability measures on \mathbb{R}^{d} and $m_{0}>0$, then $\left\|d_{\mu, m_{0}}-d_{\nu, m_{0}}\right\|_{\infty} \leq \frac{1}{\sqrt{m_{0}}} d_{W}(\mu, \nu)$.

Proof: for $x \in \mathbb{R}^{d}$, let $\mu^{x}=\left(d_{x}\right)_{\sharp} \mu, \nu^{x}=\left(d_{x}\right)_{\sharp \nu}$ where $d_{x}: y \in \mathbb{R}^{d} \mapsto\|y-x\|$.

- $\left|\sqrt{\int_{0}^{m_{0}} \delta_{\mu^{x}, m}^{2}(0) d m}-\sqrt{\int_{0}^{m_{0}} \delta_{\nu^{x}, m}^{2}(0) d m}\right| \leq d_{W}\left(\mu^{x}, \nu^{x}\right)$

Stability of of $\mu \rightarrow d_{\mu, m_{0}}$

Theorem: If μ and ν are two probability measures on \mathbb{R}^{d} and $m_{0}>0$, then $\left\|d_{\mu, m_{0}}-d_{\nu, m_{0}}\right\|_{\infty} \leq \frac{1}{\sqrt{m_{0}}} d_{W}(\mu, \nu)$.

Proof: for $x \in \mathbb{R}^{d}$, let $\mu^{x}=\left(d_{x}\right)_{\sharp} \mu, \nu^{x}=\left(d_{x}\right)_{\sharp} \nu$ where $d_{x}: y \in \mathbb{R}^{d} \mapsto\|y-x\|$.

- $d_{W}\left(\mu^{x}, \nu^{x}\right)=\left\|F_{\mu^{x}}^{-1}-F_{\nu^{x}}^{-1}\right\|_{L^{2}([0,1])}$
- $\left|\sqrt{\int_{0}^{m_{0}} \delta_{\mu^{x}, m}^{2}(0) d m}-\sqrt{\int_{0}^{m_{0}} \delta_{\nu^{x}, m}^{2}(0) d m}\right| \leq d_{W}\left(\mu^{x}, \nu^{x}\right)$
- $d_{W}\left(\mu^{x}, \nu^{x}\right) \leq d_{W}(\mu, \nu) \longleftarrow \quad \begin{aligned} & \text { Any transport plan } \pi \text { between } \mu \text { and } \nu \text { induces a } \\ & \text { transport plan } \pi_{x}=\left(d_{x}, d_{x}\right)_{\sharp} \pi \text { between } \mu^{x} \text { and } \nu^{x}\end{aligned}$

Stability of of $\mu \rightarrow d_{\mu, m_{0}}$

Theorem: If μ and ν are two probability measures on \mathbb{R}^{d} and $m_{0}>0$, then $\left\|d_{\mu, m_{0}}-d_{\nu, m_{0}}\right\|_{\infty} \leq \frac{1}{\sqrt{m_{0}}} d_{W}(\mu, \nu)$.

Proof: for $x \in \mathbb{R}^{d}$, let $\mu^{x}=\left(d_{x}\right)_{\sharp} \mu, \nu^{x}=\left(d_{x}\right)_{\sharp} \nu$ where $d_{x}: y \in \mathbb{R}^{d} \mapsto\|y-x\|$.

- $d_{W}\left(\mu^{x}, \nu^{x}\right)=\left\|F_{\mu^{x}}^{-1}-F_{\nu^{x}}^{-1}\right\|_{L^{2}([0,1])}$
$\cdot \mid \sqrt{\int_{0}^{m_{0}} \delta_{\mu^{x}, m}^{2}(0) d m}-\sqrt{\int_{0}^{m_{0}} \delta_{\nu^{x}, m}^{2}(0) d m} \leq d_{W}\left(\mu^{x}, \nu^{x}\right)$
- $d_{W}\left(\mu^{x}, \nu^{x}\right) \leq d_{W}(\mu, \nu)$
- $\left|d_{\mu, m_{0}}(x)-d_{\nu, m_{0}}(x)\right| \leq \frac{1}{\sqrt{m_{0}}} d_{W}\left(\mu^{x}, \nu^{x}\right) \leq \frac{1}{\sqrt{m_{0}}} d_{W}(\mu, \nu)$

To summarize

Theorem [C-Cohen-Steiner-Mérigot'09]

1. the function $x \mapsto d_{\mu, m_{0}}(x)$ is 1 -Lipschitz;
2. the function $x \mapsto\|x\|^{2}-d_{\mu, m_{0}}^{2}(x)$ is convex;
3. the map $\mu \mapsto d_{\mu, m_{0}}$ from probability measures to continuous functions is $\frac{1}{\sqrt{m_{0}}}$-Lipschitz, ie

$$
\left\|d_{\mu, m_{0}}-d_{\mu^{\prime}, m_{0}}\right\|_{\infty} \leq \frac{1}{\sqrt{m_{0}}} d_{W}\left(\mu, \mu^{\prime}\right)
$$

In practice: $d_{\mu, m_{0}}$ and $\nabla d_{\mu, m_{0}}$ are very easy to compute for $\mu=\sum_{i=1}^{n} \delta_{p_{i}}$, $C=\left\{p_{1}, \cdots p_{n}\right\} \subset \mathbb{R}^{d}$!

Consequences

Most of the topological and geometric inference for distance functions transpose to distance to a measure functions!
\Longrightarrow This gives a way to associate robust geometric features to any probability measure in an Euclidean space:

- offsets topology and geometry,
- analogous of the notions of medial axes,
- L^{1} stability of $\nabla d_{\mu, m_{0}}$

Example: a square with outliers

2300 points, 20% outliers

Example: a square with outliers

2300 points, 20% outliers

$\delta_{\mu, m_{0}}, m_{0}=0.023(k=50)$

$d_{\mu, m_{0}}, m_{0}=0.023(k=50)$

Example: a square with outliers

$$
\delta_{\mu, m_{0}}, m_{0}=0.023(k=50)
$$

$$
d_{\mu, m_{0}}, m_{0}=0.023(k=50)
$$

Example: a square with outliers

A 3D example

Reconstruction of an offset of a mechanical part from a noisy approximation with 10% outliers

A reconstruction theorem

$$
\begin{aligned}
& \exists C>0 \text { s.t. } \forall x \in K, \\
& \mu(\mathbb{B}(x, \varepsilon)) \geq C \varepsilon^{k} \text { as soon } \\
& \text { as } \varepsilon \text { is small enough. }
\end{aligned}
$$

Theorem: Let μ be a probability measure of dimension at most $k>0$ with compact support $K \subset \mathbb{R}^{d}$ such that $r_{\alpha}(K)>0$ for some $\alpha \in(0,1]$. For any $0<\eta<r_{\alpha}(K)$, there exists positive constants $m_{1}=m_{1}(\mu, \alpha, \eta)>0$ and $C=C\left(m_{1}\right)>0$ such that:
for any $m_{0}<m_{1}$ and any probability measure μ^{\prime} such that $W_{2}\left(\mu, \mu^{\prime}\right)<$ $C \sqrt{m_{0}}$, the sublevel set $d_{\mu^{\prime}, m_{0}}^{-1}((-\infty, \eta])$ is isotopic to the offsets $d_{K}^{-1}([0, r])$ of K for $0<r<r_{\alpha}(K)$.

Comparison to kNN density estimation

$$
\hat{\mu}=\frac{1}{1200} \sum_{i=1}^{1200} \delta_{p_{i}}
$$

Data: 1200 points p_{1}, \cdots, p_{1200}
Density is estimated using

1. $x \mapsto \frac{m_{0}}{\omega_{d-1}\left(\delta_{\mu, m_{0}}(x)\right)}, m_{0}=150 / 1200(k=150)$ (Devroye-Wagner'77).
2. $\frac{m_{0}}{2 \pi d_{\hat{\mu}, m_{0}}(x)^{2}}, m_{0}=150 / 1200(k=150)$.

Comparison to kNN density estimation

1.

2.

Density is estimated using

1. $x \mapsto \frac{m_{0}}{\omega_{d-1}\left(\delta_{\hat{\mu}, m_{0}}(x)\right)}, m_{0}=150 / 1200(k=150)$ (Devroye-Wagner'77).
2. $\frac{m_{0}}{2 \pi d_{\hat{\mu}, m_{0}}(x)^{2}}, m_{0}=150 / 1200(k=150)$.

Comparison to kNN density estimation

Density is estimated using

1. $x \mapsto \frac{m_{0}}{\omega_{d-1}\left(\delta_{\mu}, m_{0}(x)\right)}, m_{0}=150 / 1200(k=150)$ (Devroye-Wagner'77).
2. $\frac{m_{0}}{2 \pi d_{\hat{\mu}, m_{0}}(x)^{2}}, m_{0}=150 / 1200(k=150)$.

Comparison to kNN density estimation

1.

2.

Density is estimated using

1. $x \mapsto \frac{m_{0}}{\omega_{d-1}\left(\delta_{\hat{\mu}, m_{0}}(x)\right)}, m_{0}=150 / 1200(k=150)$ (Devroye-Wagner'77).
2. $\frac{m_{0}}{2 \pi d_{\hat{\mu}, m_{0}}(x)^{2}}, m_{0}=150 / 1200(k=150)$.

Pushing data along the gradient of $d_{\mu, m_{0}}$

- Mean-Shift like algorithm (Fukunaga-Hostetler'75, Comaniciu-Meer '02)
- Theoretical guarantees on the convergence of the algorithm and "smoothness" of trajectories.

Pushing data along the gradient of $d_{\mu, m_{0}}$

Take-home messages

- $\mu \mapsto d_{\mu, m_{0}}$ provide a way to associate geometry to a measure in Euclidean space.
- $d_{\mu, m_{0}}$ is robust to Wasserstein perturbations: outliers and noise are easily handled (no assumption on the nature of the noise).
- $d_{\mu, m_{0}}$ shares regularity properties with the usual distance function to a compact.
- Geometric stability results in this measure-theoretic setting : topology/geometry of the sublevel sets of $d_{\mu, m_{0}}$, stable notion of persistence diagram for μ, \ldots
- Algorithm: for finite point clouds $d_{\mu, m_{0}}$ and $\nabla\left(d_{\mu, m_{0}}\right)$ can be easily and efficiently computed in any dimension.

To get more details:
http://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/RR-6930.pdf

