Growing Balls
 Topology, Morse theory and Tessellations

Dirk Siersma

Department of Mathematics
University of Utrecht
Subdivide and Tile
Lorentzcentrum Leiden, November 19, 2009

Outline

Introduction
Voronoi and Power Tesselations
The Voronoi Power Diagram
The Delaunay triangulation
Morse Theory
Critical Points
Morse Formula
The Morse poset
Tropical Geometry
Digression on Tropical Geometry
Power diagram as tropical hypersurface.
Discrete Morse Theory

Growing balls

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. We assume general position. Assign a weight w_{i} to each point P_{i}.

Growing balls

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. We assume general position. Assign a weight w_{i} to each point P_{i}.

We show here a picture and next link to cabri

We are interested in the change of topology and geometry of the growing balls by increasing radius.

Local view

- topologically regular
- topological saddle point
- topological maximum
- two triangles
- vertex, topologically regular

Voronoi Power Diagram

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. Assign a weight w_{i} to each point P_{i}. Let $\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2} . \quad$ Consider $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{equation*}
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i} \quad g(x)=\min _{1 \leq i \leq N} g_{i}(x) \tag{1}
\end{equation*}
$$

Voronoi Power Diagram

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. Assign a weight w_{i} to each point P_{i}. Let $\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2} . \quad$ Consider $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{equation*}
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i} \quad g(x)=\min _{1 \leq i \leq N} g_{i}(x) \tag{1}
\end{equation*}
$$

g_{i} is the Power distance function

Voronoi Power Diagram

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. Assign a weight w_{i} to each point P_{i}. Let $\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}$. Consider $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{equation*}
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i} \quad g(x)=\min _{1 \leq i \leq N} g_{i}(x) \tag{1}
\end{equation*}
$$

g_{i} is the Power distance function
Definition
For each of the P_{i} :

$$
\operatorname{Pow}\left(P_{i}\right)=\operatorname{cl}\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)=g(x) \text { and } g_{j}(x)>g(x) j \neq i\right\}
$$

The sets Pow $\left(P_{i}\right)$ are called (power) cells. The power cells form a tesselation of \mathbb{R}^{n}

Voronoi Power Diagram

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. Assign a weight w_{i} to each point P_{i}. Let $\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}$. Consider $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{equation*}
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i} \quad g(x)=\min _{1 \leq i \leq N} g_{i}(x) \tag{1}
\end{equation*}
$$

g_{i} is the Power distance function
Definition
For each of the P_{i} :

$$
\operatorname{Pow}\left(P_{i}\right)=\operatorname{cl}\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)=g(x) \text { and } g_{j}(x)>g(x) j \neq i\right\}
$$

The sets Pow $\left(P_{i}\right)$ are called (power) cells. The power cells form a tesselation of \mathbb{R}^{n} In case all $w_{i}=0$ we have a tesselation with Voronoi cells.

Voronoi-Power diagrams

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. Assign a weight w_{i} to each point P_{i}. Let $\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}$. Consider $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{equation*}
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i} \quad g(x)=\min _{1 \leq i \leq N} g_{i}(x) \tag{2}
\end{equation*}
$$

g_{i} is the Power distance function
Definition
Let $\alpha \subset\left\{P_{1}, \cdots, P_{N}\right\}$:
$\operatorname{Pow}(\alpha)=\operatorname{cl}\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)=g(x) P_{i} \in \alpha\right.$ and $\left.g_{j}(x)>g(x) P_{j} \notin \alpha\right\}$
The sets Pow (α) are called (power) cells.

Voronoi-Power diagrams

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. Assign a weight w_{i} to each point P_{i}. Let $\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}$. Consider $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{equation*}
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i} \quad g(x)=\min _{1 \leq i \leq N} g_{i}(x) \tag{2}
\end{equation*}
$$

g_{i} is the Power distance function
Definition
Let $\alpha \subset\left\{P_{1}, \cdots, P_{N}\right\}$:
$\operatorname{Pow}(\alpha)=\operatorname{cl}\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)=g(x) P_{i} \in \alpha\right.$ and $\left.g_{j}(x)>g(x) P_{j} \notin \alpha\right\}$
The sets Pow (α) are called (power) cells. The codimension 1 skeleton is called the Power or Voronoi Diagram.

Voronoi-Power diagrams

Take a point set $\left\{P_{1}, \cdots, P_{N}\right\} \subset \mathbb{R}^{n}$. Assign a weight w_{i} to each point P_{i}. Let $\|x\|^{2}=\sum_{i=1}^{n} x_{i}^{2}$. Consider $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\begin{equation*}
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i} \quad g(x)=\min _{1 \leq i \leq N} g_{i}(x) \tag{2}
\end{equation*}
$$

g_{i} is the Power distance function
Definition
Let $\alpha \subset\left\{P_{1}, \cdots, P_{N}\right\}$:
$\operatorname{Pow}(\alpha)=\operatorname{cl}\left\{x \in \mathbb{R}^{n} \mid g_{i}(x)=g(x) P_{i} \in \alpha\right.$ and $\left.g_{j}(x)>g(x) P_{j} \notin \alpha\right\}$
The sets Pow (α) are called (power) cells. The codimension 1 skeleton is called the Power or Voronoi Diagram.
It is no restriction to assume that $w_{i}>0$. We may add some number to all of the functions g_{i} : the cells will not change.

The Delaunay triangulation

Construct a dual tesselation.

- Vertices are the points $\left\{P_{1}, \cdots, P_{N}\right\}$,

The Delaunay triangulation

Construct a dual tesselation.

- Vertices are the points $\left\{P_{1}, \cdots, P_{N}\right\}$,
- 1-cells (edges) $P_{i} P_{j}$ as soon as $\operatorname{Pow}\left(P_{i}\right)$ and $\operatorname{Pow}\left(P_{j}\right)$ share a common face,

The Delaunay triangulation

Construct a dual tesselation.

- Vertices are the points $\left\{P_{1}, \cdots, P_{N}\right\}$,
- 1-cells (edges) $P_{i} P_{j}$ as soon as $\operatorname{Pow}\left(P_{i}\right)$ and $\operatorname{Pow}\left(P_{j}\right)$ share a common face,
- k-cells α as soon as $\operatorname{Pow}(\alpha)$ is non-void. The geometric realization of cells are $\operatorname{Del}(\alpha)$, the convex hull of the point set $\alpha \subset \mathbb{R}^{n}$.

The Delaunay triangulation

Construct a dual tesselation.

- Vertices are the points $\left\{P_{1}, \cdots, P_{N}\right\}$,
- 1-cells (edges) $P_{i} P_{j}$ as soon as $\operatorname{Pow}\left(P_{i}\right)$ and $\operatorname{Pow}\left(P_{j}\right)$ share a common face,
- k-cells α as soon as $\operatorname{Pow}(\alpha)$ is non-void. The geometric realization of cells are $\operatorname{Del}(\alpha)$, the convex hull of the point set $\alpha \subset \mathbb{R}^{n}$.
Note that $\operatorname{Pow}(\alpha)$ and $\operatorname{Del}(\alpha)$ lie in orthogonal hyperplanes of complementary dimension. The unique intersection point of these hyperplanes $\boldsymbol{c}(\alpha)$ is the center of the circumscribed sphere of α in the spanning affine space

Critical points of the distance function

Let x be on the power diagram; then there is a set α (nearest neighbours) such that

$$
g(x)=g_{i}(x) \Leftrightarrow P_{i} \in \alpha \quad ; \text { so } x \in \operatorname{Pow}(\alpha)
$$

Critical points of the distance function

Let x be on the power diagram; then there is a set α (nearest neighbours) such that

$$
g(x)=g_{i}(x) \Leftrightarrow P_{i} \in \alpha \quad ; \text { so } x \in \operatorname{Pow}(\alpha)
$$

Now grad $g_{i}(x)=x-P_{i}=\overrightarrow{x P_{i}}$ since $g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i}$
Generalized derivative $\partial g(x)=\mathrm{CH}\left(\overrightarrow{x P_{i}} \mid P_{i} \in \alpha\right)=\operatorname{Del}(\alpha)$.

Critical points of the distance function

Let x be on the power diagram; then there is a set α (nearest neighbours) such that

$$
g(x)=g_{i}(x) \Leftrightarrow P_{i} \in \alpha \quad ; \text { so } x \in \operatorname{Pow}(\alpha)
$$

Now grad $g_{i}(x)=x-P_{i}=\overrightarrow{x P}_{i}$ since $g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i}$
Generalized derivative $\partial g(x)=\mathrm{CH}\left(\overrightarrow{x P_{i}} \mid P_{i} \in \alpha\right)=\operatorname{Del}(\alpha)$.

From non-smooth critical point theory :

$$
x \text { critical iff } O \in \partial g(x)
$$

x critical iff $O \in \partial g(x)$

$$
\begin{gathered}
x \in \operatorname{Del}(\alpha) \operatorname{critical} \\
x=\operatorname{Pow}(\alpha) \cap \operatorname{Del}(\alpha)
\end{gathered}
$$

The index of the critical point x is equal to $k=\operatorname{dim}<\operatorname{Del}(\alpha)>$.

Morse Formula

The following Morse formula is a non differentiable version of the 'mountaineering equation'.
Theorem
Let s_{i} be the number of critical points of index i of g. We have:

$$
\sum(-1)^{i} s_{i}=1
$$

Morse Formula

The following Morse formula is a non differentiable version of the 'mountaineering equation'.
Theorem
Let s_{i} be the number of critical points of index i of g. We have:

$$
\sum(-1)^{i} s_{i}=1
$$

In 2-dimensional case $m-s+M=1$

Morse Formula

The following Morse formula is a non differentiable version of the 'mountaineering equation'.
Theorem
Let s_{i} be the number of critical points of index i of g. We have:

$$
\sum(-1)^{i} s_{i}=1
$$

In 2-dimensional case $m-s+M=1$

Proof.

g is a topological Morse function. In that case, as t grows, g passes through a number of non-degenerate critical values. When g passes a critical value of index i, an i-cell gets attached. In between we apply the (topological) regular interval theorem. For each intermediate function value t we have therefore :

$$
\chi(\{g(x) \leq t\})=\sum(-1)^{i} s_{i}(t)
$$

The Morse poset

Critical points determine an active cell in the Delaunay tesselation. The set of active cells form the Morse poset: a combinatorial description of critical points.

PICTURES

- trangles
- 4-gon
- plane 4 points
- spatial ;
- tetrahedra ${ }^{\text {. }}$

Digression on tropical geometry

We will connect the theory of power diagrams with the concept of tropical hypersurface in tropical geometry.

Tropical geometry is relatively new: it connects algebraic geometry problems with combinatorial questions on certain polytopes.

Digression on tropical geometry

We will connect the theory of power diagrams with the concept of tropical hypersurface in tropical geometry.

Tropical geometry is relatively new: it connects algebraic geometry problems with combinatorial questions on certain polytopes.

Recall that algebraic geometry studies varieties: the zero set of polynomials with real or complex coefficients in affine space.

Min-plus algebra

In tropical geometry one considers two new operations in \mathbb{R} :

- tropical addition: $x \oplus y:=\min (x, y)$, and
- tropical multiplication: $x \otimes y:=x+y$.

Min-plus algebra

In tropical geometry one considers two new operations in \mathbb{R} :

- tropical addition: $x \oplus y:=\min (x, y)$, and
- tropical multiplication: $x \otimes y:=x+y$.

With these two operations \mathbb{R} gets the structure of a topological semi-ring. Such a tropical semi-ring is called a min-plus algebra.
Polynomials in tropical geometry are defined in the usual way.

Min-plus algebra

In tropical geometry one considers two new operations in \mathbb{R} :

- tropical addition: $x \oplus y:=\min (x, y)$, and
- tropical multiplication: $x \otimes y:=x+y$.

With these two operations \mathbb{R} gets the structure of a topological semi-ring. Such a tropical semi-ring is called a min-plus algebra.
Polynomials in tropical geometry are defined in the usual way. The "dictionary" from algebraic geometry to tropical geometry works as follows: The ordinary polynomial

$$
x^{3}+y^{3}+3 x y+3
$$

has a tropical version:

$$
\min \{3 x, 3 y, x+y+3,3\}
$$

Tropical hypersurfaces

Tropical polynomials are piecewise linear concave functions on \mathbb{R}^{n} with integer coefficients. The vertex set is defined by the exponents; in the example $(3,0),(0,3),(1,1),(0,0)$.

Tropical hypersurfaces

Tropical polynomials are piecewise linear concave functions on \mathbb{R}^{n} with integer coefficients. The vertex set is defined by the exponents; in the example $(3,0),(0,3),(1,1),(0,0)$.

The analogue of a variety in tropical geometry is the non-differentiability locus of the tropical polynomial, also called the corner locus of the concave function.
The pictures look similar to power diagrams. Also tesselations of the polytope of the vertex set appear in a natural way in tropical geometry.

Tropical hypersurfaces

Tropical polynomials are piecewise linear concave functions on \mathbb{R}^{n} with integer coefficients. The vertex set is defined by the exponents; in the example $(3,0),(0,3),(1,1),(0,0)$.

The analogue of a variety in tropical geometry is the non-differentiability locus of the tropical polynomial, also called the corner locus of the concave function.
The pictures look similar to power diagrams.
Also tesselations of the polytope of the vertex set appear in a natural way in tropical geometry.
Because of the relation $\max (x, y)=-\min (-x,-y)$ one could also have used the operation $x \oplus y=\max (x, y)$ to define a tropical semi-ring. Tropical hypersurfaces are defined by piecewise linear convex functions.

Amoeba

Tropical hypersurfaces appear also as follows:
Let $V \subset\left(\mathbb{C}^{\star}\right)^{n}$ be an algebraic variety. Recall that $\mathbb{C}^{\star}=\mathbb{C}-0$ is the group of complex numbers under multiplication. Let
Log: $\left(\mathbb{C}^{\star}\right)^{n} \rightarrow \mathbb{R}^{n}$ be the "logarithmic moment-map" defined by

$$
\log \left(z_{1}, \ldots, z_{n}\right)=\left(\log \left|z_{1}\right|, \cdots, \log \left|z_{n}\right|\right)
$$

Amoeba

Tropical hypersurfaces appear also as follows: Let $V \subset\left(\mathbb{C}^{\star}\right)^{n}$ be an algebraic variety. Recall that $\mathbb{C}^{\star}=\mathbb{C}-0$ is the group of complex numbers under multiplication. Let Log: $\left(\mathbb{C}^{\star}\right)^{n} \rightarrow \mathbb{R}^{n}$ be the "logarithmic moment-map" defined by

$$
\log \left(z_{1}, \ldots, z_{n}\right)=\left(\log \left|z_{1}\right|, \cdots, \log \left|z_{n}\right|\right)
$$

Gelfand-Kapranov-Zelevinski defined the amoeba of an algebraic variety V as the image $A=\log (V) \in \mathbb{R}^{n}$. Tropical hypersurfaces are "spines" of amoebas of algebraic varieties. Mikhalkin showed that the spine is a certain limit of the amoeba and carries all topological information of the amoeba.
amoeba1.jpg ; amoeba2.jpg

Affine approach

$$
\begin{aligned}
& g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i}=\frac{1}{2}\|x\|^{2}-\left\langle x, P_{i}\right\rangle+\frac{1}{2}\left\|P_{i}\right\|^{2}-\frac{1}{2} w_{i} \\
& \text { Let } f_{i}(x)=\left\langle x, P_{i}\right\rangle+c_{i} \text {, where } \quad c_{i}=-\frac{\left\|P_{i}\right\|^{2}-w_{i}}{2}
\end{aligned}
$$

Affine approach

$$
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i}=\frac{1}{2}\|x\|^{2}-<x, P_{i}>+\frac{1}{2}\left\|P_{i}\right\|^{2}-\frac{1}{2} w_{i}
$$

Let $f_{i}(x)=\left\langle x, P_{i}\right\rangle+c_{i}$, where $\quad c_{i}=-\frac{\left\|P_{i}\right\|^{2}-w_{i}}{2}$
Let

$$
f(x)=\max _{i=1, \cdots, N} f_{i}(x) \quad g(x)=\min _{i=1, \cdots, N} g_{i}(x)
$$

Affine approach

$$
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i}=\frac{1}{2}\|x\|^{2}-<x, P_{i}>+\frac{1}{2}\left\|P_{i}\right\|^{2}-\frac{1}{2} w_{i}
$$

Let $f_{i}(x)=\left\langle x, P_{i}\right\rangle+c_{i}$, where $\quad c_{i}=-\frac{\left\|P_{i}\right\|^{2}-w_{i}}{2}$
Let

$$
f(x)=\max _{i=1, \cdots, N} f_{i}(x) \quad g(x)=\min _{i=1, \cdots, N} g_{i}(x)
$$

Then f and g satisfy the following relations:

$$
g_{i}(x)=\frac{1}{2}\|x\|^{2}-f_{i}(x) \quad g(x)=\frac{1}{2}\|x\|^{2}-f(x)
$$

Affine approach

$$
g_{i}(x)=\frac{1}{2}\left\|x-P_{i}\right\|^{2}-\frac{1}{2} w_{i}=\frac{1}{2}\|x\|^{2}-<x, P_{i}>+\frac{1}{2}\left\|P_{i}\right\|^{2}-\frac{1}{2} w_{i}
$$

Let $f_{i}(x)=\left\langle x, P_{i}\right\rangle+c_{i}$, where $\quad c_{i}=-\frac{\left\|P_{i}\right\|^{2}-w_{i}}{2}$
Let

$$
f(x)=\max _{i=1, \cdots, N} f_{i}(x) \quad g(x)=\min _{i=1, \cdots, N} g_{i}(x)
$$

Then f and g satisfy the following relations:

$$
g_{i}(x)=\frac{1}{2}\|x\|^{2}-f_{i}(x) \quad g(x)=\frac{1}{2}\|x\|^{2}-f(x)
$$

We can define the power diagram solely using affine functions:
$\operatorname{Pow}(\alpha)=c l\left\{x \in \mathbb{R}^{n} \mid f_{i}(x)=f(x) P_{i} \in \alpha\right.$ and $\left.f_{j}(x)<f(x) P_{j} \notin \alpha\right\}$

Forman's Discrete Morse Theory

Definition

A function $h: \mathcal{T} \rightarrow \mathbb{R}$ is called a Forman discrete Morse function if for all $\beta \in \mathcal{T}$

$$
\begin{aligned}
& \#\{\alpha \in \mathcal{T} \mid 1+\operatorname{dim}(\alpha)=\operatorname{dim}(\beta) \alpha \subset \beta h(\alpha) \geq h(\beta)\} \leq 1 \\
& \#\{\alpha \in \mathcal{T} \mid \operatorname{dim}(\alpha)=1+\operatorname{dim}(\beta) \beta \subset \alpha h(\alpha) \leq h(\beta)\} \leq 1
\end{aligned}
$$

Forman's Discrete Morse Theory

Definition

A function $h: \mathcal{T} \rightarrow \mathbb{R}$ is called a Forman discrete Morse function if for all $\beta \in \mathcal{T}$

$$
\begin{aligned}
& \#\{\alpha \in \mathcal{T} \mid 1+\operatorname{dim}(\alpha)=\operatorname{dim}(\beta) \alpha \subset \beta h(\alpha) \geq h(\beta)\} \leq 1 \\
& \#\{\alpha \in \mathcal{T} \mid \operatorname{dim}(\alpha)=1+\operatorname{dim}(\beta) \beta \subset \alpha h(\alpha) \leq h(\beta)\} \leq 1
\end{aligned}
$$

Increasing value for increasing dimension, with maximal one exception.

Forman's Discrete Morse Theory

Definition

A function $h: \mathcal{T} \rightarrow \mathbb{R}$ is called a Forman discrete Morse function if for all $\beta \in \mathcal{T}$

$$
\begin{aligned}
& \#\{\alpha \in \mathcal{T} \mid 1+\operatorname{dim}(\alpha)=\operatorname{dim}(\beta) \alpha \subset \beta h(\alpha) \geq h(\beta)\} \leq 1 \\
& \#\{\alpha \in \mathcal{T} \mid \operatorname{dim}(\alpha)=1+\operatorname{dim}(\beta) \beta \subset \alpha h(\alpha) \leq h(\beta)\} \leq 1
\end{aligned}
$$

Increasing value for increasing dimension, with maximal one exception.
In case both numbers are zero for some $\beta \in \mathcal{T}, \beta$ is called critical.
Non-critical occur in pairs ; criticals are single.

Power distance as a discrete Morse function

Define $h(\alpha)=g(c(\alpha))$, the critical value on the simplex α.
Question: Is there a discrete Morse function extending h to the Delaunay tesselation?

Power distance as a discrete Morse function

Define $h(\alpha)=g(c(\alpha))$, the critical value on the simplex α.
Question: Is there a discrete Morse function extending h to the Delaunay tesselation?
A candidate is $\hat{h}(\alpha)=\sup _{x \in C H(\alpha)} g(x)$.

Power distance as a discrete Morse function

Define $h(\alpha)=g(c(\alpha))$, the critical value on the simplex α.
Question: Is there a discrete Morse function extending h to the Delaunay tesselation?
A candidate is $\hat{h}(\alpha)=\sup _{x \in C H(\alpha)} g(x)$. This works well in the 2-dimensional examples.
But not in higher dimensional cases.
There is a polyhedral collapse involving 4 simplices.

Power distance as a discrete Morse function

Define $h(\alpha)=g(c(\alpha))$, the critical value on the simplex α.
Question: Is there a discrete Morse function extending h to the Delaunay tesselation?
A candidate is $\hat{h}(\alpha)=\sup _{x \in C H(\alpha)} g(x)$. This works well in the 2-dimensional examples.
But not in higher dimensional cases.
There is a polyhedral collapse involving 4 simplices.
Theorem

- \hat{h} extends h as a (generalized) discrete Morse function , with polyheral collapses,
- \hat{h} can be perturbed to a usual discrete Morse function

Growing Balls

We made a travel through :

- Voronoi and Power Tesselations
- Morse Theory
- Tropical Geometry
- Discrete Morse Theory

Growing Balls

We made a travel through :

- Voronoi and Power Tesselations
- Morse Theory
- Tropical Geometry
- Discrete Morse Theory

Thank you

figure2

topologically regular situation

figure3

topological saddle point

figure6

topological maximum

figure5

figure4

vertex, which is topologically regular

Voronoi-Delaunay

Voronoi-Delaunay

Power distance

Pyhagoras:

$$
|Z Q|^{2}=|Z P|^{2}-|P Q|^{2}=\left\|z-P_{i}\right\|^{2}-r^{2}
$$

Power distance is square of tangent length (devided by 2). Power line of two circles:

pictures

Amoeba

Figure 1. Amoeba of the polynomial $1+z_{1}^{5}+80 z_{1}^{2} z_{2}+40 z_{1}^{3} z_{2}^{2}+z_{1}^{3} z_{2}^{4}$ (shaded) together with its spine (solid) and the dual triangulation of the Newton polytope

Amoeba

Figure 2. Amoebas, spines, and triangulated Newton polytopes of the polynomial $1+z_{1}^{3}+z_{2}^{3}+a z_{1} z_{2}$ for $a=0$ and $a=-6$

Nine Morse Tetrahedra

a priori possibilites,
listed with number of critical points of index $0,1,2,3$.

$(4,6,4,1)$
$(4,6,3,0)$
$(4,5,3,1)$
$(4,5,2,0)$
$\begin{array}{ll}(4,4,2,1) & O \\ (4,4,1,0) & O\end{array}$

$$
\begin{array}{llllll}
(4,4,2,1) & P & (4,3,1,1) & L & (4,3,1,1) & T \\
(4,4,1,0) & P & (4,3,0,0) & L & (4,3,0,0) & T
\end{array}
$$

Theorem
There are nine generic tetrahedra:
$(4,6,4,1),(4,6,3,0),(4,5,3,1),(4,5,2,0),(4,4,2,1) O$,
$(4,4,1,0) O,(4,4,1,0) P,(4,3,0,0) L$ and $(4,3,0,0) T$,

2 dimensional Morse Posets

with 3 or 4 points

Two types of triangles

ACUTE triangle

4-gon

tetra 4641

tetra 4520

Polyhedral collaps

Basics of discrete Morse Theory

Example

(i). This is not a discrete Morse function. (ii). This is a discrete Morse function.

example

collapse

Polyhedral collaps

