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position. Assign a weight wi to each point Pi .
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We are interested in the change of topology and geometry of
the growing balls by increasing radius.



Local view

I topologically regular
I topological saddle point
I topological maximum
I two triangles
I vertex, topologically regular
I



Voronoi Power Diagram

Take a point set {P1, · · · ,PN} ⊂ Rn. Assign a weight wi to each
point Pi . Let ‖x‖2 =

∑n
i=1 x2

i . Consider gi : Rn → R

gi(x) =
1
2
‖x − Pi‖2 −

1
2

wi g(x) = min
1≤i≤N

gi(x) (1)

gi is the Power distance function

Definition
For each of the Pi :

Pow(Pi) = cl{x ∈ Rn | gi(x) = g(x) and gj(x) > g(x) j 6= i}

The sets Pow(Pi) are called (power) cells. The power cells form
a tesselation of Rn

In case all wi = 0 we have a tesselation with Voronoi cells.
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Voronoi-Power diagrams

Take a point set {P1, · · · ,PN} ⊂ Rn. Assign a weight wi to each
point Pi . Let ‖x‖2 =

∑n
i=1 x2

i . Consider gi : Rn → R

gi(x) =
1
2
‖x − Pi‖2 −

1
2

wi g(x) = min
1≤i≤N

gi(x) (2)

gi is the Power distance function

Definition
Let α ⊂ {P1, · · · ,PN}:

Pow(α) = cl{x ∈ Rn | gi(x) = g(x) Pi ∈ α and gj(x) > g(x) Pj 6∈ α}

The sets Pow(α) are called (power) cells. The codimension 1
skeleton is called the Power or Voronoi Diagram.
It is no restriction to assume that wi > 0. We may add some
number to all of the functions gi : the cells will not change.
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The Delaunay triangulation

Construct a dual tesselation.
I Vertices are the points {P1, · · · ,PN},
I 1-cells (edges) PiPj as soon as Pow(Pi) and Pow(Pj)

share a common face,
I k-cells α as soon as Pow(α) is non-void. The geometric

realization of cells are Del(α), the convex hull of the point
set α ⊂ Rn.

Note that Pow(α) and Del(α) lie in orthogonal hyperplanes of
complementary dimension. The unique intersection point of
these hyperplanes c(α) is the center of the circumscribed
sphere of α in the spanning affine space
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Critical points of the distance function

Let x be on the power diagram; then there is a set α (nearest
neighbours) such that

g(x) = gi(x)⇔ Pi ∈ α ; so x ∈ Pow(α)

Now grad gi(x) = x − Pi =
−→
xPi since gi(x) = 1

2‖x − Pi‖2 − 1
2wi

Generalized derivative ∂g(x) = CH(
−→
xPi |Pi ∈ α) = Del(α).

From non-smooth critical point theory :

x critical iff O ∈ ∂g(x)
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x critical iff O ∈ ∂g(x)

x ∈ Del(α) critical x 6∈ Del(α) non critical

x = Pow(α) ∩ Del(α)

The index of the critical point x
is equal to k = dim < Del(α) >.



Morse Formula

The following Morse formula is a non differentiable version of
the ’mountaineering equation’.

Theorem
Let si be the number of critical points of index i of g. We have:∑

(−1)isi = 1

In 2-dimensional case m − s + M = 1

Proof.
g is a topological Morse function. In that case, as t grows, g
passes through a number of non-degenerate critical values.
When g passes a critical value of index i , an i-cell gets
attached. In between we apply the (topological) regular interval
theorem. For each intermediate function value t we have
therefore :

χ({g(x) ≤ t}) =
∑

(−1)isi(t)
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The Morse poset

Critical points determine an active cell in the Delaunay
tesselation. The set of active cells form the Morse poset:
a combinatorial description of critical points.

PICTURES
I trangles
I 4-gon
I plane 4 points
I spatial ;
I tetrahedra .



Digression on tropical geometry

We will connect the theory of power diagrams with the concept
of tropical hypersurface in tropical geometry.

Tropical geometry is relatively new:
it connects algebraic geometry problems with combinatorial
questions on certain polytopes.

Recall that algebraic geometry studies varieties: the zero set of
polynomials with real or complex coefficients in affine space.
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Min-plus algebra

In tropical geometry one considers two new operations in R:
- tropical addition: x ⊕ y := min(x , y), and
- tropical multiplication: x ⊗ y := x + y .

With these two operations R gets the structure of a topological
semi-ring. Such a tropical semi-ring is called a min-plus
algebra.
Polynomials in tropical geometry are defined in the usual way.
The “dictionary” from algebraic geometry to tropical geometry
works as follows: The ordinary polynomial

x3 + y3 + 3xy + 3

has a tropical version:

min{3x ,3y , x + y + 3,3}

.
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Tropical hypersurfaces

Tropical polynomials are piecewise linear concave functions on
Rn with integer coefficients. The vertex set is defined by the
exponents; in the example (3,0), (0,3), (1,1), (0,0).

The analogue of a variety in tropical geometry is the
non-differentiability locus of the tropical polynomial, also called
the corner locus of the concave function.
The pictures look similar to power diagrams.
Also tesselations of the polytope of the vertex set appear in a
natural way in tropical geometry.
Because of the relation max(x , y) = −min(−x ,−y) one could
also have used the operation x ⊕ y = max(x , y) to define a
tropical semi-ring. Tropical hypersurfaces are defined by
piecewise linear convex functions.
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Amoeba

Tropical hypersurfaces appear also as follows:
Let V ⊂ (C?)n be an algebraic variety. Recall that C? = C− 0 is
the group of complex numbers under multiplication. Let
Log : (C?)n → Rn be the “logarithmic moment-map” defined by

Log(z1, ..., zn) = (log |z1|, · · · , log|zn|).

Gelfand-Kapranov-Zelevinski defined the amoeba of an
algebraic variety V as the image A = Log(V ) ∈ Rn.
Tropical hypersurfaces are “spines” of amoebas of algebraic
varieties. Mikhalkin showed that the spine is a certain limit of
the amoeba and carries all topological information of the
amoeba.
amoeba1.jpg ; amoeba2.jpg .
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Affine approach

gi(x) =
1
2
‖x − Pi‖2 −

1
2

wi =
1
2
‖x‖2− < x ,Pi > +

1
2
‖Pi‖2 −

1
2

wi

Let fi(x) = 〈x ,Pi〉+ ci , where ci = −‖Pi‖2−wi
2

Let
f (x) = max

i=1,··· ,N
fi(x) g(x) = min

i=1,··· ,N
gi(x)

Then f and g satisfy the following relations:

gi(x) =
1
2
‖x‖2 − fi(x) g(x) =

1
2
‖x‖2 − f (x)

We can define the power diagram solely using affine functions:

Pow(α) = cl{x ∈ Rn | fi(x) = f (x) Pi ∈ α and fj(x) < f (x) Pj 6∈ α}
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Forman’s Discrete Morse Theory

Definition
A function h : T → R is called a Forman discrete Morse function
if for all β ∈ T

#{α ∈ T | 1 + dim(α) = dim(β) α ⊂ β h(α) ≥ h(β)} ≤ 1

#{α ∈ T | dim(α) = 1 + dim(β) β ⊂ α h(α) ≤ h(β)} ≤ 1

Increasing value for increasing dimension, with maximal one
exception.
In case both numbers are zero for some β ∈ T , β is called
critical.
Non-critical occur in pairs ; criticals are single.
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Power distance as a discrete Morse function

Define h(α) = g(c(α)) , the critical value on the simplex α.
Question: Is there a discrete Morse function extending h to the
Delaunay tesselation ?
A candidate is ĥ(α) = supx∈CH(α)g(x). This works well in the
2-dimensional examples.
But not in higher dimensional cases.
There is a polyhedral collapse involving 4 simplices.

Theorem
I ĥ extends h as a (generalized) discrete Morse function ,

with polyheral collapses,
I ĥ can be perturbed to a usual discrete Morse function
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Growing Balls

We made a travel through :
I Voronoi and Power Tesselations
I Morse Theory
I Tropical Geometry
I Discrete Morse Theory

Thank you
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figure2

topologically regular situation



figure3

topological saddle point



figure6

topological maximum



figure5



figure4

vertex, which is topologically regular



Voronoi-Delaunay



Voronoi-Delaunay



Power distance

Pyhagoras:

|ZQ|2 = |ZP|2 − |PQ|2 = ‖z − Pi‖2 − r2

Power distance is square of tangent length (devided by 2).
Power line of two circles:
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Nine Morse Tetrahedra

a priori possibilites,
listed with number of critical points of index 0,1,2,3.

Theorem
There are nine generic tetrahedra:
(4,6,4,1), (4,6,3,0), (4,5,3,1), (4,5,2,0), (4,4,2,1) O,
(4,4,1,0) O, (4,4,1,0) P, (4,3,0,0) L and (4,3,0,0) T ,



2 dimensional Morse Posets

with 3 or 4 points



Two types of triangles



4-gon



tetra 4641



tetra 4520



Basics of discrete Morse Theory



Example



example



collapse
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