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Fluid Dynamics

a very classical theory

Some names:

Bernoullis (Johann, Daniel)
Gauss
Stokes
Euler
Lagrange
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Fluid Dynamics

a very classical theory

Some names:

Bernoullis (Johann, Daniel)
Gauss
Stokes
Euler
Lagrange
Lorentz! From wikipedia: In the years 1918-1926, at the
request of the Dutch government, Lorentz headed a committee
to calculate some of the effects of the proposed Afsluitdijk
(Closure Dike) flood control dam on other seaworks in the
Netherlands. . . . Lorentz proposed to start from the basic
hydrodynamic equations of motion and solve the problem
numerically. . . . One of the two sets of locks in the Afsluitdijk
was named after him.
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The Laws of Fluid Dynamics

Continuity (aka, matter or charge conservation):

∂ρ

∂t
= − div ρv

Notation

div v ≡ ∇ · v =
∑

α=1,2,3

∂vα

∂xα

grad p ≡ ∇p; (grad p)α =
∂p

∂xα

∇2v ≡ ∆v; (∇2v)α =
∑

β=1,2,3

∂2vα

∂x2
β
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Laws: Navier-Stokes equations

Continuity:
∂ρ

∂t
= − div ρv

Momentum density ρvα, for each coordinate α = 1, 2, 3:

∂ρvα

∂t
= − div ρvαv −

∂p

∂xα

+η∇2vα +
η

3

∂

∂xα

div v

Entropy density s (this, we will largely neglect today):

∂s

∂t
= − div sv+2η∇v : ∇v + κ∇2T
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Computational FD

CFD: The hard task of computing numerical solutions to these
non-linear equations.

From EnSight

D. Duque Voronoi Fluid Particle Dynamics



Intro FPD DVC End FD CFD E vs L

Euler’s view

Use a grid, and finite differences (or finite elements) for equations
that are written in this “frame”. E.g., Continuity:

∂ρ

∂t
= − div ρv

FEM mesh of human heart (Zhang et al. 2004)
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Limitations of fixed meshes

Problems arise in many situations.

When one does not know in advance where more effort (CPU
and RAM) will be needed (turbulence, astrophysics. . . )

When the boundary is also moving, “free boundary problems”.
E.g. surface waves (what people call “waves”!).
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Limitations of fixed meshes

Problems arise in many situations.

When one does not know in advance where more effort (CPU
and RAM) will be needed (turbulence, astrophysics. . . )

When the boundary is also moving, “free boundary problems”.
E.g. surface waves (what people call “waves”!).

From Spheric website

This calls for a Lagrangian approach, and computational methods
that will be either meshless or have a moving mesh.
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Lagrange’s view

E.g., continuity:
∂ρ

∂t
= − div ρv

means
∂ρ

∂t
+ (v∇)ρ = −ρ div v

. . . but this is
Dρ

Dt
= −ρ div v,

where D/Dt is the substantive derivative: how things change as
they flow!
Notation: Dρ/Dt ≡ dρ/dt ≡ ρ̇
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Lagrangian coordinates

They are defined by pathlines:

∂R(r, t)

∂t
= v(R(r, t), t),

with initial condition R(t = 0) = r.
As a valid transformation, it has a Jacobian J, which can be shown
to satisfy

DJ

Dt
= J div v.

So, it looks like an infinitesimal volume that is carried by the flow
(e.g., this would be the equation for v = 1/ρ).
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Equations in Lagrangian coordinates

Since it looks like a volume, lets call it so: V = J. We may
introduce extensive particle

mass M = ρV

momentum P = ρvV

entropy S = sV
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The resulting equations are

∂R

∂t
= v

∂ρ

∂t
= − div ρv

DM

Dt
= 0

∂vα

∂t
= − div ρvαv −

∂p

∂xα

+η . . .
1

V

DPα

Dt
= −

∂p

∂xα

+η . . .

∂s

∂t
= − div sv+η . . .

1

V

DS

Dt
= 0+η . . .
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Other forms for the momentum eq.

These will be important later

1

V

DPα

Dt
= −

∂p

∂xα

+η∇2vα +
η

3

∂

∂xα

div v

1

V

DPα

Dt
= −

∂p

∂xα

+η
∑

β

∂σαβ

∂xβ

,

with

σαβ =

(

∂vα

∂xβ

+
∂vβ

∂xα

)

−
2

3
δαβ div v.
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With vectors,
1

V

DP

Dt
= − grad p+η Div σ,

Just remember: there is a grad involved in the reversible part, and
a Div in the irreversible (viscous) part.
Also, for weak compressions this may suffice:

1

V

DP

Dt
= − grad p+η∇2v.
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Fluid particles

Recall the Lagrangian approach, without a fixed mesh.

The fluid is described by a set of moving nodes moving
according to the velocity field (convection is very well
described).
Physically, these are fluid particles, a classic concept
Particles are small subsystems that are, nevertheless large for
thermodynamics. (No “particle physics”!).
If they are quite small (∼ 100 molecules), thermal fluctuations
can (and should) be included
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Computational particles

Given a set of point, what are the corresponding fluid particle?
Two methods have been proposed

Voronoi SPH
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Smoothed particle hydrodynamics

Rather well established method that does not use any meshes.
Particles are “smooth”, since their properties depend on all other
within the range (support) of a weight function.
For example, the density of a particle depends on its “neighbours”
(the more, the denser), and the volume is its inverse (the more, the
smaller).
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Voronoi particles

The volume of a particle, Vi , is the one of its Voronoi cell.
The Delaunay triangulation is its dual — the particles are the
vertices.
This way, “neighbours” are perfectly defined.
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The first equations of motion are easy enough:

∂R

∂t
= v ⇒ Ṙi = vi

DM

Dt
= 0 ⇒ Ṁi = 0
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But: the rest involve (many!) space derivative operators: grad p,
Div σ . . .

1

V

DP

Dt
= − grad p+ Div σ ⇒

1

Vi

Ṗi = −(grad p)i+(Div σ)i

The main task:

To find expressions for each of these, at particle i , in a “Voronoi
discrete vector calculus”! (or, “Delaunay DVC”).
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The divergence

Recall the equation for the particle volume (aka Jacobian):

DV

Dt
≡ V̇ = V div v.

Translated to particles:

V̇i = Vi (div v)i

But, the chain rule tells us

V̇i =
∑

j

∂Vi

∂Rj

Ṙj =
∑

j

∂Vi

∂Rj

vj .

Comparing the two:

(div v)i =̇
1

Vi

∑

j

∂Vi

∂Rj

vj .

(Note: it’s actually Div, but it has the same expression.)
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Changes in a Voronoi cell

What is the change of Vi w.r.t. Rj? It can be shown that

∂Vi

∂Rj

= Aij

(

uij

2
−

cij

Rij

)

.

Aij is the area of the facet between i and j
uij is the unit vector from i to j
cij is the vector to the c.o.m. of the facet

j

i

c−o−m

u

c
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The divergence

We may therefore write:

(div v)i =
1

Vi

∑

j 6=1

Aij

[

uij

2
−

cij

Rij

]

· (vj − vi ) ,

which “looks” very nice indeed.

j

i

c−o−m

u

c
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Expression for the gradient

This is a bit harder. We may begin with the total internal energy

E =
∑

i

1

2
Miv

2
i + ǫ({Vi}).

Let’s make sure it does not change:

Ė =
∑

i

(

Mivi v̇i − pi V̇i

)

= 0.

(Yes, the pressure pi = −∂ǫ/∂Vi .)
We saw before

V̇i =
∑

j

∂Vi

∂Rj

vj .

Therefore

Ė =
∑

i

Mivi v̇i −
∑

i

pi

∑

j

∂Vi

∂Rj

vj = 0.
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Expression for the gradient
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∑
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vj = 0.
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∑

j

∂Vj
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The gradient

We may therefore write (after some tidying up):

(grad p)i =
1

Vi

∑

j 6=i

Aij

[

uij

2
(pi + pj) −

cij

Rij

(pi − pj)

]

.

j

i

c−o−m

u

c
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The gradient: good news

(grad p)i = 0 at all i if p is constant

(grad p)i = a at all i if p = a · r: linear fields have the right
gradient!

The grad operator shows nice convergence, as h2 for regular
lattices, and h1 for random meshes.
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The divergence: bad news

Despite its nice appearance, this div operator convergences as h1

for regular lattices, and h0 for random meshes (not at all!).
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The divergence issue

The div appears as soon as we include viscosity — we first have to
evaluate the stress tensor σ:

σαβ =

(

∂vα

∂xβ

+
∂vβ

∂xα

)

−
2

3
δαβ div v.

We can expect problems since the divergence of tensor σ appears:

1

V

DP

Dt
= − grad p+η Div σ,

D. Duque Voronoi Fluid Particle Dynamics



Intro FPD DVC End div grad Issues grad

The divergence issue

The div appears as soon as we include viscosity — we first have to
evaluate the stress tensor σ:

σαβ =

(

∂vα

∂xβ

+
∂vβ

∂xα

)

−
2

3
δαβ div v.

We can expect problems since the divergence of tensor σ appears:

1

V

DP

Dt
= − grad p+η Div σ,

D. Duque Voronoi Fluid Particle Dynamics



Intro FPD DVC End div grad Issues grad

The divergence issue: a way out

For small compression, we only need the Laplacian

1

V

DPα

Dt
= −

∂p

∂xα

+ η∇2v.

Is there an alternative way to approximate it?
Sure there is: the finite element method!
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Finite elements

The Laplacian is very well studied in the FEM. The steps would be
1 From the existing Delaunay triangulation (which is actually

very good for the FEM)
2 On each node i define a pyramid-like weight function Φi , with

value 1 at the node, 0 at the neighbours, and constant slope
in each incident face (triangle)

3 These elements discretize continuous fields:

vi =
1

Vi

∫

Φi (r)v(r)

4 Vi is the integral of Φi . We term it the “Delaunay volume”:
1/(D + 1) of the sum of the areas of the incident triangles
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The Laplacian

Here, we are interested in the Laplacian:

(∇2v)i =
1

Vi

∫

Φi∇
2v,

which me may integrate once:

(∇2v)i = −
1

Vi

∫

∇Φi∇v.
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Let us approximate (FEM interpolation):

v(r) ≈
∑

j

vjΦj(r).

Then,

(∇2v)i = −
∑

j

vj

1

Vi

∫

∇Φi∇Φj ≡
1

Vi

∑

j

∆ijvj

The integral may be evaluated for each pair of nodes. In 1D, one
gets the well-known xi−1 + xi+1 − 2xi . In 2D:

∆ij =
(

cot θ + cot θ′
)

/2,

the famous cotangent formula of the FEM! (FEM people: this
would be a “lumped mass” approximation).

i j

θ

θ’
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Simulation strategy

Our approach to hydrodynamics is then at two levels:

For the reversible (Euler) part of the dynamics, just use
Voronoi concepts (Voronoi volume, formula for grad. . . )

For the irreversible (viscous) part, use Delaunay concepts and
a FEM expression for the Laplacian (optionally, other
features).

Why not use the second approach everywhere?
Simply because the Delaunay volume makes sudden jumps on
rearrangements. Not nice at all for the particle volume, tolerable
for the force.
But, this may perhaps be fixed in the future.
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cgal implementation

We may use the standard (2D or 3D) Delaunay triangulation
(periodic or not, depending on the problem)

properties of the particles are asigned to the Voronoi points,
or Delaunay vertices

the volumes Vi

pressures Pi

velocities vi . . .

This is an easy exercise in inheritance

or, the built-info info () feature can be used.
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Aij , uij , cij , and ∆ij are properties of the Delaunay edge
between vertices i and j

Edges are not explicitly represented, hence one may calculate
them all and use e.g. STL’s std :: map<edge, info>
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Simulation main loop

1 Create initial points, momenta, pressures

2 Build a Delaunay triangulation

3 Calculate info for vertices and edges

4 Apply changes in positions and momenta (Verlet algorithm,
predictor-corrector. . . ):

Ṙi = vi = Pi/Mi

1

Vi

Ṗi = −(div p)i+η(∇2v)i .

Either:
1 just update all positions and go to 2, or
2 update positions one by one, restoring the Delaunay condition,

and go to 3.
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Applications

Standard hydrodynamic benchmarks: Confined fluids

Couette flow

Poiseuille

Vortex spin-down

Lamb-Oseen vortex
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Applications

Not-so-standard benchmarks: Periodic bc

Kolmogorov flow

Taylor-Green flow
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Applications

“Real” applications: Free surfaces

Elliptical drops

Dam breaking

Sloshing
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Beyond

Other ideas:

“Delaunay particles” everywhere?

Centroidal Voronoi tessellation

Natural coordinates vs FEM interpolation

Standard (Eulerian) FEM with free surface detection from
α-shapes
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Some references

Pep Español and Ignacio Zúñiga, for the Delaunay volume
and the Laplacian

Pep Español and Mar Serrano, in “Tessellations in the
Sciences Virtues, Techniques and Applications of Geometric
Tilings”, Eds: Rien van de Weijgaert, Gert Vegter, Jelle
Ritzerveld, and Vincent Icke, Kluwer/Springer (2009)

A good source is Pep Español’s references webpage

D. Duque Voronoi Fluid Particle Dynamics

http://link.aip.org/link/?JCPSA6/131/164106/1
http://www.fisfun.uned.es/~pep/published/published.html
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