SYNAPS

Symbolic and Numeric APplicationS

B. Mourrain, Ph. Trébuchet, F. Rouillier
INRIA, BP 93, 06902 Sophia Antipolis

22nd May

What is SYNAPS ? |

What is SYNAPS ? |

It is a library

What is SYNAPS ? |

It is a library

e containing basic parameterized data structures : vectors, matri-
ces (dense, Toeplitz, Hankel, sparse, ...), univariate polynomials,

multivariate polynomials.

What is SYNAPS ? |

It is a library

e containing basic parameterized data structures : vectors, matri-
ces (dense, Toeplitz, Hankel, sparse, ...), univariate polynomials,
multivariate polynomials.

e integrating several specialized, efficient, freely available softwares.

SYNAPS

What is SYNAPS ? |

It is a library

e containing basic parameterized data structures : vectors, matri-
ces (dense, Toeplitz, Hankel, sparse, ...), univariate polynomials,
multivariate polynomials.

e integrating several specialized, efficient, freely available softwares.

SYNAPS

Objectives |

Objectives |

e Combine symbolic and numeric computation.

Objectives |

e Combine symbolic and numeric computation.

e A kernel implementing basic data structures.

Objectives |

e Combine symbolic and numeric computation.
e A kernel implementing basic data structures.

e A kernel to be used for the development of elaborated algorithms.

Objectives |

e Combine symbolic and numeric computation.
e A kernel implementing basic data structures.
e A kernel to be used for the development of elaborated algorithms.

e Easy to use, from inside and outside.

Objectives |

e Combine symbolic and numeric computation.

e A kernel implementing basic data structures.

e A kernel to be used for the development of elaborated algorithms.
e Easy to use, from inside and outside.

e Reusability as much as possible of efficient external tools.

Objectives |

e Combine symbolic and numeric computation.

e A kernel implementing basic data structures.

e A kernel to be used for the development of elaborated algorithms.
e Easy to use, from inside and outside.

e Reusability as much as possible of efficient external tools.

e Provide a coherent platform of specialized softwares, connected and
configured together.

Objectives |

e Combine symbolic and numeric computation.

e A kernel implementing basic data structures.

e A kernel to be used for the development of elaborated algorithms.
e Easy to use, from inside and outside.

e Reusability as much as possible of efficient external tools.

e Provide a coherent platform of specialized softwares, connected and
configured together.

e Incorporate transparently specialisations, without penalty.

Tools for an Active Library Design |

Tools for an Active Library Design |

O Ubiquity of parameterised type in algebra (coefficients, internal repre-
sentation, . . .)

Tools for an Active Library Design |

O Ubiquity of parameterised type in algebra (coefficients, internal repre-
sentation, . . .)

O Generic algorithms which apply for a large class of data-structures.

Tools for an Active Library Design |

O Ubiquity of parameterised type in algebra (coefficients, internal repre-
sentation, . . .)

O Generic algorithms which apply for a large class of data-structures.
O Choose the right implementation for the right job.

O Combine generic implementations with specialised functions.

The C++ technology |

The C++ technology |
Types:

[0 express constraints;
O help to detect errors at compile-time;
O help to optimise code in the static analysis step;

The C++ technology |

Types:

[0 express constraints;

O help to detect errors at compile-time;

O help to optimise code in the static analysis step;

Class: Entity collecting data-structures and functions in a new type.

The C++ technology |

Types:

[0 express constraints;

O help to detect errors at compile-time;

O help to optimise code in the static analysis step;

Class: Entity collecting data-structures and functions in a new type.

Namespace: Naming extension, for data-structures and functions.

The C++ technology |
Types:

[0 express constraints;
O help to detect errors at compile-time;
O help to optimise code in the static analysis step;

Class: Entity collecting data-structures and functions in a new type.

Namespace: Naming extension, for data-structures and functions.

Derivation:
O Allow to extend class definitions: class B : class A {...}

O The functions and data-structures of B contains those of A (except the
constructors).

The C++ technology |
Types:

[0 express constraints;
O help to detect errors at compile-time;
O help to optimise code in the static analysis step;

Class: Entity collecting data-structures and functions in a new type.

Namespace: Naming extension, for data-structures and functions.

Derivation:
O Allow to extend class definitions: class B : class A {...}

O The functions and data-structures of B contains those of A (except the
constructors).

Parameterized type:

template <class X> X F(const X &) { ... }
O Description of how a code depends on type parameters.
O Allow static-checking.

Parameterized type:

template <class X> X F(const X &) { ... }
O Description of how a code depends on type parameters.
O Allow static-checking.

Virtual functions: Mechanism of dynamic binding, at run time, through
function pointers.

Parameterized type:

template <class X> X F(const X &) { ... }
O Description of how a code depends on type parameters.
O Allow static-checking.

Virtual functions: Mechanism of dynamic binding, at run time, through
function pointers.

Genericity |

Genericity |

The way to write a code so that the missing definitions
(types, functions) are filled automatically ?

Genericity |

The way to write a code so that the missing definitions
(types, functions) are filled automatically ?

How do we find the missing definitions ?

Genericity |

The way to write a code so that the missing definitions
(types, functions) are filled automatically ?

How do we find the missing definitions ?

e explicitly: struct A { void f(); }; A a; a.f(); a.A::f(); D::g(a);

Genericity |

The way to write a code so that the missing definitions
(types, functions) are filled automatically ?

How do we find the missing definitions ?
e explicitly: struct A { void f(); }; A a; a.f(); a.A::f(); D::g(a);

e by polymorphism, that is by searching in a given scope, for a function
(or operator) with a given name, whose signature matches: 20/3; 20./3;

Genericity |

The way to write a code so that the missing definitions
(types, functions) are filled automatically ?

How do we find the missing definitions ?
e explicitly: struct A { void f(); }; A a; a.f(); a.A::f(); D::g(a);

e by polymorphism, that is by searching in a given scope, for a function
(or operator) with a given name, whose signature matches: 20/3; 20./3;

e by derivation, that is by coercing a type into a subtype, in order to
match a given signature: struct B : public A {}; B b; b.f();

Genericity |

The way to write a code so that the missing definitions
(types, functions) are filled automatically ?

How do we find the missing definitions ?
e explicitly: struct A { void f(); }; A a; a.f(); a.A::f(); D::g(a);

e by polymorphism, that is by searching in a given scope, for a function
(or operator) with a given name, whose signature matches: 20/3; 20./3;

e by derivation, that is by coercing a type into a subtype, in order to
match a given signature: struct B : public A {}; B b; b.f();

e by specialisation, that is by searching a template function or class
that can be specialized to match a given signature: F(2); F(2.);

Genericity |

The way to write a code so that the missing definitions
(types, functions) are filled automatically ?

How do we find the missing definitions ?
e explicitly: struct A { void f(); }; A a; a.f(); a.A::f(); D::g(a);

e by polymorphism, that is by searching in a given scope, for a function
(or operator) with a given name, whose signature matches: 20/3; 20./3;

e by derivation, that is by coercing a type into a subtype, in order to
match a given signature: struct B : public A {}; B b; b.f();

e by specialisation, that is by searching a template function or class
that can be specialized to match a given signature: F(2); F(2.);

e by Koenig lookup, that is by searching in the namespace associated
with the types of the signature, the function that matches.

namespace Domain { struct A {}; void f(const A & a) {}; }
Domain::A a; f(a);

How can we specify a collection of algorithms

How can we specify a collection of algorithms

By class scope

struct View

{

struct atype;
void f(const atype & r) {...}

}

View::atype a; View W; W.f(a);

O Extension by derivation, but the name change;
O It is closed;

O Can be used as parameter (in template classes);
O Allows parameters View(p);

By namespace scope

namespace Domain

{

struct atype;
void f(const atype & r) {...}

}

Domain: :atype a; Domain::f(a);

O Extension by using directives;

O It is open;

O Cannot be used as parameter.

O Do not allow parameters.

O Koening lookup allow to select the functions of the domain:

f(a) is equivalent to Domain::f(a) because a is of type
Domain: :atype.

The Design |

Three levels of objects:

The Design I

O Container and domains:

Three levels of objects:

Internal representation, associated with iterators, and ac-
cess/modification methods.

O View: How we see the container.

eg. as a Vector<R> or as a univariate polynomial UPolDse<R>.

Allow local views sharing datas.

O Module:. Set of (generic) functions which apply to a category
of objects.

eg. VECTOR: :Print, MATRIX: :mult.

Allow easy specialisation.

Containers and domains |

The containers
e They specify the internal representation,

e They provide methods or functions for accessing, scanning, creating,
transforming this representation. Exemple from the STL library:

list<R>, vector<R>, set<R>, deque<R>,
rep1d<C> (one-dimensional arrays with generic coefficients)
rep2d<C> (two-dimensional arrays for dense matrices)

How to use iterators to scan such structures:

for(R::iterator it=r.begin(); it !=r.end(); ++it) *it =

10

The domains

e [hey are namespaces to which, are attached the containers:

linalg: :rep1d<C> linalg: :toeplitz<C> linalg: :sparse2d<C>
linalg: :rep2d<C> linalg: :hankel<C>

e Specialized algorithms for a container are defined in the corresponding
domain:

namespace lapack {
template<class C>
void solve(LU,linalg::repld<C> & x,
const rep2d<C> & A, const linalg::repld<C> & b)

}

e Specialisation or extension can be achieved either like:

namespace lapack {
template<class C> void my_new_function(const rep2d<C> & r) {}
}

or by derivation and redefinition of functions.

11

Modules |

It is a collection of implementations which apply to a family of objects
sharing common properties.

namespace VECTOR {
template<class V>

ostream & Print(ostream & os, const V& v)

{

typename V::const_iterator it =v.begin();
os<<"["<<*xit; ++it;

for(; it !'=v.end(); ++it) os<<","<< *it;
OS<<II] n ;
return os;

h
}

e No constraints on the parameter type V, except a const_iterator.

12

e They can be combined or extended naturally:

namespace UPOLY { using namespace VECTOR;

e The main modules of the library are

VECTOR, MATRIX, UPOLY, MPOLY.

13

Views |

They specify how to manipulate or to see the containers as mathematical
objects.

e The internal data is available, via the method rep().

e They are usualy classes, parameterised by the container type and some-
times by trait classes which precise the implementation.

VectDse<double,linalg: :repld<double> > <=> VectDse<double>
If we want to see it as a univariate polynomial:

UPolDse<double,linalg: :repld<double> >

14

e The implementations of these views are based on modules:

template <class C, class R>
UPolDse<C,R> operatorx*

(const UPolDse<C,R> & v1, const UPolDse<C,R> & v2)
{

UPolDse<C,R> w(Degree(vl)+Degree(v2)+1,AsSize());

using namespace UPOLY; mul(w.rep(),vl.rep(),v2.rep());
return W;

}

e |f defined for the container D: :R, the following specialized function is
used:

namespace D { void mul(R & r, const R & pl, const R & p2); }

e Views on subobjects:

VectDse<double> V(5,"1 2 3 4"), W1(3,"0 1 0"), W2(3,"1 0 0");
V[Range(1,3)]=W1+W2;

15

Other features |

Reference counting
e Implemented for the views.

e Principle: a counter attached to the data, counting the number of objects
pointing to the data.

e Usefull when the copy by value is invoqued:

View<R> f(const View<R> & V) {View<R> W(V); ...; return W;}

16

Other features |

Reference counting
e Implemented for the views.

e Principle: a counter attached to the data, counting the number of objects
pointing to the data.

e Usefull when the copy by value is invoqued:

View<R> f(const View<R> & V) {View<R> W(V); ...; return W;}

Template expressions

e They are type manipulations used to guide the compiler to produce
optimised code.

v = vl + v2 + v3;

16

e A usual implementation, involving 2 temporary vectors:

Vector operator+(const Vector & v1, Vector & v2);
and the use of the assignement operator:

Vector & Vector::operator=(const Vector & v);

e With template expression:

VAL<Op<’+’,Vector,Vector> >
operator+(const Vector & vl1, Vector & v2);
In our case, it builds an object of type

VAL<Op<’+’, Vector, VAL<Op<’+’, Vector, Vector> > > >;

The expansion of the code at compile time yields

for(index_type i = 0; i <v.size(); i++) v[i] = vi[i] + v2[i] + -
e Complete set of arithmetic unevaluated operations: OP(c,T1,T2) with

cin {'+-,"*""." /%", }

17

Historic |

e 1996 : A version based on abstract classes, derivation, and virtual
functions (Internship of F. Livigni).

Slow and heavy.

18

Historic |

e 1996 : A version based on abstract classes, derivation, and virtual
functions (Internship of F. Livigni).

Slow and heavy.

e 1999 : Appear to be a deliverable of the europeen project Frisco (LTR
21.024)

Classes based on containers, parameterisation of the container type, the
coefficient type.

The g++4 compiler was improving on template classes.

18

Historic |

e 1996 : A version based on abstract classes, derivation, and virtual
functions (Internship of F. Livigni).

Slow and heavy.

e 1999 : Appear to be a deliverable of the europeen project Frisco (LTR
21.024)

Classes based on containers, parameterisation of the container type, the
coefficient type.

The g++4 compiler was improving on template classes.

e 2000 : Development of resultant and solver modules.

Application in robotic, Signal processing, and biology problems (work of
H. Prieto).

18

Historic |

e 1996 : A version based on abstract classes, derivation, and virtual
functions (Internship of F. Livigni).

Slow and heavy.

e 1999 : Appear to be a deliverable of the europeen project Frisco (LTR
21.024)

Classes based on containers, parameterisation of the container type, the
coefficient type.

The g++4 compiler was improving on template classes.

e 2000 : Development of resultant and solver modules.

Application in robotic, Signal processing, and biology problems (work of
H. Prieto).

18

e 2001 : Evolution as a platform. Namespace and Koenig lookup.

Collaborative work with SPACES, PRISME.

19

People involved I

D. Amar, P. Aubert, D. Bini, D. Bondyfalat,
L. Carrot, G. Dos Reis, |I. Emiris, G. Fiorentino,
G. Gatellier, H. Hirukawa, P. Mario, B. Mourrain, P. Palackel,
H. Prieto, F. Rouillier, O. Ruatta, M. Stillman,
M. Teillaud, N. Thiery, Ph. Trébuchet

20

People involved I

D. Amar, P. Aubert, D. Bini, D. Bondyfalat,
L. Carrot, G. Dos Reis, |. Emiris, G. Fiorentino,

G. Gatellier, H. Hirukawa, P. Mario, B. Mourrain, P. Palackel,
H. Prieto, F. Rouillier, O. Ruatta, M. Stillman,
M. Teillaud, N. Thiery, Ph. Trébuchet

O discussions,

O specific contributions,

O extensions,

O tests, validation of the environment.

20

Distribution I

e under LGPL
e cvs@Qcvs—-sop.inria.fr.
e http://www-sop.inria.fr/galaad/logiciels/synaps/,

e Documentation in pdf; automatic processing of the source code and
extraction of the documentations.

21

http://www-sop.inria.fr/galaad/logiciels/synaps/

Experimental evidences |

Aim: recovering the roots of a given multivariate
polynomial system.

example | Maple float | MacRev float | Maple over Q | MacRev over QQ

katsura 6 4000s 0.22s 8600s 65
kruppa 1000s 0.05s o0 72.04s
signal 4000s 0.20s 00 736.46s

No Hope to perform usefull computation only using

standards Computer Algebra systems

22

Need for:

Example combining specialized tools |

23

Example combining specialized tools |

Need for:

e polynomials

— MPol< > with different fields: Zp<32051>, double, Scl<MPQ>,
Sc1l<MPF>. ..

— different monomials representations: Monom<C,dynamicexp<’x’> >
>, Monom<C,numexp<’x’> > >, Monom<C,tinyexp<’x’> > >...

23

Example combining specialized tools |

Need for:

e polynomials

— MPol< > with different fields: Zp<32051>, double, Scl<MPQ>,
Sc1l<MPF>. ..

— different monomials representations: Monom<C,dynamicexp<’x’> >
>, Monom<C,numexp<’x’> > >, Monom<C,tinyexp<’x’> > >...

e linear algebra

— sparse LU decomposition with generic coefficients:
MatrSps<CoefFicient_type> and LUdecomp(Matrix, L, U ,perm_r

perm_c)
— numerical linear algebra: MatrDse<double,lapack: :rep2d<double>
+ Eigenvectors, Eigenvalues etc...

23

#include
#include
#include
#include

Example of external communication

"linalg.H"
"geometry.H"
"inout/vrmlstream.H"
"mpoly.H"

int main()

{
/7. ..

Point<double> 0(3,t), E1(3,t+3), E2(3,t+6);
print(cvrml, Cylinder<double>(0,E1,0.1), txt);
print(cvrml, Cylinder<double>(0,E2,0.1), txt);
print(cvrml, Sphere<double>(0,0,1), txt);

MPol<double> P; cin >> P; cvrml << Draw(P,SPL())<<endl;

24

Distributed computation based on UDX |

Binary protocol.
Data exchange through sockets, files, shared memory.

Interface for basic objects (native arithmetic data types, extended arith-
metic based on GMP or PARI).

Highter level interface in SYNAPS, based on abstract description and the
binary protocol.

25

Distributed computation based on UDX |

Binary protocol.
Data exchange through sockets, files, shared memory.

Interface for basic objects (native arithmetic data types, extended arith-
metic based on GMP or PARI).

Highter level interface in SYNAPS, based on abstract description and the
binary protocol.

udxstream udx("arz.inria.fr","polynomialsolver");

UPolDse<ZZ> P("x0"320-23453412351254135*xx0"123+1;");
udx << P<<endl;
Seq<RR> s; udx >>s;

25

Conclusion |

Interpreter, interface to other systems.

Compilator issues (windows, . . .).

Adaptation to the specifications of other libraries.

Integration of more tools.

Manage extensions and evolution.

26

