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Objectives

• Combine symbolic and numeric computation.

• A kernel implementing basic data structures.

• A kernel to be used for the development of elaborated algorithms.

• Easy to use, from inside and outside.

• Reusability as much as possible of efficient external tools.

• Provide a coherent platform of specialized softwares, connected and
configured together.

• Incorporate transparently specialisations, without penalty.
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Tools for an Active Library Design

2 Ubiquity of parameterised type in algebra (coefficients, internal repre-
sentation, . . . )

2 Generic algorithms which apply for a large class of data-structures.

2 Choose the right implementation for the right job.

2 Combine generic implementations with specialised functions.
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Genericity

The way to write a code so that the missing definitions
(types, functions) are filled automatically ?

How do we find the missing definitions ?

• explicitly: struct A { void f(); }; A a; a.f(); a.A::f(); D::g(a);

• by polymorphism, that is by searching in a given scope, for a function
(or operator) with a given name, whose signature matches: 20/3; 20./3;

• by derivation, that is by coercing a type into a subtype, in order to
match a given signature: struct B : public A {}; B b; b.f();

• by specialisation, that is by searching a template function or class
that can be specialized to match a given signature: F(2); F(2.);

• by Koenig lookup, that is by searching in the namespace associated
with the types of the signature, the function that matches.

namespace Domain { struct A {}; void f(const A & a) {}; }
Domain::A a; f(a);
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How can we specify a collection of algorithms

By class scope

struct View
{

struct atype;
void f(const atype & r) {...}

}
View::atype a; View W; W.f(a);

2 Extension by derivation, but the name change;

2 It is closed;

2 Can be used as parameter (in template classes);

2 Allows parameters View(p);
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By namespace scope

namespace Domain
{

struct atype;
void f(const atype & r) {...}

}
Domain::atype a; Domain::f(a);

2 Extension by using directives;

2 It is open;

2 Cannot be used as parameter.

2 Do not allow parameters.

2 Koening lookup allow to select the functions of the domain:

f(a) is equivalent to Domain::f(a) because a is of type
Domain::atype.
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The Design

Three levels of objects:

2 Container and domains:

Internal representation, associated with iterators, and ac-
cess/modification methods.

2 View: How we see the container.

eg. as a Vector<R> or as a univariate polynomial UPolDse<R>.

Allow local views sharing datas.

2 Module:. Set of (generic) functions which apply to a category
of objects.

eg. VECTOR::Print, MATRIX::mult.

Allow easy specialisation.
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Containers and domains

The containers

• They specify the internal representation,

• They provide methods or functions for accessing, scanning, creating,
transforming this representation. Exemple from the stl library:

list<R>, vector<R>, set<R>, deque<R>, ...
rep1d<C> (one-dimensional arrays with generic coefficients)
rep2d<C> (two-dimensional arrays for dense matrices)

How to use iterators to scan such structures:

for(R::iterator it=r.begin(); it !=r.end(); ++it) *it = ...
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The domains

• They are namespaces to which, are attached the containers:

linalg::rep1d<C> linalg::toeplitz<C> linalg::sparse2d<C>
linalg::rep2d<C> linalg::hankel<C>

• Specialized algorithms for a container are defined in the corresponding
domain:

namespace lapack {
template<class C>
void solve(LU,linalg::rep1d<C> & x,

const rep2d<C> & A, const linalg::rep1d<C> & b);
}

• Specialisation or extension can be achieved either like:

namespace lapack {
template<class C> void my_new_function(const rep2d<C> & r) {}

}
or by derivation and redefinition of functions.
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Modules

It is a collection of implementations which apply to a family of objects
sharing common properties.

namespace VECTOR {
template<class V>
ostream & Print(ostream & os, const V& v)
{

typename V::const_iterator it =v.begin();
os<<"["<<*it; ++it;
for( ; it !=v.end(); ++it) os<<","<< *it;
os<<"]";
return os;

}
}

• No constraints on the parameter type V, except a const iterator.
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• They can be combined or extended naturally:

namespace UPOLY { using namespace VECTOR; ... }

• The main modules of the library are

VECTOR, MATRIX, UPOLY, MPOLY.
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Views

They specify how to manipulate or to see the containers as mathematical
objects.

• The internal data is available, via the method rep().

• They are usualy classes, parameterised by the container type and some-
times by trait classes which precise the implementation.

VectDse<double,linalg::rep1d<double> > <=> VectDse<double>
If we want to see it as a univariate polynomial:

UPolDse<double,linalg::rep1d<double> >
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• The implementations of these views are based on modules:

template <class C, class R>
UPolDse<C,R> operator*

(const UPolDse<C,R> & v1, const UPolDse<C,R> & v2)
{

UPolDse<C,R> w(Degree(v1)+Degree(v2)+1,AsSize());
using namespace UPOLY; mul(w.rep(),v1.rep(),v2.rep());
return W;

}

• If defined for the container D::R, the following specialized function is
used:

namespace D { void mul(R & r, const R & p1, const R & p2); }

• Views on subobjects:

VectDse<double> V(5,"1 2 3 4"), W1(3,"0 1 0"), W2(3,"1 0 0");
V[Range(1,3)]=W1+W2;
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Other features

Reference counting

• Implemented for the views.

• Principle: a counter attached to the data, counting the number of objects
pointing to the data.

• Usefull when the copy by value is invoqued:

View<R> f(const View<R> & V) {View<R> W(V); ...; return W;}
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Reference counting

• Implemented for the views.

• Principle: a counter attached to the data, counting the number of objects
pointing to the data.

• Usefull when the copy by value is invoqued:

View<R> f(const View<R> & V) {View<R> W(V); ...; return W;}

Template expressions

• They are type manipulations used to guide the compiler to produce
optimised code.

v = v1 + v2 + v3;
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• A usual implementation, involving 2 temporary vectors:

Vector operator+(const Vector & v1, Vector & v2);
and the use of the assignement operator:

Vector & Vector::operator=(const Vector & v);

• With template expression:

VAL<Op<’+’,Vector,Vector> >
operator+(const Vector & v1, Vector & v2);

In our case, it builds an object of type

VAL<Op<’+’, Vector, VAL<Op<’+’, Vector, Vector> > > >;

The expansion of the code at compile time yields

for(index_type i = 0; i <v.size(); i++) v[i] = v1[i] + v2[i] + v3[i];

• Complete set of arithmetic unevaluated operations: OP〈c,T1,T2〉 with
c in {’+’,’-’,’*’,’.’,’/’,’%’,’ˆ’ }

17



Historic

• 1996 : A version based on abstract classes, derivation, and virtual
functions (Internship of F. Livigni).

Slow and heavy.

18



Historic

• 1996 : A version based on abstract classes, derivation, and virtual
functions (Internship of F. Livigni).

Slow and heavy.

• 1999 : Appear to be a deliverable of the europeen project Frisco (LTR
21.024)

Classes based on containers, parameterisation of the container type, the
coefficient type.

The g++ compiler was improving on template classes.

18



Historic

• 1996 : A version based on abstract classes, derivation, and virtual
functions (Internship of F. Livigni).

Slow and heavy.

• 1999 : Appear to be a deliverable of the europeen project Frisco (LTR
21.024)

Classes based on containers, parameterisation of the container type, the
coefficient type.

The g++ compiler was improving on template classes.

• 2000 : Development of resultant and solver modules.

Application in robotic, Signal processing, and biology problems (work of
H. Prieto).

18



Historic

• 1996 : A version based on abstract classes, derivation, and virtual
functions (Internship of F. Livigni).

Slow and heavy.

• 1999 : Appear to be a deliverable of the europeen project Frisco (LTR
21.024)

Classes based on containers, parameterisation of the container type, the
coefficient type.

The g++ compiler was improving on template classes.

• 2000 : Development of resultant and solver modules.

Application in robotic, Signal processing, and biology problems (work of
H. Prieto).

18



• 2001 : Evolution as a platform. Namespace and Koenig lookup.

Collaborative work with SPACES, PRISME.
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2 extensions,

2 tests, validation of the environment.
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Distribution

• under LGPL

• cvs@cvs-sop.inria.fr.

• http://www-sop.inria.fr/galaad/logiciels/synaps/,

• Documentation in pdf; automatic processing of the source code and
extraction of the documentations.
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Experimental evidences

Aim: recovering the roots of a given multivariate
polynomial system.

example Maple float MacRev float Maple over Q MacRev over Q
katsura 6 4000s 0.22s 8600s 6s
kruppa 1000s 0.05s ∞ 72.04s
signal 4000s 0.20s ∞ 736.46s

No Hope to perform usefull computation only using
standards Computer Algebra systems
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Need for:

• polynomials

– MPol< > with different fields: Zp<32051>, double, Scl<MPQ>,
Scl<MPF>...

– different monomials representations: Monom<C,dynamicexp<’x’> >
>, Monom<C,numexp<’x’> > >, Monom<C,tinyexp<’x’> > >...

• linear algebra

– sparse LU decomposition with generic coefficients:
MatrSps<CoefFicient type> and LUdecomp(Matrix, L, U ,perm r
perm c)

– numerical linear algebra: MatrDse<double,lapack::rep2d<double>
+ Eigenvectors, Eigenvalues etc...
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Example of external communication

#include "linalg.H"
#include "geometry.H"
#include "inout/vrmlstream.H"
#include "mpoly.H"
int main()
{

//...
Point<double> O(3,t), E1(3,t+3), E2(3,t+6);
print(cvrml, Cylinder<double>(O,E1,0.1), txt);
print(cvrml, Cylinder<double>(O,E2,0.1), txt);
print(cvrml, Sphere<double>(O,0,1), txt);

MPol<double> P; cin >> P; cvrml << Draw(P,SPL())<<endl;
}
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Distributed computation based on UDX

• Binary protocol.

• Data exchange through sockets, files, shared memory.

• Interface for basic objects (native arithmetic data types, extended arith-
metic based on gmp or pari).

• Highter level interface in synaps, based on abstract description and the
binary protocol.
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• Data exchange through sockets, files, shared memory.

• Interface for basic objects (native arithmetic data types, extended arith-
metic based on gmp or pari).

• Highter level interface in synaps, based on abstract description and the
binary protocol.

udxstream udx("arz.inria.fr","polynomialsolver");
UPolDse<ZZ> P("x0^320-23453412351254135*x0^123+1;");
udx << P<<endl;
Seq<RR> s; udx >>s;
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Conclusion

• Interpreter, interface to other systems.

• Compilator issues (windows, . . . ).

• Adaptation to the specifications of other libraries.

• Integration of more tools.

• Manage extensions and evolution.
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