Effective Polynomial system solving

Philippe Trébuchet, INRIA, Spaces/Lip6 Calfor

Équipe CALFOR/INRIA Projet SPACES
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris Cedex 05

21 Mai 2003

Solving Polynomial Systems

Challenge : Dealing with

 semi-algebraic sets.
Solving Polynomial Systems

Complex solving for Real Geometry Facts:

- Algorithms in real geometry (BPR, SaSc, Rouillier Roy Safey. . .) reduce the problems to a 0-dimensional system solving.

Solving Polynomial Systems

Complex solving for Real Geometry Facts:

- Algorithms in real geometry (BPR, SaSc, Rouillier Roy Safey. . .) reduce the problems to a 0-dimensional system solving.
- Need of resolution methods working over Non-archimedian Fields

Solving Polynomial Systems

Complex solving for Real Geometry Facts:

- Algorithms in real geometry (BPR, SaSc, Rouillier Roy Safey. . .) reduce the problems to a 0 -dimensional system solving.
- Need of resolution methods working over Non-archimedian Fields
- Intrinsic height of the variety may be VERY high \Rightarrow resolution algorithms must not introduce artificial instabilities.

The setting

The setting

- \mathbb{K} a field.
- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the ring of n variate polynomials.
- $I=\left(f_{1}, \ldots, f_{s}\right)$ an ideal defining a variety \mathcal{V}.

The setting

- \mathbb{K} a field.
- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the ring of n variate polynomials.
- $I=\left(f_{1}, \ldots, f_{s}\right)$ an ideal defining a variety \mathcal{V}.

What does solving mean?

We will exclude the case where \mathcal{V} contains curves, etc. . . \mathcal{V} is composed of finitely many points $\left(\zeta_{1}, \ldots, \zeta_{k}\right)$. What solving is

The setting

- \mathbb{K} a field.
- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the ring of n variate polynomials.
- $I=\left(f_{1}, \ldots, f_{s}\right)$ an ideal defining a variety \mathcal{V}.

What does solving mean?

We will exclude the case where \mathcal{V} contains curves, etc. . . \mathcal{V} is composed of finitely many points $\left(\zeta_{1}, \ldots, \zeta_{k}\right)$. What solving is

- finding an approximation of the coordinates of the points of \mathcal{V}.

The setting

- \mathbb{K} a field.
- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the ring of n variate polynomials.
- $I=\left(f_{1}, \ldots, f_{s}\right)$ an ideal defining a variety \mathcal{V}.

What does solving mean?

We will exclude the case where \mathcal{V} contains curves, etc. . . \mathcal{V} is composed of finitely many points $\left(\zeta_{1}, \ldots, \zeta_{k}\right)$. What solving is

- finding an approximation of the coordinates of the points of \mathcal{V}.
- giving a univariate representation of \mathcal{V}.

The setting

- \mathbb{K} a field.
- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the ring of n variate polynomials.
- $I=\left(f_{1}, \ldots, f_{s}\right)$ an ideal defining a variety \mathcal{V}.

What does solving mean?

We will exclude the case where \mathcal{V} contains curves, etc. \mathcal{V} is composed of finitely many points $\left(\zeta_{1}, \ldots, \zeta_{k}\right)$. What solving is

- finding an approximation of the coordinates of the points of \mathcal{V}.
- giving a univariate representation of \mathcal{V}.
- decomposing \mathcal{V} into simple parts.

Different approaches

- Numerical methods
* homotopy (Somese, Vershelde,etc . . .).
* interval analysis (J.P. Merlet,).
* Weierstrass (Newton-like) (A. Bellido, O. Ruatta, J.C. Yakoubsohn,etc ...).
- Algebraic methods
* Matrix methods(J. Canny, I. Emiris, B. Mourrain, . . .).
* Geometric methods (P. Aubry, M. Kalkbrener, D. Lazard, M. Moreno and M. Giusti, G. Lecerf, J. Heintz . . .).
* Rewriting methods (B. Buchberger, J.C. Faugère, . . .).

The quotient algebra

$$
\begin{gathered}
\text { Key structure! } \\
A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / I
\end{gathered}
$$

Problems :

- Where to read the information about the points?
- How to compute with it? (representation)
- Is there a best representation? (numerical conditionning, memory size, stability. . .)

Where to read the information about the points?

From A to the ζ_{i}

Theorem : [Stickelberger]lf $\mathcal{V}=\zeta_{1}, \ldots, \zeta_{k}, p \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. We will call the multiplication by p, \mathcal{M}_{p} the operator $A \rightarrow A$. The operator \mathcal{M}_{p} has the following properties :

$$
f \rightarrow f p
$$

- The eigenvalues of \mathcal{M}_{p} are the numbers $p\left(\zeta_{1}\right), \ldots, p\left(\zeta_{k}\right)$ counted with multiplicities.
- The common eigenvectors to all the \mathcal{M}_{p}^{t} are the evaluations to the ζ_{i}.

From here it is easy to compute the Chow form of I i.e. compute

$$
\operatorname{Det}\left(\mathcal{M}_{u_{0}+u_{1} x_{1}+\cdots+u_{n} x_{n}}\right)
$$

From A to the ζ_{i} (continued)

Theorem : [Hermite] $\mathbb{K}=\mathbb{R}, h \in \mathbb{R}\left[\mathbf{x}_{1}, \ldots, x_{n}\right]$ and Q_{h} be the quadratic form $Q_{h}: A \rightarrow A$. Then we have the following two properties:

$$
p \rightarrow \operatorname{Tr}\left(h p^{2}\right)
$$

- The number of complex root ζ_{i} such as $h\left(\zeta_{i}\right) \neq 0$ is the rank of the quadratic form Q_{h}.
- The number of real roots ζ_{i} such as $h\left(\zeta_{i}\right)>0$ and the number of real roots such as $h\left(\zeta_{i}\right)<0$ is the signature of Q_{h}.

From A to the ζ_{i} (continued)

Theorem : [Rouillier] Let $u \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ we define :

- $f_{u}(T)=\Pi_{i=1 . . k}\left(T-u\left(\zeta_{i}\right)\right)^{\mu_{i}}$
- $g_{0}(T)=\Sigma_{i=1 . . k} \mu_{i} \Pi_{j \neq i}\left(T-u\left(\zeta_{j}\right)\right)$
- $g_{l}(T)=\Sigma_{i=1 . . k} \mu_{i} \zeta_{l} . i \Pi_{j \neq i}\left(T-u\left(\zeta_{j}\right)\right)$

From A to the ζ_{i} (continued)

Theorem : [Rouillier] Let $u \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ we define :

- $f_{u}(T)=\Pi_{i=1 . . k}\left(T-u\left(\zeta_{i}\right)\right)^{\mu_{i}}$
- $g_{0}(T)=\Sigma_{i=1 . . k} \mu_{i} \Pi_{j \neq i}\left(T-u\left(\zeta_{j}\right)\right) \quad f_{u}(\zeta)=0 \rightarrow \zeta_{i}=\left(\begin{array}{c}g_{1}(\zeta) / g_{0}(\zeta) \\ \vdots \\ g_{n}(\zeta) / g_{0}(\zeta)\end{array}\right)$

$$
f_{u}(\zeta)=0 \rightarrow \zeta_{i}=\left(\begin{array}{c}
g_{1}(\zeta) / g_{0}(\zeta) \\
\vdots \\
g_{n}(\zeta) / g_{0}(\zeta)
\end{array}\right)
$$

If u separates the ζ_{i} then the preceeding polynomials define a Rational Univariate Representation.

From A to the ζ_{i} (continued)

Theorem : [Rouillier] Let $u \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ we define :

- $f_{u}(T)=\Pi_{i=1 . . k}\left(T-u\left(\zeta_{i}\right)\right)^{\mu_{i}}$

- $g_{l}(T)=\Sigma_{i=1 . . k} \mu_{i} \zeta_{l} . i \Pi_{j \neq i}\left(T-u\left(\zeta_{j}\right)\right)$

$$
f_{u}(\zeta)=0 \rightarrow \zeta_{i}=\left(\begin{array}{c}
g_{1}(\zeta) / g_{0}(\zeta) \\
\vdots \\
g_{n}(\zeta) / g_{0}(\zeta)
\end{array}\right)
$$

If u separates the ζ_{i} then the preceeding polynomials define a Rational Univariate Representation.
Proposition : A separating element can be chosen in the family :

$$
\mathcal{U}=\left\{x_{1}+j x_{2}+\cdots+j^{n-1} x_{n}, j=0 \ldots n k(k-1) / 2\right\}
$$

we also have :
u is separating the $\zeta_{i} \Leftrightarrow \operatorname{deg}\left(\operatorname{minpol}\left(\left(M_{u}\right)\right)\right)==\operatorname{dim}(A)$

Representation of A

Working in A

Finding Canonical representation of the elements of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$

(Normal Forms)

- \mathcal{V} contains only points $\Rightarrow A$ is a finite dimensionnal \mathbb{K}-vector space.
- As a \mathbb{K}-vector space $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is spanned by the monomials.
- Finding a basis of A can be reduced to finding a monomial basis of A (noted $B)$.

Suppose that we know B, a monomial basis of A. Then we have the equality :

$$
\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\langle B\rangle \oplus\langle I\rangle
$$

($\langle I\rangle$ denotes the \mathbb{K}-vector space generated by I)

Here Comes Macaulay!

Computing the canonical expression of a polynomial $p \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ in B is simple:

Algorithm 1. InPut: $p \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$
$I=\left(f_{1}, \ldots, f_{s}\right)$
B a monomial basis of A
Output the representation of p in A.

- $k=0$, reduced=false
- while !reduced
* construct the matrix $M a t_{k}(p)$
echelonize $M a t_{k}(p)$ without permuting lines
* if the last line has no nonzero coefficients outside the columns corresponding to B then reduced=true
- return the last line of the echelonized matrix.

Here Comes Macaulay!

Computing the canonical expression of a polynomial $p \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ in B is simple:

Algorithm 1. Input: $p \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ $I=\left(f_{1}, \ldots, f_{s}\right)$
B a monomial basis of A
Output the representation of p in A.

- $k=0$, reduced=false
- while !reduced
* construct the matrix Mat $_{k}(p)$
echelonize $\operatorname{Mat}_{k}(p)$ without permuting lines
* if the last line has no nonzero coefficients outside the columns corresponding to B then reduced=true
- return the last line of the echelonized matrix.

Macaulay Construction

If the f_{i} are generic of degree d_{i} then we have:

- the set $E_{0}=\left\{x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, \alpha_{i}<d_{i}\right\}$ is a basis of A.
- the sets $E_{i}=\left\{x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}, \Sigma_{j=1 . . n} \alpha_{j} \leq \Sigma_{j=1 . . n}\left(d_{j}-1\right)+1, \forall n \geq j \geq i, \alpha_{j}<\right.$ $\left.d_{j}\right\}$

Algorithm 2. Input: $f_{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ whom we want the multiplication operator f_{1}, \ldots, f_{s} generic polynomials
Output: The multiplication matrix of f_{0} in A

- construct the matrix :

$$
\left(\right)
$$

- return the Schur complement $=A-C D^{-1} B$

Matrix methods

Study of the sylvester endomorphism :

$$
\begin{aligned}
&<E_{0}>\times<E_{1}>\times \cdots \times<E_{s}> \longrightarrow \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \\
&\left(p_{0}, p_{1}, \ldots, p_{s}\right) \longrightarrow \\
& \Sigma_{i=0 . . s} p_{i} f_{i}
\end{aligned}
$$

- E_{0} must be a basis of A.
- E_{i} must be wide enought for the Schur complement of the bloc A gives the multiplication operator.

Ex: Sparse resultant (J. Canny, I. Emiris. . .), etc...

Gröbner bases

Algorithm 3. Input : f_{1}, \ldots, f_{s} generating I.(any dimensional) An admissible monomial order γ
Output : A representation of A

- $G=\left\{f_{1}, \ldots, f_{s}\right\}$
- repeat
* $G^{\prime}=G$
* for all pair $(p, q), p, q \in G^{\prime}$ do
* $S=\overline{S(p, q)}^{G^{\prime}}$
* if $S \neq 0$ then $G=G \cup S$
- until $G^{\prime}==G$
- return G

Gröbner bases (Faugère,Lazard,Lombardi)

At a second thought. . .

- Can substitute polynomial algebra by linear algebra

Gröbner bases (Faugère,Lazard,Lombardi)

At a second thought. . .

- Can substitute polynomial algebra by linear algebra

Then we can do the following changes :

- see the polynomials of I as linear dependence relations
- substitute S-polynomial reductions with echelonisations of matrices

Reduce S-pol

Gröbner bases (Faugère,Lazard,Lombardi)

At a second thought. . .

- Can substitute polynomial algebra by linear algebra

Then we can do the following changes:

- see the polynomials of I as linear dependence relations
- substitute S-polynomial reductions with echelonisations of matrices monomials

$$
\left(\begin{array}{c}
\frac{l c m(\gamma(p), \gamma(q))}{\gamma(p)} p \\
\frac{l c m(\gamma(p), \gamma(q))}{\gamma(q)} q \\
\vdots \\
\text { Reductor polynomials }
\end{array}\right)
$$

Gröbner bases (Faugère,Lazard,Lombardi)

At a second thought. . .

- Can substitute polynomial algebra by linear algebra

Then we can do the following changes:

- see the polynomials of I as linear dependence relations
- substitute S-polynomial reductions with echelonisations of matrices monomials
- proceed incrementaly

$$
\left(\begin{array}{c}
\frac{l c m(\gamma(p), \gamma(q))}{\gamma(p)} p \\
\frac{l c m(\gamma(p), \gamma(q))}{\gamma(q)} q \\
\vdots
\end{array}\right]
$$

Unhappy with Gröbner though

ex: $\begin{gathered}p_{1}=a x_{1}^{2}+b x_{2}^{2}+n_{1}\left(x_{1}, x_{2}\right) \\ p_{2}=c x_{1}^{2}+d x_{2}^{2}+n_{2}\left(x_{1}, x_{2}\right)\end{gathered}$

$n_{1}=n_{2}=0$

$$
\begin{aligned}
& n_{1} \equiv \varepsilon_{2} \varepsilon_{1} x_{2} x_{1} x_{2} \\
& x_{2}
\end{aligned}
$$

Computing better representations

Notations

- A Normal form is :- A monomial basis B of A
- An algorithm to project $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ onto B
- A choice function refining the degree, γ, is a function that takes a polynomial p and returns one monomial $\gamma(p)$ of the support of p such that $\operatorname{deg}(\gamma(p))=\operatorname{deg}(p)$.
- Let S be a subset of $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] S^{+}$is the set:

$$
S^{+}=x_{1} S \cup \cdots \cup x_{n} S
$$

- $P \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right], M \subset\left\{x^{\alpha}, \alpha \in \mathbb{Z}^{n}\right\},(P \mid M)$, is the matrix whose columns are index by M and lines by P.
- Let $p_{1}, \quad p_{2} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, the C-polynomial of p_{1} and p_{2} is $C\left(p_{1}, p_{2}\right)=\frac{l c m\left(\gamma\left(p_{1}\right), \gamma\left(p_{2}\right)\right), \gamma\left(p_{1}\right)}{p}-\frac{l c m\left(\gamma\left(p_{1}\right), \gamma\left(p_{2}\right)\right), \gamma\left(p_{2}\right)}{p}{ }_{2}$, and $\operatorname{deg} g_{C}\left(C\left(p_{1}, p_{2}\right)\right)=$ $\operatorname{deg}\left(\operatorname{lcm}\left(\gamma\left(p_{1}\right), \gamma\left(p_{2}\right)\right)\right.$.

Macaulay revisited

Provide a way to write any polynomial p under the form $p=b+i, b \in\langle B\rangle, \quad i \in\langle I\rangle$

Macaulay revisited

Provide a way to write any polynomial p under the form
$p=b+i, b \in\langle B\rangle, i \in\langle I\rangle$
Algorithm 4. [Mourrain, T.] InPUT : $F=f_{1}, \ldots, f_{s}$ generic polynomials Output : The representation of A given by Macaulay.

- $k=\min \left(\operatorname{deg}\left(f_{i}\right), i=1 . . s\right)$.
- $P_{k}=F[k], M_{k}=\left\{x_{i}^{k}, f_{i} \in P_{k}\right\}$
- while $k \leq \Sigma_{i=1 . . s}\left(d_{i}-1\right)+1$ do
${ }_{*} P_{k+1}=P_{k}^{+} \cap B^{+} \cup \operatorname{proj}(P[k+1]), M_{k+1}=M_{k}^{+} \cap B^{+} \cup\left\{x_{i}^{k+1}, f_{i} \in P[k+1]\right\}$
* Solve the linear system $\left(P_{k+1} \mid M_{k+1}\right) X=P_{k+1}$.
* $k=k+1$
- return $P_{i}, i=\min \left(\operatorname{deg}\left(f_{i}\right), i=1 . . s\right) . . \Sigma_{i=1 . . s}\left(d_{i}-1\right)+1$

Macaulay revisited an example

Macaulay revisited an example

$$
f_{i}=x_{i}^{d_{i}}+\ldots
$$

Macaulay revisited an example

$$
\begin{aligned}
& f_{i}=x_{i}^{d_{i}}+\ldots \\
& x_{1} f_{i}=x_{1} x_{i}^{d_{i}}+\alpha_{2} x_{1}^{d_{1}} x_{2}+\cdots+\alpha_{n} x_{1}^{d_{1}} x_{n}+\ldots
\end{aligned}
$$

Macaulay revisited an example

$$
\begin{aligned}
& f_{i}=x_{i}^{d_{i}}+\ldots \\
& x_{1} f_{i}=x_{1} x_{i}^{d_{i}}+\alpha_{2} x_{1}^{d_{1}} x_{2}+\cdots+\alpha_{n} x_{1}^{d_{1}} x_{n}+\ldots
\end{aligned}
$$

comparing to the original

Comparing to the original

n	5	6	7	8	9	10	11
size of the matrices	5	6	7	8	9	10	11
	20	30	42	56	72	90	110
	30	60	105	168	252	360	495
	20	60	140	280	504	840	1320
	5	30	105	280	630	1260	2310
		6	42	168	504	1260	2772
			7	56	252	840	2310
				8	72	360	1320
					9	90	495
						10	110
							11
Sum	80	192	448	1024	2304	5120	11264
Macaulay	462	1716	6435	24310	92378	352716	1352078
Nb points	32	64	128	256	512	1024	2048

Table 1: Size of the systems to invert

What to do if B is not known?

Algorithm 5. [Mourrain] InPut : $F=f_{1}, \ldots, f_{n}$
L a \mathbb{K}-vector space connex to 1
Output : The multiplicative structure of A

1) $K_{0}=\left\langle f_{1}, \ldots, f_{n}\right\rangle, n=0$
2) repeat

* $K_{n+1}=K_{n}^{+} \cap L$
* $n=n+1$

3) until $K_{n}==K_{n-1}$
4) Compute B a supplementary of K_{n} in L
5) If $B^{+} \not \subset L, L=L^{+}$and go back to 1)

What to do if not generic

a new criterion :

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\oplus<I>$.

- The multiplication operators by the variables commute.

What to do if not generic

a new criterion :

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\langle B\rangle \oplus\langle I\rangle$.

- The multiplication operators by the variables commute.

Properties
\oplus Very good numerical stability.
\oplus Possibility to take into account the geometry of the problem.
\ominus VERY expensive computation.

Computing better for computing less

What went wrong :

- Postpone the effective computation of B to the last step.

Computing better for computing less

What went wrong :

- Postpone the effective computation of B to the last step.

What we should do to mimic Gröbner bases :

- try since the first step to guess what will be B
- check our guess is correct
- do not compute polynomials that go too far from B

Computing better for computing less

Algorithm 6. [T.] Normal Forms
INPUT : $F=f_{1}, \ldots, f_{s}$ defining I (0-dimensionnal)
γ a choice function refining the degree.
Initilisation : Choose the f_{i} of minimal degree

$$
b=\left(\gamma\left(f_{i}\right)\right), k=\operatorname{deg}\left(f_{i}\right), P_{k}=\left\{f_{i}\right\}, M_{k}=\left\{\gamma\left(f_{i}\right)\right\}
$$

Core Loop: While (newmon $\mid k \leq \operatorname{Maxdeg}(F))$ do

Computing better for computing less

Algorithm 6. [T.] Normal Forms
INPUT : $F=f_{1}, \ldots, f_{s}$ defining I (0-dimensionnal)
γ a choice function refining the degree.
Initilisation : Choose the f_{i} of minimal degree

$$
b=\left(\gamma\left(f_{i}\right)\right), k=\operatorname{deg}\left(f_{i}\right), P_{k}=\left\{f_{i}\right\}, M_{k}=\left\{\gamma\left(f_{i}\right)\right\}
$$

Core Loop: While (newmon $\| k \leq \operatorname{Maxdeg}(F))$ do

- Compute the C-pol of degree $k+1$

Computing better for computing less

Algorithm 6. [T.] Normal Forms
INPUT : $F=f_{1}, \ldots, f_{s}$ defining I (0-dimensionnal)
γ a choice function refining the degree.
Initilisation : Choose the f_{i} of minimal degree

$$
b=\left(\gamma\left(f_{i}\right)\right), k=\operatorname{deg}\left(f_{i}\right), P_{k}=\left\{f_{i}\right\}, M_{k}=\left\{\gamma\left(f_{i}\right)\right\}
$$

Core Loop : While (newmon $\mid k \leq \operatorname{Maxdeg}(F))$ do

- Compute the C-pol of degree $k+1$
- Compute $P_{k+1}=P_{k}^{+} \cap b^{+}$and take into account the f_{i} of degree $k+1$

Computing better for computing less

Algorithm 6. [T.] Normal Forms

INPUT : $F=f_{1}, \ldots, f_{s}$ defining I (0-dimensionnal)
γ a choice function refining the degree.
Initilisation : Choose the f_{i} of minimal degree

$$
b=\left(\gamma\left(f_{i}\right)\right), k=\operatorname{deg}\left(f_{i}\right), P_{k}=\left\{f_{i}\right\}, M_{k}=\left\{\gamma\left(f_{i}\right)\right\}
$$

Core Loop: While (newmon $\| k \leq \operatorname{Maxdeg}(F))$ do

- Compute the C-pol of degree $k+1$
- Compute $P_{k+1}=P^{+} \cap b^{+}$and take into account the f_{i} of degree $k+1$
- $M_{k+1}=\left\{M_{k}^{+} \cap b^{+}\right\}$

Computing better for computing less

Algorithm 6. [T.] Normal Forms

INPUT : $F=f_{1}, \ldots, f_{s}$ defining I (0-dimensionnal)
γ a choice function refining the degree.
Initilisation : Choose the f_{i} of minimal degree

$$
b=\left(\gamma\left(f_{i}\right)\right), k=\operatorname{deg}\left(f_{i}\right), P_{k}=\left\{f_{i}\right\}, M_{k}=\left\{\gamma\left(f_{i}\right)\right\}
$$

Core Loop: While (newmon $\| k \leq \operatorname{Maxdeg}(F))$ do

- Compute the C-pol of degree $k+1$
- Compute $P_{k+1}=P^{+} \cap b^{+}$and take into account the f_{i} of degree $k+1$
- $M_{k+1}=\left\{M_{k}^{+} \cap b^{+}\right\}$
- PseudoSolve $\left(P_{k+1} \mid M_{k+1}\right) X=P_{k+1}$

Computing better for computing less

Algorithm 6. [T.] Normal Forms

INPUT : $F=f_{1}, \ldots, f_{s}$ defining I (0-dimensionnal)
γ a choice function refining the degree.
Initilisation : Choose the f_{i} of minimal degree

$$
b=\left(\gamma\left(f_{i}\right)\right), k=\operatorname{deg}\left(f_{i}\right), P_{k}=\left\{f_{i}\right\}, M_{k}=\left\{\gamma\left(f_{i}\right)\right\}
$$

Core Loop: While (newmon $\| k \leq \operatorname{Maxdeg}(F))$ do

- Compute the C-pol of degree $k+1$
- Compute $P_{k_{+1}}=P^{+} \cap b^{+}$and take into account the f_{i} of degree $k+1$
- $M_{k+1}=\left\{M_{k}^{+} \cap b^{+}\right\}$
- PseudoSolve $\left(P_{k+1} \mid M_{k+1}\right) X=P_{k+1}$
- Reduce the C-pol with respect to P_{j}

Computing better for computing less

Algorithm 6. [T.] Normal Forms

INPUT : $F=f_{1}, \ldots, f_{s}$ defining I (0-dimensionnal)
γ a choice function refining the degree.
Initilisation : Choose the f_{i} of minimal degree

$$
b=\left(\gamma\left(f_{i}\right)\right), k=\operatorname{deg}\left(f_{i}\right), P_{k}=\left\{f_{i}\right\}, M_{k}=\left\{\gamma\left(f_{i}\right)\right\}
$$

Core Loop : While (newmon $\| k \leq \operatorname{Maxdeg}(F)$) do

- Compute the C-pol of degree $k+1$
- Compute $P_{k+1}=P^{+} \cap b^{+}$and take into account the f_{i} of degree $k+1$
- $M_{k+1}=\left\{M_{k}^{+} \cap b^{+}\right\}$
- PseudoSolve $\left(P_{k+1} \mid M_{k+1}\right) X=P_{k+1}$
- Reduce the C-pol with respect to P_{j}
- Whether the C-pol reduce to 0 or not and whether $\left(P_{k+1} \mid M_{k+1}\right)$ is of maximal rank update b, P_{k+1}, k, M_{k+1}
End While

Computing better for computing less

Algorithm 6. [T.] Normal Forms

INPUT : $F=f_{1}, \ldots, f_{s}$ defining I (0-dimensionnal)
γ a choice function refining the degree.
Initilisation : Choose the f_{i} of minimal degree

$$
b=\left(\gamma\left(f_{i}\right)\right), k=\operatorname{deg}\left(f_{i}\right), P_{k}=\left\{f_{i}\right\}, M_{k}=\left\{\gamma\left(f_{i}\right)\right\}
$$

Core Loop : While (newmon $\| k \leq \operatorname{Maxdeg}(F)$) do

- Compute the C-pol of degree $k+1$
- Compute $P_{k+1}=P^{+} \cap b^{+}$and take into account the f_{i} of degree $k+1$
- $M_{k+1}=\left\{M_{k}^{+} \cap b^{+}\right\}$
- PseudoSolve $\left(P_{k+1} \backslash M_{k+1}\right) X=P_{k+1}$
- Reduce the C-pol with respect to P_{j}
- Whether the C-pol reduce to 0 or not and whether $\left(P_{k+1} \mid M_{k+1}\right)$ is of maximal rank update b, P_{k+1}, k, M_{k+1}
End While
OUTPUT : $\left\{P_{j}, j=0 . . k\right\}$ that allow to construct a system of normal form $\forall k \in \mathbb{N}$

An example

$$
F=\left\{\begin{array}{l}
x^{2}+x y \\
y^{2}+x y \\
x y^{3}
\end{array}\right.
$$

$$
\gamma=\text { ask user }
$$

Compute the quotient :

An example

$$
F=\left\{\begin{array}{l}
x^{2}+x y \\
y^{2}+x y \\
x y^{3}
\end{array}\right.
$$

$$
\gamma=\text { ask user }
$$

Compute the quotient :

An example

$$
F=\left\{\begin{array}{l}
x^{2}+x y \\
y^{2}+x y \\
x y^{3}
\end{array}\right.
$$

$$
\gamma=\text { ask user }
$$

Compute the quotient :

An example

$$
F=\left\{\begin{array}{l}
x^{2}+x y \\
y^{2}+x y \\
x y^{3}
\end{array}\right.
$$

$$
\gamma=\text { ask user }
$$

Compute the quotient :

What to do if we do not refine the degree

An example : the Lex monomial order The Problems:

- we do not have always reduced polynomials.
- we do not know in advance how to determine what polynomials will be reduced
- we must avoid dead lock (i.e. polynomial p depending on polynomial q and polynomial q depending on polynomial p).

What to do if we do not refine the degree

An example : the Lex monomial order The Problems:

- we do not have always reduced polynomials.
- we do not know in advance how to determine what polynomials will be reduced
- we must avoid dead lock (i.e. polynomial p depending on polynomial q and polynomial q depending on polynomial p).

The solutions:

- put in stand by non fully reduced polynomials.
- at the end of each step determine what will be the polynomial set to consider.
- use a linear form from the first quadrant to avoid dead-locks.

Stability in practice

Parallel Robot with quaternion parametrization: http://www-sop.inria.fr/saga/POL/BASE/2.multipol/rbpll6.html:

γ	time in s	Peak mem	average of $\operatorname{cond}\left(M_{i}\right)$
Macaulay	632	17 M	10^{7}
Dlex	3325	40 M	10^{7}
Dinvlex	2554	40 M	10^{7}
Size	1240	20 M	10^{8}
Numeric	9889	50 M	10^{6}
Random	636	30 M	10^{7}

Stability in practice

Parallel Robot with quaternion parametrization: http://www-sop.inria.fr/saga/POL/BASE/2.multipol/rbpll6.html:

γ	time in s	Peak mem	average of $\operatorname{cond}\left(M_{i}\right)$
Macaulay	632	17 M	10^{7}
Dlex	3325	40 M	10^{7}
Dinvlex	2554	40 M	10^{7}
Size	1240	20 M	10^{8}
Numeric	9889	50 M	10^{6}
Random	636	30 M	10^{7}

ε-Computations!!

Conclusion

The algebraic solving process is essentially composed of two mandatory steps :

- Computation of a representation of the quotient algebra.

Conclusion

The algebraic solving process is essentially composed of two mandatory steps :

- Computation of a representation of the quotient algebra.
- Determination of certain quantities linked with multiplication operators.

Conclusion

The algebraic solving process is essentially composed of two mandatory steps :

- Computation of a representation of the quotient algebra.
- Determination of certain quantities linked with multiplication operators.

It is greatly profitable to take into account the needs of the second step during the first one.

Conclusion

The algebraic solving process is essentially composed of two mandatory steps:

- Computation of a representation of the quotient algebra.
- Determination of certain quantities linked with multiplication operators.

It is greatly profitable to take into account the needs of the second step during the first one.
What remains to do :

- Find a suitable stopping criterion in positive dimension
- Use and optimize the infinitesimals for real life applications.

