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Solving Polynomial Systems

Challenge : Dealing with
semi-algebraic sets.



1

Solving Polynomial Systems

Complex solving for Real Geometry
Facts:

• Algorithms in real geometry (BPR, SaSc, Rouillier Roy Safey. . . ) reduce the
problems to a 0-dimensional system solving.



1

Solving Polynomial Systems

Complex solving for Real Geometry
Facts:

• Algorithms in real geometry (BPR, SaSc, Rouillier Roy Safey. . . ) reduce the
problems to a 0-dimensional system solving.

• Need of resolution methods working over Non-archimedian Fields



1

Solving Polynomial Systems

Complex solving for Real Geometry
Facts:

• Algorithms in real geometry (BPR, SaSc, Rouillier Roy Safey. . . ) reduce the
problems to a 0-dimensional system solving.

• Need of resolution methods working over Non-archimedian Fields

• Intrinsic height of the variety may be VERY high ⇒ resolution algorithms must
not introduce artificial instabilities.
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The setting

• K a field.

• K[x1, . . . , xn] the ring of n variate polynomials.

• I = (f1, . . . , fs) an ideal defining a variety V.

What does solving mean?

We will exclude the case where V contains curves, etc. . .
V is composed of finitely many points (ζ1, . . . , ζk) .
What solving is

• finding an approximation of the coordinates of the points of V.

• giving a univariate representation of V.

• decomposing V into simple parts.

Raag Summer School 2



3

Different approaches

• Numerical methods

? homotopy (Somese, Vershelde,etc . . . ).

? interval analysis (J.P. Merlet, ).

? Weierstrass (Newton-like) ( A. Bellido, O. Ruatta, J.C. Yakoubsohn,etc . . . ).

• Algebraic methods

? Matrix methods(J. Canny, I. Emiris, B. Mourrain, . . . ).

? Geometric methods ( P. Aubry, M. Kalkbrener, D. Lazard, M. Moreno and M. Giusti, G.

Lecerf, J. Heintz . . . ).

? Rewriting methods (B. Buchberger, J.C. Faugère, . . . ).
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The quotient algebra

Key structure!

A = K[x1, . . . , xn]/I

Problems :

• Where to read the information about the points?

• How to compute with it? (representation)

• Is there a best representation? (numerical conditionning, memory size,
stability. . . )
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Where to read the information
about the points?
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From A to the ζi

Theorem : [Stickelberger]If V = ζ1, . . . , ζk, p ∈ K[x1, . . . , xn].
We will call the multiplication by p, Mp the operator A → A

f → fp
. The operator Mp

has the following properties :

• The eigenvalues of Mp are the numbers p(ζ1), . . . , p(ζk) counted with
multiplicities.

• The common eigenvectors to all the Mt
p are the evaluations to the ζi.

From here it is easy to compute the Chow form of I i.e. compute

Det(Mu0+u1x1+···+unxn)
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From A to the ζi (continued)

Theorem : [Hermite] K = R, h ∈ R[x1, . . . , xn] and Qh be the quadratic form
Qh : A → A

p → Tr(hp2)
. Then we have the following two properties :

• The number of complex root ζi such as h(ζi) 6= 0 is the rank of the quadratic
form Qh.

• The number of real roots ζi such as h(ζi) > 0 and the number of real roots
such as h(ζi) < 0 is the signature of Qh.
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From A to the ζi (continued)

Theorem : [Rouillier] Let u ∈ K[x1, . . . , xn] we define :

• fu(T ) = Πi=1..k(T − u(ζi))µi

• g0(T ) = Σi=1..kµiΠj 6=i(T − u(ζj))

• gl(T ) = Σi=1..kµiζl.iΠj 6=i(T − u(ζj))
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From A to the ζi (continued)

Theorem : [Rouillier] Let u ∈ K[x1, . . . , xn] we define :

• fu(T ) = Πi=1..k(T − u(ζi))µi

• g0(T ) = Σi=1..kµiΠj 6=i(T − u(ζj))

• gl(T ) = Σi=1..kµiζl.iΠj 6=i(T − u(ζj))

fu(ζ) = 0 → ζi =

 g1(ζ)/g0(ζ)
...

gn(ζ)/g0(ζ)


If u separates the ζi then the preceeding polynomials define a Rational Univariate
Representation.
Proposition : A separating element can be chosen in the family :

U = {x1 + jx2 + · · ·+ jn−1xn, j = 0 . . . nk(k − 1)/2}
we also have :

u is separating the ζi ⇔ deg(minpol((Mu))) == dim(A)
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Representation of A
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Working in A

Finding Canonical representation of the elements of K[x1, . . . , xn]

(Normal Forms)

• V contains only points ⇒ A is a finite dimensionnal K-vector space.

• As a K-vector space K[x1, . . . , xn] is spanned by the monomials.

• Finding a basis of A can be reduced to finding a monomial basis of A (noted
B).

Suppose that we know B, a monomial basis of A. Then we have the equality :

K[x1, . . . , xn] = 〈B〉 ⊕ 〈I〉

(〈I〉 denotes the K-vector space generated by I)
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Here Comes Macaulay!

Computing the canonical expression of a polynomial p ∈ K[x1, . . . , xn] in B is
simple:

Algorithm 1. Input:p ∈ K[x1, . . . , xn]
I = (f1, . . . , fs)
B a monomial basis of A

Output the representation of p in A.

• k=0, reduced=false

• while !reduced

? construct the matrix Matk(p)
? echelonize Matk(p) without permuting lines
? if the last line has no nonzero coefficients outside the columns corresponding

to B then
reduced=true

• return the last line of the echelonized matrix.
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Computing the canonical expression of a polynomial p ∈ K[x1, . . . , xn] in B is
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Bc B
Mf1
...

Mfs

p
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B a monomial basis of A

Output the representation of p in A.
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• while !reduced
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? echelonize Matk(p) without permuting lines
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to B then
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Macaulay Construction

If the fi are generic of degree di then we have :

• the set E0 = {xα1
1 . . . xαn

n , αi < di} is a basis of A.

• the sets Ei = {xα1
1 . . . xαn

n , Σj=1..nαj ≤ Σj=1..n(dj − 1) + 1, ∀n ≥ j ≥ i, αj <
dj}

Algorithm 2. Input: f0 ∈ K[x1, . . . , xn] whom we want the multiplication operator
f1, . . . , fs generic polynomials

Output: The multiplication matrix of f0 in A

• construct the matrix :

E0f0 E1f1 . . . Enfn
A C

B D


• return the Schur complement= A− CD−1B
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Matrix methods

Study of the sylvester endomorphism :

< E0 > × < E1 > × · · ·× < Es > −→ K[x1, . . . , xn]
(p0, p1, . . . , ps) −→ Σi=0..spifi

• E0 must be a basis of A.

• Ei must be wide enought for the Schur complement of the bloc A gives the
multiplication operator.

Ex: Sparse resultant (J. Canny, I. Emiris. . . ), etc...
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Gröbner bases

Algorithm 3. Input : f1, . . . , fs generating I.(any dimensional)
An admissible monomial order γ

Output : A representation of A

• G = {f1, . . . , fs}

• repeat

? G′ = G
? for all pair (p, q), p, q ∈ G′ do

∗ S = S(p, q)
G′

∗ if S 6= 0 then G = G ∪ S

• until G′ == G

• return G
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15
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• Can substitute polynomial algebra by linear algebra

Then we can do the following changes :

• see the polynomials of I as linear dependence relations

• substitute S-polynomial reductions with echelonisations of matrices

monomials
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γ(p) p
lcm(γ(p),γ(q))

γ(q) q
...

Reductor polynomials



Raag Summer School 15



15

Gröbner bases (Faugère,Lazard,Lombardi)

At a second thought. . .

• Can substitute polynomial algebra by linear algebra

Then we can do the following changes :

• see the polynomials of I as linear dependence relations

• substitute S-polynomial reductions with echelonisations of matrices

• proceed incrementaly
monomials

lcm(γ(p),γ(q))
γ(p) p

lcm(γ(p),γ(q))
γ(q) q

...

Reductor polynomials
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Unhappy with Gröbner though

ex: p1 = ax2
1 + bx2

2 + n1(x1, x2)

p2 = cx2
1 + dx2

2 + n2(x1, x2)

n2 = ε2x1x2
n1 = ε1x1x2n1 = n2 = 0

Raag Summer School 16
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Computing better representations
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Notations

• A Normal form is :• A monomial basis B of A
• An algorithm to project K[x1, . . . , xn] onto B

• A choice function refining the degree, γ, is a function that takes a polynomial p
and returns one monomial γ(p) of the support of p such that deg(γ(p)) = deg(p).

• Let S be a subset of K[x1, . . . , xn] S+ is the set :

S+ = x1S ∪ · · · ∪ xnS

• P ⊂ K[x1, . . . , xn],M ⊂ {xα, α ∈ Zn},(P |M) , is the matrix whose columns
are index by M and lines by P .

• Let p1, p2 ∈ K[x1, . . . , xn], the C-polynomial of p1 and p2 is

C(p1, p2) = lcm(γ(p1),γ(p2)),γ(p1)
p 1

− lcm(γ(p1),γ(p2)),γ(p2)
p 2

, and degC(C(p1, p2)) =
deg(lcm(γ(p1), γ(p2)).
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Macaulay revisited

Provide a way to write any polynomial p under the form
p = b + i, b ∈ 〈B〉, i ∈ 〈I〉

Algorithm 4. [Mourrain, T.] Input : F = f1, . . . , fs generic polynomials
Output : The representation of A given by Macaulay.

• k = min(deg(fi), i = 1..s).

• Pk = F [k], Mk = {xk
i , fi ∈ Pk}

• while k ≤ Σi=1..s(di − 1) + 1 do

? Pk+1 = P+
k ∩B+∪proj(P [k+1]), Mk+1 = M+

k ∩B+∪{xk+1
i , fi ∈ P [k+1]}

? Solve the linear system (Pk+1|Mk+1)X = Pk+1.
? k = k + 1

• return Pi, i = min(deg(fi), i = 1..s)..Σi=1..s(di − 1) + 1
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Macaulay revisited an example

fi = xdi
i + . . .

x1fi = x1x
di
i + α2x

d1
1 x2 + · · · + αnx

d1
1 xn + . . .

 . . . . . . . . . . . . . . . . . .
1 . . . α2 α3 . . . αn . . .

. . . . . . . . . . . . . . . . . .
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comparing to the original
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Comparing to the original

n 5 6 7 8 9 10 11
size 5 6 7 8 9 10 11

of the 20 30 42 56 72 90 110
matrices 30 60 105 168 252 360 495

20 60 140 280 504 840 1320
5 30 105 280 630 1260 2310

6 42 168 504 1260 2772
7 56 252 840 2310

8 72 360 1320
9 90 495

10 110
11

Sum 80 192 448 1024 2304 5120 11264
Macaulay 462 1 716 6 435 24 310 92 378 352 716 1 352 078
Nb points 32 64 128 256 512 1024 2048

Table 1: Size of the systems to invert

Raag Summer School 22



23

What to do if B is not known?

Algorithm 5. [Mourrain] Input : F = f1, . . . , fn

L a K-vector space connex to 1
Output : The multiplicative structure of A

1) K0 = 〈f1, . . . , fn〉, n = 0

2) repeat

? Kn+1 = K+
n ∩ L

? n = n + 1

3) until Kn == Kn−1

4) Compute B a supplementary of Kn in L

5) If B+ 6⊂ L, L = L+ and go back to 1)
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What to do if not generic

a new criterion :

• K[x1, . . . , xn] =< B > ⊕ < I >.

⇐⇒
• The multiplication operators by the variables commute.
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What to do if not generic

a new criterion :

• K[x1, . . . , xn] =< B > ⊕ < I >.

⇐⇒
• The multiplication operators by the variables commute.

Properties

⊕ Very good numerical stability.

⊕ Possibility to take into account the geometry of the problem.

	 VERY expensive computation.
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Computing better for computing less

What went wrong :

• Postpone the effective computation of B to the last step.



25

Computing better for computing less

What went wrong :

• Postpone the effective computation of B to the last step.

What we should do to mimic Gröbner bases :

• try since the first step to guess what will be B

• check our guess is correct

• do not compute polynomials that go too far from B
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Computing better for computing less

Algorithm 6. [T.] Normal Forms
INPUT : F = f1, . . . , fs defining I (0-dimensionnal)

γ a choice function refining the degree.

Initilisation : Choose the fi of minimal degree
b = (γ(fi)), k = deg(fi), Pk = {fi}, Mk = {γ(fi)}

Core Loop : While (newmon||k ≤ Maxdeg(F )) do
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Computing better for computing less

Algorithm 6. [T.] Normal Forms
INPUT : F = f1, . . . , fs defining I (0-dimensionnal)

γ a choice function refining the degree.

Initilisation : Choose the fi of minimal degree
b = (γ(fi)), k = deg(fi), Pk = {fi}, Mk = {γ(fi)}

Core Loop : While (newmon||k ≤ Maxdeg(F )) do

• Compute the C-pol of degree k + 1
• Compute Pk+1 = P+

k ∩ b+ and take into account the fi of degree k + 1
• Mk+1 = {M+

k ∩ b+}
• PseudoSolve (Pk+1|Mk+1)X = Pk+1
• Reduce the C-pol with respect to Pj
• Whether the C-pol reduce to 0 or not and whether (Pk+1|Mk+1) is of maximal

rank update b, Pk+1, k,Mk+1

End While
OUTPUT : {Pj, j = 0..k} that allow to construct a system of normal form
∀k ∈ N
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r = #Mk+1 − Rank((Mk+1|Pk+1))
c = #{non reduced to 0}
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What to do if we do not refine the degree

An example : the Lex monomial order
The Problems :

• we do not have always reduced polynomials.

• we do not know in advance how to determine what polynomials will be reduced

• we must avoid dead lock (i.e. polynomial p depending on polynomial q and
polynomial q depending on polynomial p).
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What to do if we do not refine the degree

An example : the Lex monomial order
The Problems :

• we do not have always reduced polynomials.

• we do not know in advance how to determine what polynomials will be reduced

• we must avoid dead lock (i.e. polynomial p depending on polynomial q and
polynomial q depending on polynomial p).

The solutions:

• put in stand by non fully reduced polynomials.

• at the end of each step determine what will be the polynomial set to consider.

• use a linear form from the first quadrant to avoid dead-locks.

Raag Summer School 29



30

Stability in practice

Parallel Robot with quaternion parametrization:
http://www-sop.inria.fr/saga/POL/BASE/2.multipol/rbpll6.html :

γ time in s Peak mem average of cond(Mi)
Macaulay 632 17M 107

Dlex 3325 40M 107

Dinvlex 2554 40M 107

Size 1240 20M 108

Numeric 9889 50M 106

Random 636 30M 107
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Parallel Robot with quaternion parametrization:
http://www-sop.inria.fr/saga/POL/BASE/2.multipol/rbpll6.html :

γ time in s Peak mem average of cond(Mi)
Macaulay 632 17M 107

Dlex 3325 40M 107

Dinvlex 2554 40M 107

Size 1240 20M 108

Numeric 9889 50M 106

Random 636 30M 107

ε-Computations!!
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Conclusion

The algebraic solving process is essentially composed of two mandatory steps :

• Computation of a representation of the quotient algebra.
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Conclusion

The algebraic solving process is essentially composed of two mandatory steps :

• Computation of a representation of the quotient algebra.

• Determination of certain quantities linked with multiplication operators.

It is greatly profitable to take into account the needs of the second step during the
first one.
What remains to do :

• Find a suitable stopping criterion in positive dimension

• Use and optimize the infinitesimals for real life applications.
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