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Abstract

A probabilistic algorithm is developed for minimizing the number of
black box probes in sparse multivariate interpolation.

The Ben-Or/Tiwari interpolation [1, 4, 3] algorithm needs as input an
upper bound of the number of terms in the polynomial. This algorithm
proceeds in two stages. It first determines the terms by error correct-
ing coding, and then their coefficients are obtained. Without such upper
bound, we show how one can probabilistically determine the correct so-
called error-locator polynomial. This we call the early termination version
of Ben-Or/Tiwari algorithm. (Austin Lobo first employed early termina-
tion in the Wiedemann algorithm [6]. The same method should also be
applicable to other sparse interpolation algorithms [5].)

Zippel’s algorithm [7, 8] interpolates one variable at a time: only when
the polynomial in a subset of variables is fully interpolated, do we start
to interpolate the coefficient of each monimial in the next variable. In
deciding which terms are to be considered, whose coefficient need to be
interpolated for the next variable, the Zippel algorithm is used to proba-
bilistically prune all those monomials, whose coefficients are zero, and only
keep the present non-zero monomials (see also [2] for a pruning method
which we employ here). In contrast to Zippel, however, when interpolat-
ing each coefficient polynomial in the new variable, we use simultaneously
the Newton and our early termination Ben-Or/Tiwari algorithms, that
on the same set of black box probes. When the coefficient has just a
few terms, the Ben-Or/Tiwari algorithm determines the coefficient earlier
than Newton interpolation. In other words, we race these two algorithm,
and take advantage of both algorithms, or compensate for the disadvan-
tage for either algorithm.

Our new hybrid algorithm is implemented in a Maple program.
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