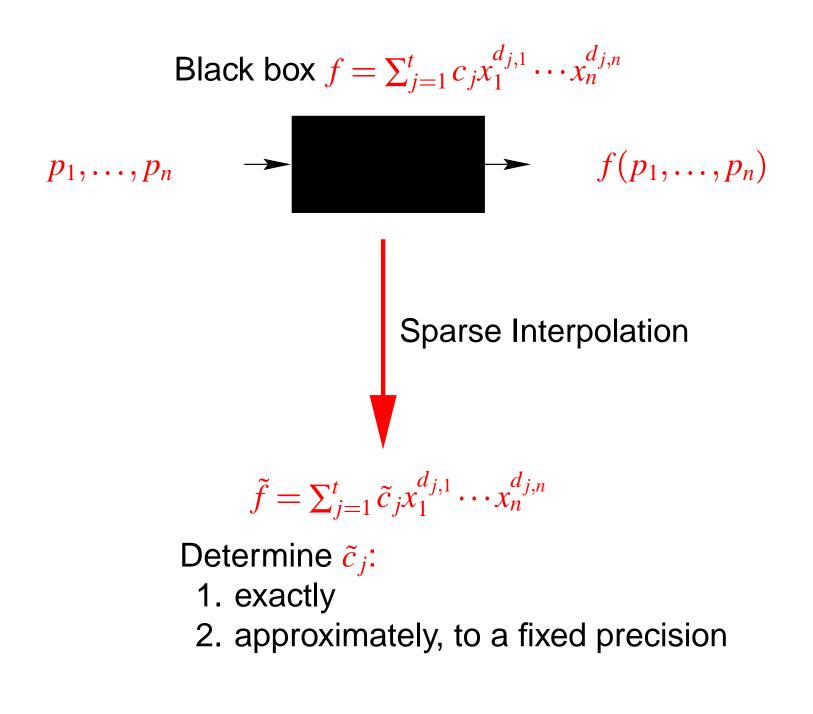


Symbolic-Numeric Sparse Interpolation of Multivariate Polynomials

Mark Giesbrecht George Labahn Wen-shin Lee Symbolic Computation Group University of Waterloo

April 5, 2003

Sparse interpolation of a black box polynomial



Example Black box $10x^6y^8 - 6x^{10} - 5x^8y - 4y^7$

Input	Exact $\omega_x = \exp(\frac{2\pi i}{31})$ (31st-PRU) $\omega_y = \exp(\frac{2\pi i}{37})$ (37th-PRU)	= 0.9795299413 + 0.2012985201I
Compute	$f(\omega_x^i,\omega_y^i)$	$\operatorname{evalf}(f(\operatorname{evalf}(\omega_x^i),\operatorname{evalf}(\omega_y^i))), i = 0, 1, \dots, 8$
Output	$10x^6y^8$	(10.0000006) 0.8542610420 × 10 ⁻⁸ I) -6-8
	$-6x^{10}$	$-0.8543610430 \times 10^{-8}I)x^{6}y^{8}$ $(-6.00000235$ $0.1200185426 \times 10^{-6}I)x^{10}$
	$-5x^8y$	$-0.1390185436 \times 10^{-6}I)x^{10}$ $(-4.999999825$ $+0.1068676105 \times 10^{-6}I)x^{8}x^{10}$
	$-4y^{7}$	$+0.1968676105 \times 10^{-6}I)x^{8}y$ (-3.999999997 -0.493054565410 ⁻⁷ I)y ⁷

Methods: Prony (1795) \sim Ben-Or/Tiwari (1988)

A sum of exponential functions	A polynomial
$F(x) = \sum_{j=1}^{t} c_j e^{\mu_j x} = \sum_{j=1}^{t} c_j b_j^x$	$f(x_1,,x_n) = \sum_{j=1}^t c_j x_1^{d_{j,1}} \cdots x_n^{d_{j,n}}$
1. Solve λ_j , $i = 0, \dots, t - 1$:	1. Compute [†] the minimal Λ that
$\sum_{j=0}^{t-1} \lambda_j F(i+j) = -F(i+t)$	generates [*] { $f(p_1^i, \dots, p_n^i)$ } $_{i=0}^{2t-1}$
2. $e^{\mu_j} = b_j$ are zeros of	2. $p_1^{d_{j,1}} \cdots p_n^{d_{j,n}}$ are zeros of
$\Lambda = z^t + \lambda_{t-1} z^{t-1} + \dots + \lambda_0$	$\Lambda = z^t + \lambda_{t-1} z^{t-1} + \dots + \lambda_0$
3. Determine c_j from $e^{\mu_i} = b_j$	3. Determine c_j from $p_1^{d_{j,1}} \cdots p_n^{d_{j,n}}$
and evaluations of F	and evaluations of f
	† Berlekamp/Massey algorithm $* p_1, \dots, p_n$ relatively prime

Numerical challenges in Prony's method

Ill-conditioned Hankel system

$$\underbrace{\begin{bmatrix} F(0) & F(1) & \dots & F(t-1) \\ F(1) & F(2) & \dots & F(t) \\ \vdots & \vdots & \ddots & \vdots \\ F(t-1) & F(t) & \dots & F(2t-2) \end{bmatrix}}_{H_{0,t-1}} \begin{bmatrix} \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_{t-1} \end{bmatrix} = - \begin{bmatrix} F(t) \\ F(t+1) \\ \vdots \\ F(2t-1) \end{bmatrix}$$

Root-finding sensitive to perturbations in λ_j $\Lambda = z^t + \lambda_{t-1} z^{t-1} + \dots + \lambda_0 = 0$

Further challenge in Ben-Or/Tiwari algorithm

Recover multivariate terms in the target polynomial

Generalized eigenvalue reformulation (Golub, Milanfar, and Varah 1999)

$$H_{0,t-1} = \underbrace{\begin{bmatrix} 1 & \dots & 1 \\ b_1 & \dots & b_t \\ \vdots & \vdots & \vdots \\ b_1^{t-1} & \dots & b_t^{t-1} \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} c_1 & 0 & \dots & 0 \\ 0 & c_2 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & c_t \end{bmatrix}}_{D} \underbrace{\begin{bmatrix} 1 & b_1 & \dots & b_1^{t-1} \\ 1 & b_2 & \dots & b_2^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & b_t & \dots & b_t^{t-1} \end{bmatrix}}_{V^T}$$
$$\underbrace{\begin{bmatrix} F(1) & \dots & F(t) \\ \vdots & \ddots & \vdots \\ F(t) & \dots & F(2t-1) \end{bmatrix}}_{H_{1,t}} = VDBV^T \text{ with } B = \begin{bmatrix} b_1 & 0 & \dots & 0 \\ 0 & b_2 & \dots & 0 \\ 0 & \cdots & 0 & b_t \end{bmatrix}$$

 $V^{-1}H_{0,t-1}V^{-T} = D,$ $V^{-1}H_{1,t}V^{-T} = DB$ $\implies H_{1,t}v = bH_{0,t-1}v$ has solutions b_1, \dots, b_t for b. Univariate sparse interpolation via generalized eigenvalues

$$f(x) = \sum_{j=1}^{t} c_j x^{d_j}$$

$$\begin{bmatrix} f(p^0) & f(p) & \dots & f(p^{t-1}) \\ f(p) & f(p^2) & \dots & f(p^t) \\ \vdots & \vdots & \ddots & \vdots \\ f(p^{t-1}) & f(p^t) & \dots & f(p^{2t-2}) \end{bmatrix} v = z \underbrace{\begin{bmatrix} f(p) & f(p^{t+1}) & \dots & f(p^t) \\ f(p^2) & f(p^3) & \dots & f(p^{t+1}) \\ \vdots & \vdots & \ddots & \vdots \\ f(p^t) & f(p^{t+1}) & \dots & f(p^{2t-1}) \end{bmatrix}}_{H_{1,t}} v$$

- Solutions for $z: \tilde{b}_1, \tilde{b}_2, \dots, \tilde{b}_t$ approximate $p^{d_1}, p^{d_2}, \dots, p^{d_t}$.
- Obtain candidates for d_1, d_2, \dots, d_t from p and $\tilde{b}_1, \tilde{b}_2, \dots, \tilde{b}_t$. (There can be more than t candidates.)
- Compute \tilde{c}_j from a transpose Vandermonde system that is based on terms with exponents the candidates for d_1, d_2, \ldots, d_t . (For $H_{0,t-1}$ and $H_{1,t}$, the system can be as large as $2t \times 2t$.)

Multivariate case

$$f(x_1,...,x_n) = \sum_{j=1}^t c_j x_1^{d_{j,1}} \cdots x_n^{d_{j,n}}$$

Variable by variable (sometimes called "peeling method.")

- Interpolate one variable at a time via univariate interpolation.
- Numerically suspect?

Everything at once (numerically better)

• Evaluate each variable at powers of a primitive root of unity of orders that are relatively prime.

 $\omega_k^i = \exp(2\pi i/p_k)$ and $f(\omega_1^i, \dots, \omega_n^i)$ p_1, \dots, p_n relatively prime.

Recall: In the exact arithmetic, the original Ben-Or/Tiwari algorithm evaluate $f(p_1^i, \ldots, p_n^i)$ for p_1, \ldots, p_n relatively prime.

Require the number of terms (or an upper bound)

Binary search

Guess an upper bound $\tau \geq t$, double τ if fails.

Early termination heuristic

Cabay-Meleshko algorithm: a fast procedure estimates the condition number of a Hankel matrix $H_{0,N}$ for any N.

Simultaneous diagonalizations

The general eigenvalue reformulation can be applied to interpolation systems M, N containing:

 $F^{-1}MG^{-1} = \overline{D}, F^{-1}NG^{-1} = \overline{D}\overline{B}$ with $\overline{D}, \overline{B}$ diagonal.

Sparse interpolation in the Chebyshev basis

$$f(x) = \sum_{j=1}^{t} c_j T_{d_j}(x)$$
 with Chebyshev basis $T_k(x)$

 $a_i = f(T_i(p))$

$$HT = \begin{bmatrix} 2a_0 & 2a_1 & \dots & 2a_{t-1} \\ 2a_1 & a_2 + a_0 & \dots & a_t + a_{t-2} \\ \vdots & \vdots & \ddots & \vdots \\ 2a_{t-1} & a_t + a_{t-2} & \dots & a_{2t-2} + a_0 \end{bmatrix}$$

$$HT_{\uparrow} = \begin{bmatrix} 2a_1 & a_2 + a_0 & \dots & a_t + a_{t-2} \\ 2a_2 & a_3 + a_1 & \dots & a_{t+1} + a_{t-3} \\ \vdots & \vdots & \ddots & \vdots \\ 2a_t & a_{t+1} + a_{t-1} & \dots & a_{2t-1} + a_1 \end{bmatrix}$$

$$HT_{\downarrow} = \begin{bmatrix} 2a_1 & a_2 + a_0 & \dots & a_t + a_{t-2} \\ 2a_0 & 2a_1 & \dots & 2a_{t-1} \\ 2a_1 & a_2 + a_0 & \dots & a_t + a_{t-2} \\ \vdots & \vdots & & \vdots \\ 2a_{t-2} & a_{t-1} + a_{t-3} & \dots & a_{2t-3} + a_1 \end{bmatrix}$$

 $\frac{1}{2}(HT_{\uparrow} + HT_{\downarrow})v = zHTv$

- $T_{d_1}(p), \ldots, T_{d_t}(p)$ are solutions for z.
- For $-1 \le x \le 1$, $T_n(x) = \cos n\theta$ for $x = \cos \theta$. $\implies T_n(x) = \cos n(\arccos x)$ where $0 \le \arccos x \le \pi$

Sparse interpolation in factorial bases

$$f(x) = \sum_{j=1}^{t} c_j x^{\bar{d}_j}, \qquad x^{\bar{n}} = x(x+1)\cdots(x+n-1)$$
$$\Delta(f(x)) = f(x+1) - f(x)$$
$$f^{(i)}(x) = x\Delta(f^{(i-1)}(x)) = \sum_{j=1}^{t} d^i_j c_j x^{\bar{d}_j}, \quad p > 0$$

$$\underbrace{ \begin{bmatrix} f^{(0)}(p) & \dots & f^{(t-1)}(p) \\ \vdots & \ddots & \vdots \\ f^{(t-1)}(p) & \dots & f^{(2t-2)}(p) \end{bmatrix}}_{H_{0,t-1}}$$

$$\underbrace{\begin{bmatrix} f^{(1)}(p) & \dots & f^{(t)}(p) \\ \vdots & \ddots & \vdots \\ f^{(t)}(p) & \dots & f^{(2t-1)}(p) \end{bmatrix}}_{H_{1,t}}$$

$$H_{1,t}v = zH_{0,t-1}v$$

 d_1,\ldots,d_t are solutions for z.

- The case for the falling factorials can be derived similarly.
- The difference operator ∆ behaves in the same way as a derivative.