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In 1795, Gaspard Clair Franois Marie Riche de Prony gave a
two-step method for fitting sums of exponential functions.
It is closely related to the modern Ben-Or/Tiwari multivariate
sparse interpolation algorithm.

Essai expérimental et analytique sur
les lois de la dilatabilité et sur celles
de la force expansive de la vapeur
de l’eau et de la vapeur de l’alkool, à
diff’erentes températures.
J. de l’ École Polytechnique
1:24–76, 1795.

For a function f :R→R, and t ∈Z>0,
find ci, ai such that

f (x) =
t

∑
i=1

cie
aix



Sparse Interpolation with Ben-Or/Tiwari and Prony’s algorithms

de Prony Ben-Or/Tiwari
Interpolate: Interpolate:

f (x) = ∑t
i=1cieaix f (x1, . . . ,xn) = ∑t

i=1cix
d1,i
1 · · ·xdn,i

n

1. Solve λ j, i = 0, . . . , t−1: 1. Compute† the minimal Λ that
∑t−1

j=0λ j f (i + j) =− f (i + t) generates∗ { f (pi
1, . . . , pi

n)}2t−1
i=0

2. eai are zeros of 2. p
d1,i
1 · · · pdn,i

n are zeros of
Λ = zt +λt−1zt−1+ · · ·+λ0 Λ = zt +λt−1zt−1+ · · ·+λ0

3. Determine ci from eai 3. Determine ci from p
d1,i
1 · · · pdn,i

n

and evaluations of f and evaluations of f

† Berlekamp/Massey algorithm

∗ p1, . . . , pn distinct primes



Ben-Or/Tiwari Algorithm and Its Early Termination
•Compute minimal generator of linearly recurring sequence

f (p1, . . . , pn), f (p2
1, . . . , p2

n), . . . , f (pi
1, . . . , pi

n), . . .

by Berlekamp/Massey algorithm with distinct random p j.

In the Berlekamp/Massey algorithm:
The algorithm processes elements from a field, comput-
ing a “discrepancy” ∆ from the actual minimal polynomial.
When ∆ = 0 at i > 2L, with high probability the minimal
generator Λ(z) is determined and i = 2t + 1, where t the
number of terms in f .

•Recover non-zero terms in f by finding roots of Λ(z).
• Locate coefficients for non-zero terms in f .

See “Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel’s algo-

rithm” E. Kaltofen, W.-s. Lee, and A. A. Lobo. ISSAC 2000.



Under the standard power basis, this algorithm interpolates f
and is sensitive to the number of terms. Early termination is
based on the correctness of the algorithm when p j are evalu-
ated symbolically.

In f (x1, . . . ,xn) = ∑t
i=1cix

e1,i
1 · · ·xen,i

n , the support in powers of x j is
revealed as powers of p j as f evaluated at

X =




x1

x2
...
xn


 =




pi
1

pi
2
...
pi

n


, for i ≥ 1.



Polynomial Evaluations in Any Given Power Basis

When f (x1, . . . ,xn) = ∑t
i=1ciy

δ1,i
1 · · ·yδn,i

n , where




a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
... ... . . . ...

an,1 an,2 . . . an,n




︸ ︷︷ ︸
A




x1

x2
...
xn


+




s1

s2
...
sn




︸︷︷ ︸
S

=




y1

y2
...
yn




The support in powers of y j can be revealed if x j make y j be-
have as powers of p j. That is, f evaluated at x1, . . . ,xn such that




a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
... ... . . . ...

an,1 an,2 . . . an,n







x1

x2
...
xn


+




s1

s2
...
sn


 =




pi
1

pi
2
...
pi

n


, for i ≥ 1.



Sparse Interpolation Algorithm in Any Given Power Basis

• A power basis is given as A and S.

• Perform Ben-Or/Tiwari algorithm (its early termination) to

f (x1, . . . ,xn) evaluated at A−1




pi
1−s1

...
pi

n−sn


 for i ≥ 1.

Example: Interpolate f (x1,x2) in power basis of 2x1 + x2 + 1,
3x1+2x2−5: pick p1, p2 and perform Ben-Or/Tiwari on

f (2p1− p2−7,−3p1+2p2+13),
...

f (2pi
1− pi

2−7,−3pi
1+2pi

2+13),
...

Since A−1

[
pi

1−s1

pi
2−s2

]
=

[
2 −1
−3 2

][
pi

1−1
pi

2+5

]
=

[
2pi

1− pi
2−7

−3pi
1+2pi

2+13

]
.



Sparsest Shifts

For polynomial f in a power basis of y1, . . . , yn given as A and
S, [θ1, . . . ,θn]T is a sparsest shift if the number of terms τ is
minimized in

f (x1, . . . ,xn) =
τ

∑
i=1

ci(y1+θ1)δ1,i · · ·(yn+θn)δn,i.

Computing Sparsest Shifts in the Standard Power Basis

The case A = In, we leave [θ1, . . . , θn]T as symbols:




1 0 . . . 0
0 1 . . . 0
... ... . . . ...
0 0 . . . 1







x1

x2
...
xn


+




θ1

θ2
...

θn


 =




pi
1

pi
2
...
pi

n


, for i ≥ 1.



Perform the fraction-free Berlekamp/Massey algorithm on

f (p1−θ1, . . . , pn−θn), . . . , f (pi
1−θ1, . . . , pi

n−θn), . . .

The fraction-free Berlekamp/Massey algorithm:
This algorithm processes elements from an integral do-
main. Now the “discrepancies” ∆(θ1, . . . ,θn) are polyno-
mials in θ1, . . . ,θn. We find the first (θ1, . . . ,θn) such that
∆(s1, . . . ,sn) = 0 at i > 2L, which occurs at i = 2τ +1. A
sparsest shift will force the sparse interpolation termi-
nate in its shifted power basis.

When f ∈ Q[x], we have efficient probabilistic algorithm that
can interpolate f and compute θ at the same time, that is, f is
interpolated with respect to a sparsest shifted power basis.

See “Algorithms for computing the sparsest shifts for polynomials via the Berlekamp/Massey

algorithm” M. Giesbrecht, E. Kaltofen, and W.-s. Lee. To appear, ISSAC 2002.



Computing Sparsest Shifts in Any Given Power Basis

• A power basis is given as A and S= [s1, . . . , sn]T.

• Perform the fraction-free Berlekamp/Massey algorithm on
f (x1, . . . ,xn) evaluated at

A−1




pi
1−s1−θ1

pi
2−s2−θ2

...
pi

n−sn−θn


 for i ≥ 1,

and find the first (θ1, . . . ,θn) such that

∆(θ1, . . . ,θn) = 0 and i > 2L.



The Sparsifying Linear Transforms

For polynomial f , A is a sparsifying linear transform if
AX = Y = [y1, . . . , yn]T and f (x1, . . . ,xn) = g(y1, . . . ,yn),

where g is sparse.

Assume A = [ai, j]ni, j=1 non-singular, and leave ai, j as symbols.
In general, if we evaluate f at

A−1




pi
1

pi
2
...
pi

n


 for i ≥ 0,

the symbolic ai, j could appear in the denominator of a rational
function. Instead of the fraction-free Berlekamp/Massey algo-
rithm, we need to apply the original BM algorithm which could
cause extreme intermediate expression swell.



Whenever detA is a value in the coefficient domain, the fraction-
free Berlekamp/Massey algorithm can still be employed. Espe-
cially if A is triangular with all diagonals 1:




1 ∗ . . . ∗
0 1 . . . ∗
... ... . . . ...
0 . . . 0 1


 or




1 0 . . . 0
∗ 1 . . . 0
... ... . . . ...
∗ . . . ∗ 1


.

Interesting Cases To Consider:

• A is banded.

• The entries of A are integers or rational numbers.

• A does not have full rank.


