## Early Termination Strategies in Sparse Interpolation Algorithms

## Wen-shin Lee North Carolina State University www.wen-shin.com



# July 10, 2001

## Black box polynomial interpolation



What if  $f(x_1, \ldots, x_n)$  is sparse?

Zippel's probabilistic interpolation.

- $\bigcirc$  Interpolate variable by variable.
- $\bigcirc$  Sensitive to the sparsity in the multivariate case.
- Still interpolates each variable densely.
- $\bigcirc$  Needs an upper bound for the degree in each variable.
- $\bigcirc$  Does not need a large modulus.  $O(\max_i \deg(f(x_i)))$

# Ben-Or's/Tiwari's deterministic algorithm.

- ☑ Interpolate all variables at once.
- Sensitive to the sparsity of the the target polynomial.
- $\bigcirc$  Needs an upper bound for the number of terms.
- Solution Might need a very large modulus.  $O(\max_{\mathbf{e}} p_1^{e_1} \cdots p_n^{e_n}), p_i$ the *i*-th prime,  $e_i = \deg(f(x_i))$ .

# Early termination strategy



What if *an upper bound of degree* and *an upper bound of the number of terms* of the target polynomial are *not known*?

# • Guess and check.

And double the guess if fails.

## • Early termination strategy.

Interpolate the polynomial at a random point, when the polynomial stops changing, it is done with high probability.

Why early termination?

- Save time and space.
- A useful tool for controlling intermediate expression swell in computer algebra.
- Sensitive to the sparsity of the target polynomial without knowing any bounds on degree or number of terms.

Early termination in Newton interpolation (12–16)

• Interpolate f(x) on a sequence of random values:

 $p_0, p_1, p_2, \ldots, p_i, \ldots$ 

• Threshold  $\eta$  can improve the probability of correctness.

f(x) is interpolated with respect to the mixed power base: 1,  $(x - p_0)$ ,  $(x - p_0)(x - p_1)$ , ... Early termination in Ben-Or/Tiwari algorithm (24–33)

- Perform the Berlekamp/Massey algorithm on  $f(p), f(p^2), f(p^3), \dots, f(p^i), \dots$  with p random.
- Recover the terms and coefficients.
- Threshold ζ can improve the probability, but its analysis is complicated.

f(x) is interpolated with respect to the power base: 1, x,  $x^2$ ,  $x^3$ , ... in the univariate case. Early termination in sparse Pochhammer interpolation (37-43)

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1)$$
$$f(x) = \sum_{j=1}^{t} c_j x^{\overline{e}_j}$$
$$f^{(i)}(x) = \sum_{j=1}^{t} e_j^i c_j x^{\overline{e}_j}$$

• Perform the Berlekamp/Massey algorithm on

 $f^{(0)}(p), f^{(1)}(p), f^{(2)}(p), \dots, f^{(i)}(p), \dots$  with p random,  $f^{(i)}(p)$  can be obtained from  $f(p), f(p+1), \dots, f(p+i)$ . • Recover  $x^{\overline{e}_j}$  and  $c_j$ .

 Threshold ζ can improve the probability, but its analysis is complicated. Early termination in sparse Chebyshev interpolation (46–59)

$$T_0(x) = 1, \quad T_1(x) = x$$
  
 $i \ge 2: \quad T_i(x) = 2xT_{i-1}(x) - T_{i-2}(x)$   
 $f(x) = \sum_{j=1}^t c_j T_{\delta_j}(x)$ 

• With *p* random and  $a_i = f(T_i(p))$ , solve the first

$$\begin{bmatrix} 2a_0 & 2a_1 & \dots & 2a_t \\ 2a_1 & a_2 + a_0 & \dots & a_{t+1} + a_{t-1} \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 2a_t & a_{t+1} + a_{t-1} & \dots & a_{2t} + a_0 \end{bmatrix} \begin{bmatrix} \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_{t-1} \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \lambda_{t-1} \\ 1 \end{bmatrix}$$

• Recover  $T_{\delta_j}(x)$  and  $c_j$  from  $\Lambda(z) = z^t + \lambda_{t-1} z^{t-1} + \cdots + \lambda_0$ .

#### Solve a symmetric Toeplitz-plus-Hankel matrix in quadratic time

Any deterministic quadratic time algorithm requires:

all principal leading submatrices nonsingular, which means for  $f(x) = \sum_{j=1}^{t} c_j T_{\delta_j}(x)$  with  $1 \le i \le t$ , it is necessary

 $c_1 + \cdots + c_i \neq 0$ 

#### Fix with randomization (50–51)

Pick a random  $p_c$  and consider  $f(x) + p_c = \sum_{j=1}^t \tilde{c}_j T_{\tilde{\delta}_j}(x)$ : for *i* with  $1 \le i \le t$ , it is correct with high probability  $\tilde{c}_1 + \cdots + \tilde{c}_i \ne 0$ 

Interpolate  $f(x) + p_c$  and remove  $p_c$  at the end.

Early termination in racing algorithms (60-75)



Newton v.s. sparse Pochhammer:

 $f(p), f(p+1), \ldots, f(p+i), \ldots$ 

Newton v.s. sparse Chebyshev:

 $f(T_0(p)), f(T_1(p)), \ldots, f(T_i(p)), \ldots$ 

Embed the racing algorithms into Zippel's algorithm (83–85)

 $\bigcirc$  Univariate interpolations within Zippel can also be sparse.

 $\bigcirc$  Reduce the magnitude of the modulus needed for the recovery of all the terms.  $O(\max_{\mathbf{e}} p_1^{e_1} \cdots p_n^{e_n}) \longrightarrow O(\max_{e_i} 2^{e_i})$ 

# My 7 original contributions

- 1. Early termination proved for sparse Pochhammer interpolations
- 2. Early termination proved for sparse Chebyshev interpolations
- 3. The complications for Chebyshev bases in a symmetric Hankel-plus-Toeplitz matrix solver are eliminated with randomization
- 4. Early termination proved for racing algorithms
- 5. Thresholds
- 6. Maple implementation, *ProtoBox*
- 7. Early termination in sparse shifts

## Sparse shifts for polynomials

For univariate polynomials (Lakshman and Saunders)

- Need  $f(x) = \sum_{i=0}^{d} c_i x^i$ , its first  $2\tau$  derivatives, and an upper bound  $\tau$  for the number of terms in the sparse shift.
- Need to evaluate f(x) and its first  $2\tau$  derivatives at 2 points for a total of  $4\tau + 2$  evaluations.

Grigoriev and Lakshman extended to multivariate polynomials.

Early termination in sparse shifts for black box polynomials

f(x) is given as a black box polynomial, without

- its derivatives
- $\bullet$  an upper bound  $\tau$  for the number of terms in the sparse shift

Let *t* be the number of terms in a sparsest shift of f(x). After  $2t + \zeta$  black box evaluations,

$$f(x) = \sum_{i=1}^{t} \tilde{c}_i (x + \alpha)^{\delta_i}$$

is returned with high probability.

Recall the early termination of Ben-Or/Tiwari algorithm

For a given black box polynomial f

- Pick a random *p*.
- Perform the Berlekamp/Massey algorithm on  $f(p), f(p^2), f(p^3), \ldots$ 
  - Whenever the early termination condition is satisfied, that is,  $\Delta = 0$  when 2L < r and 1 < r, the roots of  $\Lambda(z)$  correspond to the terms in *f* with high probability.
- Recover the terms from  $\Lambda(z)$ .
- Determine the coefficients from the recovered terms.

The trick for early termination in the sparse shifts

Write down what we do not know: the sparsest shift  $\alpha$ 

- Then the sparsest shift is  $f(x) = \sum_{i=1}^{t} \tilde{c}_i (x + \alpha)^{\delta_i}$ .
- Consider  $y = x + \alpha$  and  $g(\alpha, y) = f(y \alpha)$  as follows:  $g(\alpha, y) = f(y - \alpha) = \sum_{i=1}^{t} \tilde{c}_i y^{\delta_i}, \quad \tilde{c}_i \in \mathbb{K}[\alpha]$
- When  $g(\alpha, y)$  evaluated at y = p,  $g(\alpha, p) \in \mathbb{K}[\alpha]$ .

# Perform the Berlekamp/Massey algorithm on polynomials

| Early termination in sparse shifts                                                                                                                                     | Early termination in<br>Ben-Or/Tiwari                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| • At a random <i>p</i> , perform<br>the Berlekamp/Massey<br>algorithm on<br>$g(\alpha, p), g(\alpha, p^2), g(\alpha, p^3),$<br>$\Delta(\alpha) \in \mathbb{K}[\alpha]$ | • At a random $p$ , perform<br>the Berlekamp/Massey<br>algorithm on<br>$f(p), f(p^2), f(p^3),$<br>$\Delta \in \mathbb{K}$ |
| • Find the first $\alpha \in \mathbb{K}$ such that $\Delta(\alpha) = 0$<br>when $2L < r$ and $1 < r$                                                                   | • Early termination:<br>the first $\Delta = 0$<br>when $2L < r$ and $1 < r$                                               |

#### How to find $\alpha$ efficiently?

Sectorize  $\Delta(\alpha)$ 2*t*+1 black box probes: until  $\Delta_{2t+1}(\alpha)$ 

 $\bigcirc$  Compute the GCD of  $\Delta_i(\alpha)$  and  $\Delta_{i+1}(\alpha)$ 2t + 2 black box probes: until  $GCD(\Delta_{2t+1}(\alpha), \Delta_{2t+2}(\alpha))$ 

# $\bigcirc$ Compute the GCD of $\Delta_i(0)$ and $\Delta_{i+1}(0)$ ?



**Under construction**