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Black box polynomial interpolation

Black box polynomial f

p1; : : : ; pn 2 K f (p1; : : : ; pn) 2 K

                          Interpolation   

f (x1; : : : ;xn) 2 K[x1; : : : ;xn]
What if f (x1; : : : ;xn) is sparse?



Zippel’s probabilistic interpolation.

Interpolate variable by variable.

Sensitive to the sparsity in the multivariate case.

Still interpolates each variable densely.

Needs an upper bound for the degree in each variable.

Does not need a large modulus. O(maxi deg( f (xi))

Ben-Or’s/Tiwari’s deterministic algorithm.

Interpolate all variables at once.

Sensitive to the sparsity of the the target polynomial.

Needs an upper bound for the number of terms.

Might need a very large modulus. O(maxe pe1
1 � � � p

en
n ), pi

the i-th prime, ei = deg( f (xi)).



Early termination strategy

degree?

number of terms?

What if an upper bound of degree and an upper bound of
the number of terms of the target polynomial are not known?

�Guess and check.

And double the guess if fails.

� Early termination strategy.

Interpolate the polynomial at a random point, when the
polynomial stops changing, it is done with high probability.



Why early termination?
� Save time and space.

� A useful tool for controlling intermediate expression swell in
computer algebra.

� Sensitive to the sparsity of the target polynomial without know-
ing any bounds on degree or number of terms.



Early termination in Newton interpolation (12–16)
� Interpolate f (x) on a sequence of random values:

p0; p1; p2; : : : ; pi; : : :

� Threshold η can improve the probability of correctness.

f (x) is interpolated with respect to the mixed power base:

1; (x� p0); (x� p0)(x� p1); : : :



Early termination in Ben-Or/Tiwari algorithm (24–33)
� Perform the Berlekamp/Massey algorithm on

f (p); f (p2); f (p3); : : : ; f (pi); : : : with p random.

�Recover the terms and coefficients.

� Threshold ζ can improve the probability, but its analysis is
complicated.

f (x) is interpolated with respect to the power base:

1; x; x2; x3; : : : in the univariate case.



Early termination in sparse Pochhammer interpolation (37–43)

xn = x(x+1) � � �(x+n�1)

f (x) = ∑t
j=1cjxej

f (i)(x) = ∑t
j=1ei

jcjxej

� Perform the Berlekamp/Massey algorithm on

f (0)(p); f (1)(p); f (2)(p); : : : ; f (i)(p); : : : with p random,

f (i)(p) can be obtained from f (p); f (p+1); : : : ; f (p+ i).

�Recover xej and cj.

� Threshold ζ can improve the probability, but its analysis is
complicated.



Early termination in sparse Chebyshev interpolation (46–59)

T0(x) = 1; T1(x) = x

i � 2 : Ti(x) = 2xTi�1(x)�Ti�2(x)

f (x) = ∑t
j=1cjTδ j(x)

�With p random and ai = f (Ti(p)), solve the first2
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�Recover Tδ j(x) and cj from Λ(z) = zt +λt�1zt�1+ � � �+λ0.



Solve a symmetric Toeplitz-plus-Hankel matrix in quadratic time

Any deterministic quadratic time algorithm requires:

all principal leading submatrices nonsingular, which means
for f (x) = ∑t

j=1cjTδ j(x) with 1� i � t, it is necessary

c1 + � � � + ci 6= 0

Fix with randomization (50–51)

Pick a random pc and consider f (x)+ pc = ∑t
j=1 c̃jTδ̃ j

(x):

for i with 1� i � t, it is correct with high probability

c̃1 + � � � + c̃i 6= 0

Interpolate f (x)+ pc and remove pc at the end.



Early termination in racing algorithms (60–75)

Newton v.s. Ben-Or/Tiwari:
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Newton v.s. sparse Pochhammer:

f (p); f (p+1); : : : ; f (p+ i); : : :
Newton v.s. sparse Chebyshev:

f (T0(p)); f (T1(p)); : : : ; f (Ti(p)); : : :



Embed the racing algorithms into Zippel’s algorithm (83–85)

Univariate interpolations within Zippel can also be sparse.

Reduce the magnitude of the modulus needed for the recov-
ery of all the terms. O(maxe pe1

1 � � � p
en
n )�!O(maxei 2

ei)



My 7 original contributions

1. Early termination proved for sparse Pochhammer interpo-
lations

2. Early termination proved for sparse Chebyshev interpola-
tions

3. The complications for Chebyshev bases in a symmetric
Hankel-plus-Toeplitz matrix solver are eliminated with ran-
domization

4. Early termination proved for racing algorithms

5. Thresholds

6. Maple implementation, ProtoBox

7. Early termination in sparse shifts



Sparse shifts for polynomials

For univariate polynomials (Lakshman and Saunders)

�Need f (x) = ∑d
i=0cixi, its first 2τ derivatives, and an upper

bound τ for the number of terms in the sparse shift.

�Need to evaluate f (x) and its first 2τ derivatives at 2 points
for a total of 4τ+2 evaluations.

Grigoriev and Lakshman extended to multivariate polynomials.



Early termination in sparse shifts for black box polynomials

f (x) is given as a black box polynomial, without

� its derivatives

� an upper bound τ for the number of terms in the sparse shift

Let t be the number of terms in a sparsest shift of f (x). After
2t +ζ black box evaluations,

f (x) =
t

∑
i=1

c̃i(x+α)δi

is returned with high probability.



Recall the early termination of Ben-Or/Tiwari algorithm

For a given black box polynomial f

� Pick a random p.

� Perform the Berlekamp/Massey algorithm on
f (p), f (p2), f (p3), : : : .

– Whenever the early termination condition is satisfied, that
is, ∆ = 0 when 2L < r and 1 < r, the roots of Λ(z) corre-
spond to the terms in f with high probability.

�Recover the terms from Λ(z).

�Determine the coefficients from the recovered terms.



The trick for early termination in the sparse shifts

Write down what we do not know: the sparsest shift α

� Then the sparsest shift is f (x) = ∑t
i=1 c̃i(x+α)δi:

�Consider y= x+α and g(α;y) = f (y�α) as follows:

g(α;y) = f (y�α) =

t

∑
i=1

c̃iy
δi; c̃i 2 K [α]

�When g(α;y) evaluated at y= p, g(α; p) 2 K [α].



Perform the Berlekamp/Massey algorithm on polynomials

Early termination in Early termination in
sparse shifts Ben-Or/Tiwari

� At a random p, perform � At a random p, perform
the Berlekamp/Massey the Berlekamp/Massey
algorithm on algorithm on
g(α; p), g(α; p2), g(α; p3), : : : f (p), f (p2), f (p3), : : :

∆(α) 2 K [α] ∆ 2 K

� Find the first α 2 K such � Early termination:
that ∆(α) = 0 the first ∆ = 0
when 2L < r and 1< r when 2L < r and 1< r



How to find α efficiently?

Factorize ∆(α)

2t +1 black box probes: until ∆2t+1(α)

Compute the GCD of ∆i(α) and ∆i+1(α)

2t +2 black box probes: until GCD(∆2t+1(α);∆2t+2(α))

Compute the GCD of ∆i(0) and ∆i+1(0)

?

???

Under construction


