
Early Termination in Ben-Or/Tiwari Sparse Interpolation
and a Hybrid of Zippel’s Algorithm*

Erich Kaltofen1 Wen-shin Lee1 Austin A. Lobo2
1Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205

{kaltofen,wlee1}@math.ncsu.edu; http://www.kaltofen.net; http://www.wen-shin.com

2Dept. of Mathematics and Computer Science, Washington College, Chestertown, Maryland 21620
austin.lobo@washcoll.edu; http://www.austin.lobo.washcoll.edu/

1. INTRODUCTION
Interpolation algorithms whose computational complexities
are sensitive to the sparsity of their target polynomials are
one of the major contributions of computer algebra to com-
puter science and mathematics. The first such result was
obtained by Richard Zippel in 1979 [21]. Zippel’s algorithm
is efficient in the multivariate case when the polynomial to
be interpolated has much fewer non-zero monomials than a
variable by variable Lagrange or Newton interpolation al-
gorithm would attempt to find. Zippel’s algorithm is still
a variable by variable interpolation method and requires
randomization. In 1988 Michael Ben-Or and Prasoon Ti-
wari gave a different algorithm [1] that is based the Berle-
kamp/Massey algorithm from coding theory. Their algo-
rithm is not variable by variable and works equally well for
sparse univariate polynomials. In its original form, it does
not require randomization, but for its correctness it must be
given an upper bound for the number of terms in the target
polynomial.

Since then, both approaches have been generalized and im-
proved. The Vandermonde techniques of Ben-Or and Ti-
wari can be applied to Zippel’s algorithm [22, 11]. Laksh-
man Y. N., B. David Saunders, and Dima Yu. Grigoriev
extended the Ben-Or/Tiwari approach to sparsity with re-
spect to non-standard polynomial bases, such as Chebyshev
bases and shifted bases [14, 8, 15]. For polynomials over
small finite fields both Zippel’s and Ben-Or’s and Tiwari’s
algorithms require modification [7; 20, and the references
given there]. Both Zippel’s and Ben-Or’s and Tiwari’s inter-
polation algorithms have been implemented by several au-
thors on both single and multi-processor computers, among
them [10, 17, 4].

∗
This material is based on work supported in part by the National Sci-

ence Foundation under Grant Nos. CCR-9712267 and DMS-9977392
(Kaltofen and Lee) and Grant No. INT-9726763 (Kaltofen and Lobo).
Version 4/24/2001 (17:8).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage, and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ISSAC 2000,St. Andrews, Scotland
c©2000 ACM 1-58113-218-2/ 00/ 0008 $5.00

In this paper we revisit the original two algorithms. Zippel’s
algorithm has a shortcoming over Ben-Or’s and Tiwari’s in
that it proceeds one variable at a time, and each new variable
is interpolated densely. Ben-Or’s and Tiwari’s algorithm re-
quires knowledge of an upper bound of the number of terms,
and probes the target polynomial twice as many times. Fur-
thermore, when implementing Ben-Or’s and Tiwari’s algo-
rithm [10] in a modular fashion, in the multivariate case to
our knowledge the modulus must be large enough for recov-
ery of all terms evaluated at prime numbers. For univariate
polynomials there are special tricks that reduce the size of
the modulus. We note that implementation of Ben-Or’s and
Tiwari’s algorithm with rational number arithmetic causes
extreme intermediate expression swell. On the other hand,
in Zippel’s algorithm the modulus only needs to capture
the coefficients, and the number of residues must be large
enough for randomization. Furthermore, it adaptively de-
termines the term structure of the polynomial.

The main innovations in our new algorithm are two-fold.
First, we show that Ben-Or’s and Tiwari’s algorithm can
be made to adapt to the term number as well. The key
fact comes as a theorem: when choosing random evaluation
points, a zero discrepancy in the Berlekamp/Massey substep
indicates that the term bound has been reached, that with
high probability. We call this phenomenon early termina-
tion, borrowed from our idea in the setting of the Wiede-
mann algorithm [19]. For multivariate polynomials, the re-
quired size of the modulus would still remain quite large.
Therefore, we revert back to Zippel’s algorithm, but now
implement each univariate polynomial interpolation as the
early termination version of the Ben-Or/Tiwari algorithm.
Thus is the genesis of the hybrid Ben-Or/Tiwari/Zippel al-
gorithm.

Zippel’s algorithm, the early termination version of Ben-
Or’s and Tiwari’s algorithm and the hybrid algorithm are all
randomized in the Monte Carlo sense, i.e, their results are
correct with high probability. We do not know how to verify
the answer. Therefore, in our implementation, we adopt the
strategy of putting additional partial verification computa-
tions into our procedure. For example, early termination
is only triggered after encountering a series of discrepancies
that are repeatedly zero. The length of the series is a thresh-
old that is given as an optional argument to the procedure.
Although we have proven that the early termination strat-

192

egy is probabilistically correct for threshold one, we note
that higher thresholds weed out bad random choices from
sets that are much smaller than the early termination theo-
rem would require. The algorithm then becomes a heuristic
that can interpolate polynomials of a size at the very edge
of what current software and hardware can reach.

Finally, we may perform univariate Newton interpolation
at the same points that the univariate Ben-Or/Tiwari algo-
rithm uses, thus requiring no additional probes of the tar-
get polynomial. This leads us to implement a race between
the two algorithms, and “early-terminate” the Newton in-
terpolation part as soon as the interpolating polynomial has
stabilized, again for threshold many new points. By simul-
taneous use of Newton interpolation one not only obtains a
dense univariate result from fewer evaluations, but one may
also cross-check a sparse Ben-Or/Tiwari answer for degree
consistency with the partial Newton interpolant.

We have implemented our ideas in Maple V.5 as a black
box polynomial sparse interpolation over the integers mod-
ulo a prime number. We use term pruning via homoge-
nization as described in [4]. We present the performance of
our implementation on a series of benchmark polynomials
by comparing the number of black box probes required to
those in the previous algorithms. Clearly, there is a trade-
off between the additional arithmetic operations introduced
by using two univariate interpolation algorithms inside Zip-
pel’s and the savings of probes of the target polynomial.
We intend our algorithm for polynomials produced by the
calculus of black box polynomial [13, 4]. Nonetheless, the
usage of early termination Ben-Or/Tiwari inside Zippel is
more efficient for many sparse inputs.

2. THE BEN-OR/TIWARI INTERPOLA-
TION ALGORITHM AND ITS EARLY
TERMINATION

2.1 The Berlekamp/Massey algorithm
For later reference, we shall give the Berlekamp/Massey al-
gorithm [16]. The algorithm processes a stream of elements
a0, a1, . . . ∈ K, where K is an arbitrary field. If the se-
quence has a linear generator Λ(z) = zt−λt−1z

t−1−· · ·−λ0

of degree t, meaning that for all j ≥ 0 we have at+j =
λt−1at+j−1 + · · · + λ0aj , the algorithm will compute it af-
ter processing 2t elements from the stream. The stream is
unbounded, however, and the algorithm can update the cur-
rent guess for the linear generator appropriately whenever
the next stream element ai does not fit the current linear
recursion. In that case a non-zero discrepancy is detected.
There are two updates, one where the generator jumps in
degree (Step 3 below) and one where the lower order coef-
ficients of the generator get adjusted (Step 4 below). Note
that the algorithm computes the reverse of the generator
polynomial.

The Berlekamp/Massey algorithm

Input: a0, a1, . . . ∈ K

1. (Initialization.)
Λ0 ← 1; B0 ← 0; L0 ← 0; ∆ ← 1;
For r = 1, 2, . . . Do

2. (First, we compute the discrepancy ∆r, assuming

Λr−1(z) = λ0z
s + λ1z

s−1 + · · ·+ λs,

where s = deg Λr−1 and λ0, . . . , λs ∈ K with λ0 6= 0;
note that we always have λs = 1.)
∆r ← λsar−1 + λs−1ar−2 + · · ·+ λ0ar−s−1;
If ∆r = 0 then Λr ← Λr−1; Br ← zBr−1; Lr ← Lr−1;

3. If ∆r 6= 0 and 2Lr−1 < r then

Br ← Λr−1; Λr ← Λr−1 − (∆r/∆) · zBr−1;
Lr ← r − Lr−1; ∆ ← ∆r;

4. If ∆r 6= 0 and 2Lr−1 ≥ r then

Λr ← Λr−1 − (∆r/∆) · zBr−1; Br ← zBr−1;
Lr ← Lr−1;

End For;
End.

2.2 The Ben-Or/Tiwari algorithm
Let f be a multivariate polynomial, mj its distinct terms,
t the number of terms, and cj the corresponding non-zero
coefficients:

f(x1, . . . , xn) =
t∑

j=1

cjx
ej,1
1 · · ·xej,n

n =
t∑

j=1

cjmj cj 6= 0.

Let bj = p
ej,1
1 · · · pej,n

n , where pi are values from the coeffi-
cient domain to be specified later, and let

ai = f(pi
1, . . . , p

i
n) =

t∑
j=1

cjb
i
j .

Now define an auxiliary polynomial Λ(z) as following:

Λ(z) =
t∏

j=1

(z − bj) = zt + λt−1z
t−1 + · · ·+ λ0.

Theorem 1. For i ≥ 0, ai = f(pi
1, . . . , p

i
n), the sequence of

{ai}i≥0 is linearly generated by the polynomial Λ(z). Fur-
thermore, Λ(z) is the minimal polynomial of {ai}i≥0 [1].

In subsection 2.1 we give the Berlekamp/Massey algorithm
that computes Λ(z) from {ai}i≥0. We obtain the evaluated
terms bj by finding the roots of Λ(z). We then need to
recover each mj = x

ej,1
1 · · ·xej,n

n from bj . If the values pi

are consecutive prime numbers and evaluation is done over
a coefficient field of characteristic zero, we can do this by
repeatedly dividing bj by p1, . . . , pn. Finally, we need to
determine all the corresponding coefficients cj of mj in order
to complete the interpolation of f . We do this by solving
a t × t linear system for the coefficients, ai =

∑t
j=1 cjb

i
j

with 0 ≤ i ≤ t − 1. This turns out to be a transposed
Vandermonde system:

1 1 . . . 1
b1 b2 . . . bt

b2
1 b2

2 . . . b2
t

...
...

. . .
...

bt−1
1 bt−1

2 . . . bt−1
t

c1

c2

c3

...
ct

=

a0

a1

a2

...
at−1

. (1)

Efficient algorithms for solving transposed Vandermonde sys-
tems can be found in [11, 22].

193

The Ben-Or/Tiwari interpolation algorithm

Input: f : a multivariate black box polynomial.

τ : τ ≥ t, t is the number of terms in f .

Output: cj and mj: f =
∑t

j=1 cjmj

1. (The Berlekamp/Massey algorithm)
ai = f(pi

1, . . . , p
i
n), 0 ≤ i ≤ τ . where pi is the i-th prime.

Compute Λ(z) from {ai}τ≥i≥0.

2. (Determine mj)
Find all t distinct roots of Λ(z), bj.
Determine all mj: repeatedly divide every bj by p1, . . . , pn.

3. (Compute cj as described above.)
Solve a transposed Vandermonde system.
End.

2.3 Early termination
Both the Ben-Or/Tiwari [1] and the Kaltofen et al. [10] al-
gorithms need to know the number of terms, t, or an upper
bound τ , τ ≥ t. Otherwise, we can guess t, compute a
sparse candidate polynomial g for f , and if there is no fail-
ure in finding the roots of Λ (which happens most of the
times), compare g and f at an additional random point. If
the values are different, one can double the guess for t. The
algorithm is randomized in the Monte Carlo sense.

Based on the strategy of “early termination,” we present a
more efficient probabilistic approach, which requires a sin-
gle interpolation run. The idea is simple: pick random point
coordinates pk for the Ben-Or/Tiwari algorithm and show
that with high probability the embedded Berlekamp/Massey
algorithm of subsection 2.1 does not encounter a zero dis-
crepancy ∆ (in step 2 for the case that 2L < r,∗ i.e., by
which would be divided in step 3 if the discrepancy were
non-zero) until r > 2t. However, we cannot claim this is
generally true. For a polynomial f(x) =

∑t
j=1 cjx

ej that

satisfies f(p0) = a0 = c1 + · · ·+ ct = 0, the first discrepancy
∆1 = 0. Yet, by shifting the sequence by 1 element, the early
termination property can be proved (with high probability).

We first prove that for symbolic values, namely the variables
x1, . . . , xn, the first zero discrepancy (for 2L < r) appears
at r = 2t + 1. Let βj = x

ej,1
1 · · ·xej,n

n be the j-th non-zero
term in f , and let αi = f(xi

1, . . . , x
i
n). We have

Ai =

α2i−1 α2i−2 . . . αi

α2i−2 α2i−3 . . . αi−1

...
...

. . .
...

αi αi−1 . . . α1

 (2)

= BiCtB̄Tr
i , (3)

where

Bi =

βi−1
1 βi−1

2 . . . βi−1
t

βi−2
1 βi−2

2 . . . βi−2
t

...
...

. . .
...

1 1 . . . 1

 , Ct =

c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . ct

∗Clearly, the shift register length is stored in a single integer
variable without a subscript.

and

B̄i =

βi
1 βi

2 . . . βi
t

βi−1
1 βi−1

2 . . . βi−1
t

...
...

. . .
...

β1 β2 . . . βt

 .

The singularity of the Hankel matrix Ai (2) is directly re-
lated to the vanishing of discrepancies when computing a
linear generator of α1, α2, . . . by the Berlekamp/Massey al-
gorithm. The argument makes use of the interpretation of a
Berlekamp/Massey algorithm as the extended Euclidean al-
gorithm on the polynomials F−1 = XN and F0 = α1X

N−1+
α2X

N−2 + · · · [5] combined with the fundamental theorem
on subresultants [2]. Here N is the number of elements that
are considered for determining the linear generator. Dorn-
stetter shows that ∆r in Step 3 of the Berlekamp/Massey
algorithm of subsection 2.1 is the leading coefficient in a re-
mainder, Fi, in a polynomial remainder sequence (PRS) of
F−1 and F0. The discrepancies in Step 4 are the trailing
coefficients in Fi. Step 2 processes both trailing coefficients
that are zero and the search for the non-zero leading coef-
ficient of the next remainder. The former can be diagnosed
by the shift-register length 2L ≥ r. The remainder polyno-
mials Fi in the PRS, which yields the polynomials Br and
Λr at 2L = r as the reverse polynomials of the consecutive
Bezout coefficients Ti−1 and Ti in the extended Euclidean
scheme Fi = SiF−1 + TiF0 ≡ TiF0 (mod XN), are adjusted
by non-zero scalar multipliers, namely −∆r/∆ of Step 3.
Dornstetter’s analysis yields the following fact.

Fact 1. If the PRS is normal, i.e., deg(Fi) = deg(Fi−1)−
1 = N − i − 1, where i ≥ 0, then ∆r 6= 0 whenever 2L < r
and L < t, where t is the degree of the linear generator.

Appealing now to the fundamental theorem of subresultants,
the PRS is normal if and only if the leading coefficient of the
N − i−1’st subresultant of F−1 and F0 does not vanish. By
definition [2], this is the determinant of a (2i + 1)× (2i + 1)
matrix shown in figure 1.

det

1 0 · · · 0 0
. . .

. . .
...

1 0
. . .

...
0 · · · 1 0 · · · 0
α1 · · · αi αi+1 α2i+1

. . .

α1

...
. . .

...

. . .

0 0 α1 · · · αi+1

= ± det(Ai+1).

Figure 1: Subresultant coefficient

The early termination strategy is correct (for symbolic eval-
uations) if the determinant of Ai is non-zero. This is our
next theorem.

194

Theorem 2. The determinant of Ai is non-zero.

Proof: Let MJ,K be the determinant of the submatrix of M
consisting of the rows listed in the set J and the columns
listed in the set K. The Binet-Cauchy formula [6] states for
a matrix product AB that

(AB)J,L =
∑

1≤k1<k2<···<ki≤n

AJ,{k1,...,ki}B{k1,...,ki},L, (4)

where n is the number of columns of A and J and L are sets
of row and column indices with i elements each. Applying
(4) to (3) with I = {1, . . . , i} we have

det(Ai) = (BiCtB̄Tr
i)I,I

=
∑

J

∑
K

(Bi)I,J(Ct)J,K(B̄Tr
i)K,I

=
∑

J

(Bi)I,J(Ct)J,J(B̄Tr
i)J,I

=
∑

J={j1,...,ji}
cj1 · · · cji βj1βj2 . . . βji

· det
(

βi−1
j1

βi−1
j2

. . . βi−1
ji

βi−2
j1

βi−2
j2

. . . βi−2
ji

...
...

. . .
...

1 1 . . . 1

)2

=
∑

J={j1,...,ji}
cj1 · · · cji βj1βj2 . . . βji

·
∏

1≤v<u≤i

(βju − βjv)2. (5)

Now let the terms β1 Â β2 Â · · · Â βt be ordered lexico-
graphically. Then the summand

c1 · · · ci β1β2 . . . βi

∏
1≤v<u≤i

(βv − βu)2

has the term

β2i−1
1 β2i−3

2 · · ·βi

which occurs nowhere else,† hence det(Ai) does not vanish.
£

We make the transition from symbolic point coordinates
x1, . . . , xn to random field elements p1, . . . , pn in the cus-
tomary fashion via the the Schwartz-Zippel lemma [21, 18]
(see also [3]).

Theorem 3. If p1, . . . , pn are chosen randomly and uni-
formly from a subset S of the domain of values, which is
assumed to be an integral domain, then for the sequence
ai = f(pi

1, . . . , p
i
n) the Berlekamp/Massey algorithms en-

counters ∆ = 0 and 2L < r the first time for r = 2t + 1
with probability no less than

1− t(t + 1)(2t + 1) deg(f)

6 ·#(S)
,

where #(S) is the number of elements in S.

†In this argument we make use of the shift by 1 element.
We do not know if shifting is actually needed if one were to
exclude the first discrepancy from the termination test.

Proof: By (5) we obtain deg(detAi) ≤ i2 deg(f). We have
to avoid a zero of the product

∏t
i=1 detAi, whose degree is

no more than t(t + 1)(2t + 1) deg(f)/6. The estimate of the
probability follows from Lemma 1 in [18]. £

We conclude the probabilistic analysis with three remarks.

Remark 1: If the coefficient field is a subfield of the real
numbers and ci > 0 for all i, no randomization is necessary.
The following argument is standard for the least squares
problem with a weighted inner product:

BiCtB
Tr
i y = 0 =⇒ yTrBiCtB

Tr
i y = 0

=⇒ (BTr
i y)TrCt(B

Tr
i y) = 0

=⇒ BTr
i y = 0,

because 0 = zTrCtz =
∑

cjz
2
j =⇒ z = 0. Therefore y = 0,

and BiCtB
Tr
i is non-singular.

Remark 2: The estimate in theorem 3 is, like the Zippel-
Schwartz estimate, somewhat pessimistic. The following ar-
gument attempts to shed further light on the situation. Over
a finite field of q elements we may choose the set S to be
the entire field, that is, q = #(S). If we make the heuristic
assumption that ai = f(pi

1, . . . , p
i
n) are randomly uniformly

distributed, the probability that

0 6= (det(A1) · · · det(At))α1←a1,...,α2t−1←a2t−1

is exactly (1 − 1/q)t ≥ 1 − t/q; cf. [12]; the proof is by in-
duction on i, viewing det(Ai+1) as a linear polynomial in
α2i+1 whose coefficient is det(Ai). Even then, the probabil-
ity of premature false termination can become unacceptably
high. In our implementation, we therefore make a further
modification: the user can supply a threshold ζ ≥ 1. Then
the early termination strategy requires ζ zero discrepancies
with 2L < r in a row. Clearly, for random ai then there are
more acceptable At. The precise analysis is more compli-
cated and carried out for Newton interpolation in theorem 4
below.

Remark 3: Our early termination methodology also ap-
plies to the sparse interpolation algorithms for Chebyshev
and Pochhammer bases [14]. The theorems corresponding
to theorem 3 above are similar and will be presented in the
journal version of this paper.

We conclude by giving a description of the algorithm.

The Ben-Or/Tiwari algorithm with early termina-
tion

Input: f : a multivariate black box polynomial.

ζ: the threshold for early termination.

Output: cj and mj: it is probabilistically correct that f =∑t
j=1 cjmj.

An error message: if fail to complete.

1. (The early termination within the Berlekamp/Massey al-
gorithm)

195

Pick random elements {p1, . . . , pn}.
Execute the Berlekamp/Massey algorithm on ai = f(pi

1,
. . ., pi

n) for i = 1, 2, If ∆r = 0 and 2L < r, that
ζ many times in a row, then break out of the loop. Set
Λ(z) to the reverse of Λr(z) that was computed inside the
algorithm.

2. (Determine mj)
Compute all roots of Λ(z) in the domain of the pi’s. If
Λ(z) does not completely factor, the early termination was
false.
From the roots, bj, determine the terms mj: e.g., repeat-
edly divide bj by p1, . . . , pn. Again, the term recovery
might fail for unlucky pi’s.

3. (Determine cj)
Solve the transposed Vandermonde system (1) to recover
the coefficients of the terms.
End.

3. EARLY TERMINATION ALGORITHMS
EMBEDDED IN ZIPPEL’S ALGORITHM

3.1 Newton interpolation vs. the Ben-Or/Ti-
wari algorithm with early termination

We now explain the early termination of interpolations and
how a higher threshold can improve its probability of suc-
cess.

Theorem 4. (Early Termination of Univariate In-
terpolation) Given are a black box univariate polynomial
f(x), δ, an upper bound of deg(f), and a positive inte-
ger threshold η. Let p0, p1, p2, . . . be chosen randomly and
uniformly from a subset S of the domain of values, and
let f [i] denote the interpolation polynomial that interpolates
f(p0), . . . , f(pi). Note that the pi are not necessarily all dis-
tinct. Suppose there is a d ≤ δ with

f [d] = f [d+1] = · · · = f [d+η]. (6)

Then with probability at least

1− (d + 1)

(
deg(f)

#(S)

)η

f [d] correctly interpolates f .‡

Proof: Suppose d is the smallest integer that satisfies (6)

and let µ = d + η. Then f [d] does not correctly interpolate
f if:

1. either d = 0, or pd is not a root of f − f [d−1]; and

2. pd+1, . . . , pd+η are all roots of f − f [d].

Since f [i] interpolate the values of f and f [d] 6= f , deg(f [d]) <

deg(f) ≤ δ. Therefore, deg(f − f [d]) = deg(f) and there are

at most deg(f) distinct roots of f − f [d]. The probability of

‡Note added on Apr 24, 2001: If pi are not necessarily all

distinct, we actually have 1− η ·deg(f)
(

deg(f)
#(S)

)η

instead of

1− (d + 1)
(

deg(f)
#(S)

)η

, which would require pi all distinct.

randomly generating an element from a set S that is a root
of f − f [d] is no more than deg(f)/#(S).

For 1 ≤ i ≤ µ−η, le P (i) denote the probability that f [i] 6= f
and i is the smallest number such that pi is not a root of
f − f [i−1] but all pi+1, . . . , pi+η are roots of f − f [i]. When
i = 0, let P (0) be the probability that f [0] 6= f but p1, . . . , pη

are all roots of f −f [0]. It is clear that
∑µ−η

i=0 P (i) covers all
the possibilities of f being falsely interpolated. Here we do
not need to consider P (i) for i ≥ µ−η+1, since there will not
be enough remaining elements in pµ−η+2, . . . , pµ following
any such pi for condition (6).

For 0 ≤ i ≤ µ− η, P (i) ≤ (deg(f)/#(S))η, because at least
we need to continuously pick a random number being a root
of f − f [i] η many times so that pi+1, . . . , pi+η are all roots
of f − f [i] = 0. Therefore, f [d] correctly interpolates f with
probability at least:

1−
µ−η∑
i=0

P (i) ≥ 1− (µ− η + 1)

(
deg(f)

#(S)

)η

. £

The Newton interpolation always returns an interpolant for
the given inputs and degree bound. In the above early ter-
mination case, it needs at least 1 + deg(f) + η inputs. But
when f is sparse, the number of terms might be far smaller
than the degree, and the Ben-Or/Tiwari algorithm might
determine the interpolating polynomial within fewer inputs,
namely 2t+ ζ +1 where t is the number of terms in f . How-
ever, the early termination Ben-Or/Tiwari algorithm may
fail at some intermediate step. Therefore, on the same black
box probes, our algorithm implements both the Newton and
the Ben-Or/Tiwari algorithms.

We first randomly pick an element p from a finite subset
of the coefficient domain and set a0 to be the black box
probe on p, namely a0 = f(p). Let ai = f(pi+1) be the
next black box probe added to the sequence a0, . . . , ai−1.

We compute both the Newton interpolant f
[i]
N and the error

locator polynomial Λi in the Berlekamp/Massey algorithm

on a0, . . . , ai, and check whether Λi or f
[i]
N satisfies the early

termination conditions. If neither does, we proceed with the

next i. If f
[i]
N satisfies the early termination conditions, we

interpolate f as f
[i]
N ; else if Λi satisfies early terminations, we

proceed with all the remaining steps of the Ben-Or/Tiwari
algorithm on Λi. If we can successfully finish all the steps,
we have f interpolated with high probability. Otherwise, we
again pick an new p randomly from the finite subset of the
coefficient domain, and start to work Λj on a new sequence
ã0, . . . , ãj where ãk = f(pk+1). However, we still update
the Newton interpolant on the sequence of all the black box
probes we have acquired so far; a0, . . . , ai, ã0, . . . , ãj as it is
now.

Since our algorithm uses the interpolation points pi, Theo-
rem 4 does not directly apply. Furthermore, in this sequence
of black box probes, a point might be repeated. If this hap-
pens, our Newton interpolation will not update the Newton
interpolant (see below). The overall algorithm, however, will
never run into an infinite loop since it is bounded in a for-
loop up to δ + η, where δ is an upper bound of deg(f) and
η is the threshold in Newton interpolation.

196

The Ben-Or/Tiwari algorithm might terminate earlier, but
might not finish at all; the Newton interpolation might take
more black box probes than the Ben-Or/Tiwari algorithm,
but can always finish interpolating. Therefore, we race these
two algorithms in our univariate interpolation algorithm to
take advantage of both algorithms, or to compensate for the
disadvantage of either one. That is, when it is possible, our
algorithm can always terminate earlier while its termination
is still guaranteed. Moreover, we take advantage of the in-
formation from both algorithms at the same time. We use
some information acquired from one algorithm to check the
result of the other algorithm, e.g., to see whether deg(f) of
f recovered from the Ben-Or/Tiwari algorithm is less than
or equal to the degree of most recent Newton interpolation
f [i], namely deg(f [i]).

An algorithm that races Newton against Ben-Or/
Tiwari with early termination

Input: f : a univariate black box polynomial over K
δ: an upper bound of deg(f)

η: the threshold of Newton interpolation.

ζ: the threshold in deciding the error locator poly-
nomial in Berlekamp/Massey algorithm embed-
ded in Ben-Or/Tiwari interpolation algorithm.

Output: f̃ =
∑d

i=0 cix
i: with probabilistically correctness,

f̃ = f .

1. (Initialization.)
0 6= p random, p ∈ S ⊆ K; a0 ← f(p); ã0 ← a0;
new[race] ← false; j ← 0; k ← 0;

Initialize Newton interpolant f
[0]
N at a0, f

(0)
N ← f

[0]
N

Initialize Λ0, L, B at ã0.

2. (Interpolate at one more point)
For i = 1, . . . , δ + η Do

If new[race] = false then

j ← j + 1; ai ← f(pj+1); ãj ← f(pj+1);

Update Newton interpolant f
[i]
N on a0, a1, . . ., ai.

If ai /∈ {a0, . . . , ai−1} then

k ← k + 1;

f
(k)
N ← f

[i]
N ;

Update Λj, L, B on ã0, ã1, . . ., ãj;

Else

j ← 0; randomly generate a nonzero p from S ⊆ K;
new[race] ← false; ai ← f(p); ã0 ← f(p);

Update Newton interpolation f
[i]
N on a0, a1, . . . , ai.

If ai /∈ {a0, . . . , ai−1} then

k ← k + 1;

f
(k)
N ← f

[i]
N ;

Initialize Λ0, L, B at ã0;

3. (See whether the Ben-Or/Tiwari algorithm finishes
before the Newton interpolation)

If f
(k)
N = f

(k−1)
N = · · · = f

(k−η)
N then

Return f̃ ← f (k);

Else if ∆̃ = 0 and 2L̃ ≤ ̃ + 1 and ̃ > 1 for ̃ =
j − ζ, · · · , j, then

Λ(z) ← Λj;

4. (Now we attempt to complete the Ben-Or/Tiwari
algorithm in subsection 2.3 on Λ(z). If we fail to
complete, we set new[race] as true in order to initi-
ate a new random p and its power sequence for the
“racing”.)
Complete the step 2 and 3 of the Ben-Or/Tiwari
algorithm in subsection 2.3 on Λ(z).
If fail to complete, then

new[race] ← true;

End For;
If f̃ is not defined then Fail;
End.

In step 4 of the above algorithm, we may fail to complete
the Ben-Or/Tiwari algorithm if any of the following occurs:
not all deg(Λ) many roots of Λ(z) are powers of an element
in S, or there exists a multiple root, or the transposed Van-
dermonde system is singular.

Notice in Newton interpolation, we compare f
(k)
N , . . . , f

(k−η)
N

instead of f
[i]
N , . . . , f

[i−η]
N for early termination. Since the

variable k will be increased only if the Newton interpolant

f
[i]
N interpolates at a new point, f

(k)
N is only updated when

a new point is introduced and will delay the update at a
repeated point. This change avoids some unnecessary false
early termination due to interpolating at repeated points,
hence improves the probability of success.

3.2 The Zippel algorithm
The sparse representation of a black box polynomial f is as
follows:

f(x1, . . . , xn) =
∑

(e1,...,en)∈J

ce1,...,enxe1
1 · · ·xen

n , (7)

where 0 6= ce1,...,en ∈ K, J ⊆ (Z≥0)
n. Here Z≥0 is the set

of nonnegative integers. Note that #(J) is the number of
monomials in f .

The Zippel algorithm is based on the following idea: during
the variable by variable interpolation, a zero coefficient is
the image of a zero polynomial with high probability. We
present the Zippel algorithm now:

The Zippel algorithm

Input: f : a multivariate black box polynomial over K
(x1, . . . , xn): an ordered list of variables in f

δ: an upper bound of deg(f)

Output:
∑

(e1,...,en)∈J ce1,...,enxe1
1 · · ·xen

n : which equals f with

high probability.

1. (Initialize the anchor points.)
Randomly pick a2, . . . , an from a finite subset S ⊆ K;

197

2. (Interpolating one more variable: with high probability,
we have

f(x1, . . . , xi−1, ai, . . . , an) =∑
(e1,...,ei−1)∈Ji−1

ce1,...,ei−1xe1
1 · · ·xei−1−1

i−1 ,

where 0 6= ce1,...,ei−1 ∈ K, Ji−1 ⊂ Zi−1
≥0 .)

For i = 1, . . . , n Do

(Update the degree upper bound for monomials in xi.)
δi = max{δ − e1 − · · · − ei−1 | (e1, . . . , ei−1) ∈ Ji−1};
(Update the number of monomials in x1, . . . , xi−1.)
ji−1 ← #(Ji−1);

3. (Interpolate one more degree on the coefficient poly-
nomials. We consider the coefficients of f in the vari-
ables x1, . . . , xi−1 as polynomials in K[xi] and interpo-
late those polynomials at b0, . . . , bδi in the for loop in
k below, because those polynomials are all of degree no
more than δi.)
For k = 0, . . . , δi Do

Randomly pick bk from a subset of K;

4. (For every bk, solving the following ji−1 by ji−1 trans-
posed Vandermonde system can locate the value of
every such coefficient polynomial evaluated at xi =
bk.)
Set up a ji−1 by ji−1 transposed Vandermonde sys-
tem:
For j = 0, . . . , ji−1 − 1 Do∑

(e1,...,ei−1)∈Ji−1

γe1,...,ei−1,k(ãj
1)

ei · · · (ãj
i−1)

ei

= f(ãj
1, . . . , ã

j
i−1, bk, ai+1, . . . , an); (8)

End j For;
If the system is singular then report ”Failure”;
Else solve the system for all γe1,...,ei−1,k [11];

5. (Next we interpolate ji−1 many univariate polynomi-
als in xi. Those polynomials are the coefficients in
K[xi] of terms in the variables x1, . . . , xi−1 and each
evaluates to γe1,...,ei−1,k at bk. We excute Newton
algorithm for interpolation).
For every (e1, . . . , ei−1) ∈ Ji−1 Do

Execute Newton interpolation so that

c
[k]

i,(e1,...,ei−1)(xi) ∈ K[xi] and

c
[k]

i,(e1,...,ei−1)(bs) = γe1,...,ei−1,s, 0 ≤ s ≤ k;

c
[k]

i,(e1,...,ei−1)(xi) ←
k∑

s=0

ci,(e1,...,ei−1),sx
s
i ;

End (e1, . . . , ei−1) For;

End k For;

6. (Prune all the monomials with zero coefficient and up-
date Ji).
Ji = ∅;
For every (e1, . . . , ei−1) ∈ Ji−1 and s = 0, . . . , δi Do

If c
[δi]

i,(e1,...,ei−1),s 6= 0 then

ce1,...,ei−1,s ← c
[δi]

i,(e1,...,ei−1),s;

Ji ← Ji ∪ {(e1, . . . , ei−1, s)};

End (e1, . . . , ei−1), s For;
Randomly pick ãi from a subset of K;

End i For;
End.

3.3 Homogenizing variable and pruning
In the above Zippel algorithm, the monomials with zero co-
efficient are pruned ; they are dropped and assumed to be
zero polynomials in all other variables. This is true with
high probability if the anchor points are chosen at random.
We prune each time after a new variable gets interpolated.

A new variable x0, the homogenizing variable, can be intro-
duced into the sparse representation (7) of f as follows:

f̃(x0, x1, . . . , xn) = f(x0x1, x0x2, . . . , x0xn)

=
∑

(e1,...,en)∈J

(ce1,...,enxe1
1 · · ·xen

n)xe1+e2+···+en
0

Instead of interpolating f(x1, . . . , xn), we interpolate f̃(x0,
x1, . . ., xn). Let the anchor points a1, . . . , an be randomly
picked from a subset of K. That is, we start interpolating
f̃(x0, a1, . . . , an) with respect to x0 and get a polynomial
f0(x0) in K[x0]. By the Zippel algorithm, in f0(x0) we can
prune the support structure of f .

Let f0(x0) =
∑d

k=0 γ0,kxk
0 , by definition, γ0,k is the image

of polynomial ck(x1, . . . , xn) ∈ K[x1, . . . , xn] at the anchor
point, namely ck(a1, . . . , an) = γ0,k, and

ck(x1, . . . , xn) =
∑

e1+···+en=k,(e1,...,en)∈J

ce1,...,enxe1
1 · · ·xen

n .

Notice that every term in ck is of degree k in K[x1, . . . , xn].
Moreover, if f0 is correctly interpolated, deg(f0) in K[x0] is
equivalent to deg(f) in K[x1, . . . , xn]. The degree of every
non-zero monomial in f0(x0) provides an upper bound for
the degree of all the intermediate terms of its coefficient
polynomial.

Now, we refine the pruning idea in [4]. Comparing to Zip-
pel’s idea, we will do two more types of pruning so that
we possibly reduce the size of the transposed Vandermonde
system in step 4 of the above Zippel algorithm.

During the process of interpolating the homogenized poly-
nomial in a variable by variable manner, as step 2 in the
above Zippel algorithm, with high probability we have

f̃(x0, x1, . . . , xi−1, ai, . . . , an) =∑
(e0,e1,...,ei−1)∈Ji−1

ce0,e1,...,ei−1xe1
1 · · ·xei−1

i−1 xe0
0 ,

where 0 6= ce0,e1,...,ei−1 ∈ K, Ji−1 ⊂ (Z≥0)
i.

For every (e0, . . . , ei−1) ∈ Ji−1 such that e1+· · ·+ei−1 = e0,
the degree of the corresponding coefficient monomial has
reached the total degree upper bound e0 = e1 + · · · + en.
That is, ce0,e1,...,ei−1xe1

1 · · ·xei−1
i−1 xe0

0 is an actual monomial

in f̃ . All such coefficient monomials have been fully interpo-
lated and will not be changed in the further interpolations
in other variables. We now let gi−1(x0, x1, . . . , xn) denote
a polynomial summing up all such fully interpolated mono-
mials in x0, . . . , xi−1, and form the set J ′i−1 from Ji−1 by

198

removing all (e0, . . . , ei−1)’s such that e1 + · · · + ei−1 = e0.
The equation (8) in step 4 of Zippel’s algorithm now be-
comes

f(ãj
0, . . . , ã

j
i−1, bk, ai+1, . . . , an)

=
∑

(e0,...,ei−1)∈J′i−1

γe0,...,ei−1,k(ãj
1)

e1 · · · (ãj
i−1)

ei−1(ãj
0)

e0

+ gi−1(ã
j
0, . . . , ã

j
i−1, bk, ai+1, . . . , an)

Since #(J ′i−1) ≤ #(Ji−1), by subtracting gi−1(ã
j
0, . . ., ãj

i−1,
bk, ai+1, . . ., an) from both sides of the transposed Vander-
monde system, we only need to solve a smaller system. All
the monomials in gi−1 are called permanently pruned since
they will not be interpolated in variables xi, . . . , xn.

When we are interpolating the coefficients of terms in x0, . . .,
xi−1 of f̃(x0, . . . , xi−1, xi, ai+1, . . . , an), those coefficients are
different polynomials in K[xi]. Some of those coefficient
polynomials might be determined early via early termina-
tion in either Ben-Or/Tiwari or in Newton. Thus, their
values can be taken out of the loop in step 3 before the
rest of the coefficients (in xi) are completed. Similarly to
permanently pruned monomials, we may prune these terms
temporarily and reduce the dimensions of the Vandermonde
system (8) further.

We are now ready to present our hybrid Zippel algorithm.

3.4 Modular techniques and hybrid of Zip-
pel’s sparse interpolation algorithm

In order to control the size of the coefficients in the error
locator polynomial of the embedded Berlekamp/Massey al-
gorithm, Kaltofen et al. [10] apply modular techniques for
finding Λ(z) and locating the roots of Λ(z). However, to
provide a modular image of Λ(z) sufficient for recovery of
the mi, the modulus q needs to be sufficiently large. They
use a modulus pk that is larger than each bj , the mj eval-
uated a prime numbers. Now consider a multivariate black
box polynomial f and suppose let d = deg(f); since 2 is
the smallest prime, a sufficiently large modulo pk is at least
2d. This means when deg(f) is relatively large, we need to
perform all computations modulo an integer of length pro-
portional to the degree, even though the coefficients could
be a much small size.

However, we notice that for the recovery of the terms of a
sparse univariate polynomial f̃(x) (with degree d̃), a prime

q̃ larger than d̃ can already provide a sufficiently large mod-
ulus. We may evaluate the single variable x at a primitive
root % and recover the term exponents as the discrete loga-
rithms of the bjs. There are φ(q̃−1) primitive roots modulo
q̃, with u/loglogu = O(φ(u)) for any integer u and φ denot-
ing Euler’s function [9, sec. 18.4], so a random residue has
a fair chance of being a primitive root.

Our algorithm picks a random residue % for x and for each bk

tries the exponents ek = 0, 1, 2, . . . until %ek ≡ bk (mod q).
The method produces an incorrect term exponent if for %,
%2, . . ., %λq(%) ≡ 1 (mod q) we have ek > λq(%). However,
such false exponent computations highly likely lead to in-
consistencies in later steps. An immediate inconsistency is
to the degrees of the concurrent Newton interpolation (see

subsection 3.1). In that case, the algorithm even recovers
the univariate intermediate result by Newton interpolation
and continues. If the false exponent is not caught then,
with high likelihood the inconsistency shows up later, at the
latest during the comparison of the final sparse interpolant
with the black box input at an additional random point.

The trade-off between the size of the modulus and the num-
ber of black box probes in Ben-Or/Tiwari versus Zippel with
univariate Ben-Or/Tiwari, both with early termination, can
now be quantified. Ignoring the size of the coefficients, in the
former we have q > 2deg(f) versus q = O(deg(f)), while the
number of probes is 2t + ζ versus O(n(2t + ζ)). Therefore,
if the degrees are small but there are many variables, the
pure Ben-Or/Tiwari (with early termination) may still out-
perform Zippel. We add that at any stage in the variable-by-
variable Zippel interpolation algorithm, we could complete
the rest of the variables by a multivariate Ben-Or/Tiwari
algorithm, but we have not done this yet.

Our implementation of sparse interpolation with coefficients
from a sufficiently large finite field uses the Zippel technique
as the outer loop. Each univariate interpolation step imple-
ments a race between Newton interpolation and the Ben-Or/
Tiwari algorithm (see subsection 3.1), where the Ben-Or/
Tiwari algorithm recovers the term structure by the tricks
explained above. Finally, we introduce a homogenizing vari-
able and perform both permanent and temporary term prun-
ing as discussed in subsection 3.3. We note that for small
finite coefficient fields, say Z/2Z, one can switch to the coef-
ficient domain Z/2Z[xn], where xn is the last variable, and
proceed modulo irreducible polynomials in Z/2Z[xn].

4. MAPLE IMPLEMENTATION
The protobox package is our Maple V.5 implementation of
this new hybrid algorithm. We present part of the perfor-
mance tests here. Additional data executed on Maple 6 will
be presented in the journal version of this paper. Table 1
lists the polynomials used in the performance tests described
below. Note that f1 and f2 are from [23, p. 100] and f3 and
f4 from [23, p. 102].

4.1 Black box probes
We can “turn off” either Newton or Ben-Or/Tiwari by set-
ting the corresponding thresholds to ∞ and force all the in-
terpolations performed by the remaining active one. Now we
interpolate each corresponding polynomial under different
embedded algorithms on a relatively large modulus 100003.
Table 2 lists the average number of black box probes needed
after ten runs. Both Newton and Ben-Or/Tiwari thresholds
are set to one by default. Our “racing” algorithm always
takes advantage of both the Newton and Ben-Or/Tiwari al-
gorithms; the average black box probes needed is never more
than the minimum of either one.

4.2 Thresholds and moduli
In addition to the thresholds for Newton and Ben-Or/Tiwari,
in protobox we introduce additional thresholds in order to
further improve the probability of success and the through-
put of the overall algorithm.

One way to further improve the probability of correctness of
the interpolating polynomial is to pick a few more random

199

f1(x1, . . . , x10) x2
1x

3
3x4x6x8x

2
9 + x1x2x3x

2
4x

2
5x8x9 + x2x3x4x

2
5x8x9 + x1x

3
3x

2
4x

2
5x

2
6x7x

2
8 + x2x3x4x

2
5x6x7x

2
8

f2(x1, . . . , x10) x1x
2
2x

2
4x8x

2
9x

2
10 + x2

2x4x
2
5x6x7x9x

2
10 + x2

1x2x3x
2
5x

2
7x

2
9 + x1x

2
3x

2
4x

2
7x

2
9 + x2

1x3x4x
2
7x

2
8

f3(x1, . . . , x10) 9x3
2x

3
3x

2
5x

2
6x

3
8x

3
9 + 9x3

1x
2
2x

3
3x

2
5x

2
7x

2
8x

3
9 + x4

1x
4
3x

2
4x

4
5x

4
6x7x

5
8x9 + 10x4

1x2x
4
3x

4
4x

4
5x7x

3
8x9 + 12x3

2x
3
4x

3
6x

2
7x

3
8

f4(x1, . . . , x10) 9x2
1x3x4x

3
6x

2
7x8x

4
10 + 17x3

1x2x
2
5x

2
6x7x

3
8x

4
9x

3
10 + 17x2

2x
4
3x

2
4x

4
7x

3
8x9x

3
10 + 3x3

1x
2
2x

3
6x

2
10 + 10x1x3x

2
5x

2
6x

4
7x

4
8

f5(x1, . . . , x20)
∑20

i=1 x20
i

f6(x1, . . . , x5)
∑5

i=0(x1x2x3x4x5)
i

f7(x1, x2, x3) x20
1 + 2x2 + 2x2

2 + 2x3
2 + 2x4

2 + 3x20
3

Table 1: Polynomials tested in Maple application program.

Ben-Or/
mod Newton Tiwari “Racing”

f1 100003 147 137 126
f2 100003 146 143 124
f3 100003 209 143 133
f4 100003 188 149 133
f5 100003 462 101 101
f6 100003 152 88 88
f7 100003 95 47 42

Table 2: Average number of black box probes
needed for different embedded univariate interpo-
lation algorithms after 10 runs.

points and check whether the input black box and the in-
terpolating polynomial agree at all those points. If they do
not, an error message will be reported indicating the inter-
polating polynomial cannot pass the post test. The number
of the random points used for the post test is defined as the
optional argument “posttest thresh” and is by default zero.

In the Zippel algorithm, we may correctly interpolate all
the monomials in the previous variables yet still encounter
problems. This could happen due to a bad random point
that makes two different terms map to a same value, thus
yielding a singular Vandermonde system (8). Trying a few
more random points to see whether the Vandermonde sys-
tem is still singular might avoid some unnecessary failures
and hence improve the throughput. The optional argument
“mapmon thresh”, set by default to zero, defines the num-
ber of random points to be tried before the algorithm reports
failure.

Regarding the delay in updating the Newton interpolants at
repeated points (see subsection 3.1), an optional argument
“rndrep thresh” extends the upper bound of each univariate
interpolation loop and therefore lowers the failure rate due
to repeated points.

Table 3 lists the runs under different thresholds and moduli
with our “racing” algorithm as the embedded univariate in-
terpolation. We run a test which executes our probabilistic
algorithm 100 times on each set of arguments. The numbers
under “=” column record the number of times of successful
interpolations, under “ 6=” record the times a polynomial is
wrongly interpolated, and under “!” the number of times an
error message is returned. We use Greek letters denote the
thresholds as follows; τ the “posttest thresh”, κ the “map-
mon thresh”, and γ the “rndrep thresh”. Theorem 4 shows

that a higher threshold can improve the probability of suc-
cess for early termination in univariate interpolation. That
improvement, of course, carries over to the overall algorithm.

If a multivariate polynomial has degrees in every single vari-
able that are smaller than the total degree, some relatively
small moduli might suffice for interpolating such a polyno-
mial provided we “turn off” the homogenizing variable mod-
ification (see section 3.3). Table 4 records some such inter-
polation runs after running 100 times in each listed case.

Thresholds mod 11 mod 13
η, ζ τ κ, γ = 6= ! = 6= !

f1 2 2 6 28 2 70 27 0 73
f2 2 2 6 6 1 93 20 0 80
f3 2 2 6 8 0 92 1 0 99
f4 2 2 6 5 0 95 1 0 99

Table 4: The throughputs on small moduli without
using a homogenizing variable.

Acknowledgements: We thank James H. Davenport and
two anonymous referees for their comments.

Note: many of the authors’ publications cited below are
accessible through links in their Internet homepages listed
under the title.

5. REFERENCES
[1] Ben-Or, M., and Tiwari, P. A deterministic

algorithm for sparse multivariate polynomial
interpolation. In Proc. Twentieth Annual ACM Symp.
Theory Comput. (New York, N.Y., 1988), ACM Press,
pp. 301–309.

[2] Brown, W. S., and Traub, J. F. On Euclid’s
algorithm and the theory of subresultants. J. ACM 18
(1971), 505–514.

[3] DeMillo, R. A., and Lipton, R. J. A probabilistic
remark on algebraic program testing. Information
Process. Letters 7, 4 (1978), 193–195.

[4] D́ıaz, A., and Kaltofen, E. FoxBox a system for
manipulating symbolic objects in black box
representation. In ISSAC 98 Proc. 1998 Internat.
Symp. Symbolic Algebraic Comput. (New York, N. Y.,
1998), O. Gloor, Ed., ACM Press, pp. 30–37.

[5] Dornstetter, J. L. On the equivalence between
Berlekamp’s and Euclid’s algorithms. IEEE Trans.
Inf. Theory it-33, 3 (1987), 428–431.

200

Thresholds mod 31 mod 37 mod 41 mod 43 mod 47 mod 53
η, ζ τ κ, γ = 6= ! = 6= ! = 6= ! = 6= ! = 6= ! = 6= !

1 0 0 8 2 90 7 1 92 10 3 87 7 3 90 24 2 74 22 3 75
f1 2 1 2 29 0 71 37 0 63 44 0 56 49 0 51 70 0 30 46 0 54

3 2 4 34 0 66 36 0 64 46 0 54 51 0 49 79 0 21 70 0 30

1 0 0 4 3 93 4 3 93 13 0 87 14 3 83 22 4 74 23 1 76
f2 2 1 2 23 0 77 33 0 67 37 0 63 45 1 54 68 0 32 75 0 25

3 2 4 44 0 56 41 0 59 51 0 49 60 0 40 81 0 19 79 0 21

1 0 0 0 2 98 0 6 94 2 5 93 4 0 96 5 0 95 6 3 91
f3 2 1 2 1 0 99 9 0 91 18 0 82 7 1 92 33 0 69 45 0 55

3 2 4 19 0 81 8 0 92 18 0 82 14 0 86 52 0 48 54 0 46

1 0 0 1 4 95 0 2 98 4 2 94 8 3 89 18 2 80 11 5 84
f4 2 1 2 2 0 98 5 0 95 19 0 81 28 0 72 51 0 49 44 0 56

3 2 4 5 0 95 10 0 90 31 0 69 25 0 75 80 0 20 45 0 55

Table 3: The algorithm throughputs under different modulus and thresholds

[6] Gantmacher, F. R. The theory of matrices, vol. 1.
Chelsea publishing company, 1977.

[7] Grigoriev, D. Y., Karpinski, M., and Singer,

M. F. Fast parallel algorithms for sparse multivariate
polynomial interpolation over finite fields. SIAM J.
Comput. 19, 6 (1990), 1059–1063.

[8] Grigoriev, D. Y., and Lakshman Y. N. Algorithms
for computing sparse shifts for multivariate
polynomials. In Proc. 1995 Internat. Symp. Symbolic
Algebraic Comput. ISSAC’95 (New York, N. Y.,
1995), A. H. M. Levelt, Ed., ACM Press, pp. 96–103.

[9] Hardy, G. H., and Wright, E. M. An Introduction
to the Theory of Numbers, 5 ed. Oxford Univ. Press,
Oxford, 1979.

[10] Kaltofen, E., Lakshman Y. N., and Wiley, J. M.

Modular rational sparse multivariate polynomial
interpolation. In ISSAC ’90 Internat. Symp. Symbolic
Algebraic Comput. (1990), S. Watanabe and
M. Nagata, Eds., ACM Press, pp. 135–139.

[11] Kaltofen, E., and Lakshman Yagati. Improved
sparse multivariate polynomial interpolation
algorithms. In Symbolic Algebraic Comput. Internat.
Symp. ISSAC ’88 Proc. (Heidelberg, Germany, 1988),
P. Gianni, Ed., vol. 358 of Lect. Notes Comput. Sci.,
Springer Verlag, pp. 467–474.

[12] Kaltofen, E., and Lobo, A. On rank properties of
Toeplitz matrices over finite fields. In ISSAC 96 Proc.
1996 Internat. Symp. Symbolic Algebraic Comput.
(New York, N. Y., 1996), Lakshman Y. N., Ed., ACM
Press, pp. 241–249.

[13] Kaltofen, E., and Trager, B. Computing with
polynomials given by black boxes for their evaluations:
Greatest common divisors, factorization, separation of
numerators and denominators. J. Symbolic Comput. 9,
3 (1990), 301–320.

[14] Lakshman Y. N., and Saunders, B. D. Sparse
polynomial interpolation in non-standard bases. SIAM
J. Comput. 24, 2 (1995), 387–397.

[15] Lakshman Y. N., and Saunders, B. D. Sparse
shifts for univariate polynomials. Applic. Algebra
Engin. Commun. Comput. 7, 5 (1996), 351–364.

[16] Massey, J. L. Shift-register synthesis and BCH
decoding. IEEE Trans. Inf. Theory it-15 (1969),
122–127.

[17] Murao, H., and Fujise, T. Modular algorithm for
sparse multivariate polynomial interpolation and its
parallel implementation. In Proc. First Internat.
Symp. Parallel Symbolic Comput. PASCO ’94
(Singapore, 1994), H. Hong, Ed., World Scientific
Publishing Co., pp. 304–315.

[18] Schwartz, J. T. Fast probabilistic algorithms for
verification of polynomial identities. J. ACM 27
(1980), 701–717.

[19] Wiedemann, D. Solving sparse linear equations over
finite fields. IEEE Trans. Inf. Theory it-32 (1986),
54–62.

[20] Zilic, Z., and Radecka, K. On feasible multivariate
polynomial interpolations over arbitrary fields. In
ISSAC 99 Proc. 1999 Internat. Symp. Symbolic
Algebraic Comput. (New York, N. Y., 1999),
S. Dooley, Ed., ACM Press, pp. 67–74.

[21] Zippel, R. Probabilistic algorithms for sparse
polynomials. In Proc. EUROSAM ’79 (Heidelberg,
Germany, 1979), vol. 72 of Lect. Notes Comput. Sci.,
Springer Verlag, pp. 216–226.

[22] Zippel, R. Interpolating polynomials from their
values. J. Symbolic Comput. 9, 3 (1990), 375–403.

[23] Zippel, R. E. Probabilistic algorithms for sparse
polynomials. PhD thesis, Massachusetts Inst. of
Technology, Cambridge, USA, Sept. 1979.

201

