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1 Introduction

In many applications, multivariate polynomials are encountered in such a way
that an implicit representation is the most cost effective for computation. A
black box representation of a multivariate polynomial is a procedure such that,
for any given input, it outputs the evaluation of the polynomial at that input.
Black box polynomials appear naturally in applications such as multivariate
polynomial systems (Corless et al. 2001, both approximate and exact) and the
manipulation of sparse polynomials, such as factoring (Kaltofen and Trager
1990; Diaz and Kaltofen 1998).

We consider the problem of sparse interpolation of a multivariate polynomial
given by a floating-point black box. That is, both the inputs and outputs of the
black box are precise up to a fixed number of digits. As a result, the coefficients
in the target polynomial can only be known up to a certain precision.

For example, a floating point black box can be a procedure that, for any
given input, computes the value of the determinant of a matrix of multivariate
polynomials with floating point coefficients. Such a black box evaluation pro-
cedure could be constructed from a number of effective numeric algorithms for
finding a determinant, for example Gaussian elimination.

A typical problem with black box representations is to convert such objects
into a standard representation. That is, given a multivariate polynomial f(z1,
..., &) in black box form, we want to find powers (d;,,...,d;,) and non-zero



coefficients ¢; such that
i
}: d; djn
f(xlv"'axn): ijll"'xn]'.
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In the case of multivariate polynomials, one often expects such a representa-
tion to be sparse. The best known interpolation methods that are sensitive to
the sparsity of the target polynomial are the Ben-Or/Tiwari algorithm (Ben-Or
and Tiwari 1988) and Zippel’s method (Zippel 1979). Although both approaches
have been generalized and improved (Zippel 1990; Kaltofen and Lakshman Ya-
gati 1988; Grigoriev et al. 1990; Zilic and Radecka 1999), they all require ex-
act arithmetic. In quite a different model, Mansour (Mansour 1995) gives a
nonetheless impressive randomized algorithm for interpolating a sparse integer
polynomial from (limited precision) interpolation points. While the algorithm
guarantees an answer with controllably high probability, its cost is quite depen-
dent on the size L (regardless of its precision) of the largest coefficient in f,
as well as the sparsity ¢ and degree: it requires about O((log L)®tlog deg f) bit
operations.

In numeric arithmetic, a procedure comparable to Ben-Or/Tiwari algorithm
dates back to Baron de Prony in 1795 (Prony III (1795); Brezinski 1991), which
actually considers the interpolation problem of fitting a sum of univariate ex-
ponential functions

¢
F(z) = Z ceti®,
j=1

Prony’s method determines ¢; and u; from the evaluations of F(z) at equally
spaced points F'(0), F(1),.... There are many interesting variations of this
numeric interpolation problem, for example, the problem of shape from moments
(Milanfar et al. 1995; Golub et al. 1999). Some other examples are tomography
(Milanfar et al. 1995) and signal decomposition (Marple, Jr. 1987).

We develop sparse interpolation algorithms for multivariate polynomials in
floating point arithmetic. We also take advantage of the current state of the
art algorithms and look at the numerical accuracy for numeric subproblems.
Finally, we conclude with a discussion of relavant topics and future research.

2 Preliminaries

In this section we describe the Prony’s method for interpolating sums of ex-
ponentials and the Ben-Or/Tiwari algorithm for multivariate polynomials. We
show that these two algorithms are closely related.

2.1 Prony’s method

Prony’s method (Prony III (1795)) seeks to interpolate a univariate F'(z) that
is a sum of exponential functions. That is, it tries to determine ¢; and p; such



that ,
F(z) = che"fz with ¢; # 0.

j=1
Since there are 2t unknowns, one would expect a system of at least the same
number of equations. However, these equations are not linear. Prony’s method
converts the nonlinear component to the root finding of a single, univariate
polynomial. All other steps involve the solving systems of (structured) linear
equations.

Let b; = e#i, then F(z) = 22:1 cjeti® = 22:1 c;bj. Consider the polyno-
mial Ar(z) having the b;’s as zeros:

t
Ap(z) = H(Z —b;) =2+ A1 4 Az + Ao
7j=1

Here are the key facts used in the algorithm: the sequence F(0), F(1), F(2),...
is linearly generated, and its minimal generating polynomial is Ap (Hildebrand
1956; Ben-Or and Tiwari 1988).

The polynomial Ap(z) can be determined by solving a Hankel system:

FO) F@1) ... Ft=1)7T X F(t)

F(1) F@2) ... F@ | | Fe+) "
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Ft—1) F@) ... F2t—2)| |\ F(2t—1)

which is also called the Yule-Walker equations for the series >, F( 7)2.
Finding zeros for Ap can determine by,...,b; (thus u1,..., ;). The coeffi-

cients cy,...,c; can be computed by solving a transposed Vandermonde system:
1 R | c1 F(0)
by - by Ca F(1)
: . : : = : (2)
bitto bt ct F(t-1)

2.2 The Ben-Or/Tiwari method

For a given black box polynomial f with n variables, the Ben-Or/Tiwari method
(Ben-Or and Tiwari 1988) finds coefficients ¢; and integer exponents (d,, , ..., d;,)
such that

¢
d; s
flze,. . zn) = chxl“ coozen with ¢; #0.
j=1

Let Bj(z1,...,2n) = xf“ -z be the j-th term in f, and set b; = B;(p1,
ciey Pn) = p‘lij1 ~-~p7d3" with p1,...,p, pairwise relatively prime. Note that

b = B;(pf, ..., pk) for any power k.



Then we consider the function F(k) = f(pf,...,p"). Designed for exact
arithmetic, the Ben-Or/Tiwari algorithm solves Yule-Walker equations in (1)
by the Berlekamp/Massey algorithm from coding theory. Once the terms b; are
found through the root finding of Ar(z) = 0, the exponents (d,,...,d;,) can
be determined via repeatedly dividing b; by p1,...,p, that are relatively prime.
Finally, the coefficients c; are determined via solving a Vandermonde system
similar to (2).

3 Numerical methods in sparse interpolations

We give two sparse algorithms for interpolating black box multivariate poly-
nomials in floating point arithmetic. One mainly follows the steps of the Ben-
Or/Tiwari algorithm (Ben-Or and Tiwari 1988), while the other takes advan-
tage of the generalized eigenvalue reformulation of Prony’s method (Golub et al.
1999). We also look at the stability of the main subproblems in these algorithms.

3.1 Ben-Or/Tiwari algorithm in floating point arithmetic

If the steps of the Ben-Or/Tiwari algorithm are directly executed in floating
point arithmetic, severe difficulties arise at varying stages of the computation.
First, to solve the Yule-Walker equations in (1), rather than using the Berle-
kamp/Massey algorithm in exact arithmetic, we need to solve a Hankel system
that is often ill-conditioned, especially in the case of real numbers (Beckermann
2000). Even worse, the solutions A; to such Hankel system are coefficients of
the generating polynomial A(z) = zt+ ;12871 +-- -+ X124+ \p for root finding,
while root finding is usually very sensitive to the perturbations in A;. Finally,
the coeflicients ¢; of our target polynomial are determined via solving a Van-
dermonde system, which might be ill-conditioned.

The above difficulties are also shared by Prony’s method for interpolating
a sum of exponential functions, even though it was designed and used as a
numerical method. Special challenges also exist for multivariate polynomial
interpolations. For example, unlike the case in exact arithmetic, we can no
longer use integer factorizations to recover the exponent of each variable in a
multivariate term.

By evaluating each variable at powers of an appropriate primitive root of
unity, we can improve the conditioning of the associated Hankel system, the
computation of zeros for the generating polynomial, and the Vandermonde sys-
tem. Furthermore, the exponent of each variable in a multivariate term can also
be recovered.

Our strategy is to evaluate at powers of primitive roots of unity whose or-

ders are pairwise relatively prime. Let f(x1,...,2,) = Z;zl cjxf“ g =
Z;zl ¢iBi(x1,. .., xn) with ¢; # 0. If p1,...,pn € Zs( are pairwise relatively
prime and p;, > deg,, f for 1 <k < n (assume we have an upper degree bound



for every variable in f). Counsider the following sequence for interpolation:
as = f(w],ws,...,wy) for0<s<2t—1

with wy = exp(2mi/pg). Set m = p;---p, and w = exp(2wi/m), then wy =
w™/Pr for 1 < k < n.

In f(wi,...,wn), each term B;(z1,...,2,) is mapped to value 83;(w, ...,
wn)=w% . In a numeric setting, each d; can be computed by rounding log,, (3; (w1,
..., wp)) to the nearest integer. Then the exponent for each variable (d;,, ...,
dj,) € L%, can be uniquely determined by the reverse steps of the Chinese
remainder algorithm (cf. Geddes et al. (1992)). That is, d; mod pr = d;, for

1<k <mn,and!
dj:dj1.<pﬂl)+...+dj (pm) (3)

In the remaining of this subsection, we look at the numerical sensitivity
for solving the associated Hankel system and the root finding of generating
polynomial A(z). The separation of powers for polynomial terms and the solving
of the associated Vandermonde system will be addressed in subsections 3.3 and
3.4.

Solving the associated Hankel system

Consider polynomial f(z1,...,2,) = 22;:1 cjacf“ gl = Z;zl ¢;Bi(z1,
..., ) and the evaluation sequence as = f(as,...,a5) for 0 < s<2t—1. We
need to solve the following Hankel systems Hp ;—1:

Qp o] ... A1 )\0 (e 73
a1 Qo ... (e 73 )\]_ [7E%)
Qi1 Qp ... Qg2 At—1 A2t—1
~ -~ ~
Ho,t—1

In general, if a polynomial f is evaluated at powers of a real value, the difference
between the scale of varying powers contributes to the ill conditioning of the
Hankel system. This problem is avoided in our method, since our Hy;_; is
formed from the evaluations on a unit circle.

Now let b; = Bj(w1,...,wn), D = diag(ecy,...,ct), and

1 1 1
b by ... b
V=| . . .
[ O

The Hankel system Hp ;1 can be factorized as Hy ;1 = VDV, We make use
of this factorization for investigating the condition of Ho; 1.

IRecall that in exact arithmetic, the original Ben-Or/Tiwari algorithm evaluates variables
at values that are pairwise relatively prime.



Lemma 1

Proof. Let D; be the matrix derived from D by using 0 to replace c¢; in the
diagonal, then matrix V.D,; VT is singular for 1 < j < t.
Based on the Eckart-Young theorem and that b;’s are on the unit circle,

1
———— =min{||Hp—1 — A||, A singular }
1 Ho e
< min{[|Ho,e—1 = VD;VT|}

<, by, b5 el <t el O

Lemma 2 1
”H(Itlfl” < ||V71||2 -t- mjax —

sl

Proof. Consider H(Itl_l = (V™)=1D=1V~! then

t
|Hoo ol < IVHEID Y < V112 Z 1D~ el
=1
—1112 1
<[V7H#-t-max —. O
i el

An upper bound for ||Hy, 1.l involves the conditioning of the Vandermonde
system V', which will be discussed in subsection 3.4.

Root finding of the generating polynomial
The solutions of the associated Hankel system ); are coefficients in poly-
nomial A(z) = 2zt + X\ 1287 4+ --- 4+ Az + Ao. In our floating point Ben-

Or/Tiwari interpolation steps, zeros of A(z) are b; = Bj(w1,...,wn), Where
dj d;
flX1, ..., 2,) = 22:1 Cix = 2221 ¢;Bi(x1,...,2,), and b; are on

the unit circle.

It is well known that root finding for a polynomial is generally poorly condi-
tioned with respect to perturbations in the coefficients (Wilkinson 1963). How-
ever, the conditioning is greatly improved when all the roots are on the unit
circle.

Let b be a zero of A(z) and by, a zero of A(z) + e['(z), where

T(2) =y2t + vz + -7,
then by, ~ by, +¢re and A(br + Cre) + €l (b + C1€) = 0. By the Taylor’s expansion
with respect to by,

> FAD B (G0 + e 30T - (Ge) 0.

7=0



Recall that A(bx) = 0, and consider only the first order terms in €, we have
AWM (by) - (e + €T'(bx) ~ 0 and

= ‘ T'(bx) >0 hil
1| = < .
AWM (br) [ 7 [T16 bk — bj)]
Therefore,
~ K 9
|bk—bk|<6- + Kye”.

1
| Hj.—,ék(bk: - bj)|
The size of | [[,.;,(bx —b;)| depends on the distribution of b;’s on the unit circle
(cf. subsection 3.4).

3.2 Generalized eigenvalue reformulation

We present another interpolation algorithm by adapting the reformulation of
Prony’s method that combines the solving of a Hankel system and the root
finding of a polynomial into a single generalized eigenvalue problem (Golub
et al. 1999). As a result, both solving the Hankel system and finding roots for
a polynomial can be avoided.

. . d; ;
Consider polynomial f(z1,...,2,) = Z;zl ¢z, i = Zﬁ-:l ¢;Bi(z,
.., Tn) and the evaluation sequence a; = f(af,...,as) for 0 < s < 2t — 1.

Define Hankel systems

(%)) N [e T} a1 .. (673
H[],t—l = - and Hl,t =
Q1 e Q29 e 7 v Qp1

so that Hy ; is one row shifted up from Hy—1. Let b; = B;(a1,...,a,). If we
set Z = diag(by,...,b:), D = diag(cy,...,c:), and

1 1 1

by by ... b
v=| . T,

Bl gt gt

then Hp; 1 = VDV, Hy; = VDZVT. The solutions A to the generalized
eigenvalue problem

Hl,tv = )\H()yt,ﬂ) (4)
are by,...,b;, the terms B;(z1,...,2,) evaluated at (a1,...,an). I a1,..., 0,
are chosen as wi,...,w, in subsection 3.1, the multivariate terms G;(z1, ...,

Zn) can be recovered accordingly.
Golub, Milanfar and Varah (Golub et al. 1999) show that the generalized
eigenvalue problem
(Hy — AHp)v =0 (5)



can be analyzed for errors to the first order. For a given eigenvalue A and the
associated eigenvector v, suppose

(Hy 4+ eH)(w+eo™ + ) = A+ eAV ) (Hy + eHo) (v + v +--1)

is an e-perturbation of our eigenvalue problem. Looking only at first order errors
gives A A
(Hy — MHo)v™) = WY Hy + MHy — Hy)v. (6)

Since v is both a left and right eigenvector (both Hy and H; are symmetric),
the left side of (6) is annihilated by multiplication on the left by v™:

UTr(ﬁl — )\ﬁo)’l)

AL =
v Hyv

(7)
Agsume the perturbations are of the same size as the precise value, that is,
|Holl2 = ||Holl2 and ||Hil||2 = ||H1l|2, and v is normalized as a unit vector, then
(7) gives the error bound

|Hallz + I Holl2

W < |
oy < HERl Rl

Assuming ||Hi|l2 = ||Holl2 (which is reasonable since the matrices have such

close structures) and recalling )\ is a root of unity so that ||A|| =1 give
2||Holl2

2| < S0 8

IO < S ®)

Since the norm of Hy can always be bounded by scaling when necessary, the
interesting quantity in the error bound (8) is

1
[v ™ Hyv|”

(9)

The coefficients c;’s play a role in bounding the errors of the generalized eigenval-
ues. Notice that the columns of (V7)~! give both the right and left eigenvectors
of (5). If \; is the eigenvalue corresponding with the j-th column of (VT)=1,
that is v; = (VT)~le; for (5), then (9) can be reduced to

TPl I el TR
o Hol RV D VTl el T el

An eigenvalue is well-disposed (Golub et al. 1999) if the quantity (9) is
“small”. From (8) we see that a well-disposed eigenvalue will result in a small
error in the computation of the associated eigenvalue.

The advantage of solving the generalized eigenvalue problem in (4) is that
there are stable numerical methods for such a problem and those methods do
not require by, ..., b, to be on a unit circle (Golub et al. 1999).



3.3 Separation of powers

After determining the term values b;’s, we still needs to consider the preci-
sion required for correctly recovering the integer exponents through taking the
logarithms of b; = w% with w = exp(2mi/m).

Since two consecutive m-th roots of unity on the unit circle are separated by
an angle of radian %“, the distance between these two points is bounded below
by twice the sine of half the angle between them. Thus, in order to separate
any two such points by rounding one must have values correct to

1
—|2sin(£)| ~ = andm = D1 Pn
2 m m

with pi primes and p, > deg fz, .

3.4 Recovering the coefficients

Once the term values b;’s have been determined, it still remains to compute
their coefficients c;’s, which can be done in a number of ways (Golub et al.
1999). If the term values are determined as general eigenvalues in (5) by the
QZ algorithm, the computed eigenvectors v; can be put to use here. Let M
be the matrix whose columns are eigenvectors v;, then the coeflicients can be
computed by

¢; = (v] Hov;)(Tj1)%,

with T = M~ = S~'VT and S a diagonal scaling matrix (Golub et al. 1999).
On the other hand, we can directly solve the Vandermonde system (2) to
determine c;’s.

The conditioning of the associated Vandermonde system

While Vandermonde matrices tend to have poor conditioning, especially for
real number data (Beckermann 2000; Gautschi and Inglese 1988), our problem
can be much more behaved because all our points lie on the unit circle. For
example, for a ¢ x t Vandermonde matrix, if the nodes happen to be all the
t-th roots of unity, the condition number for the 2-norm is 1, which is optimal
(Gautschi 1975, Example 6.4).

Another kind of well behaved Vandermonde matrices on the unit circle has
been studied in (Cérdova et al. 1990). They consider a Van der Corput sequence,
that is, {a;}32, for

a; =Y k2 ¥ with j =" 2" for ji € {0,1}.
k=0 k=0

For a t x t Vandermonde matrix with nodes exp(2wiag), ..., exp(2wia;_1), the

2-norm condition number is less than /2t (Cérdova et al. 1990, Corollary 3).
In general, the conditioning of a Vandermonde matrix depends on the dis-

tance between different nodes, which follows from a well-known explicit formula



for the inverse. If V is a t x t¢ Vandermonde matrix with nodes z1,..., 2z, then
V=1 =[aj,x] where

_ Z— Ry
G(2)=aj1+ajoz+-+aj2t 7t = I I
25— Ru

u=1

us
is the j-th Lagrange polynomial of points 21,...,2:. In our case, z1,..., 2 are
all on the unit circle. We have the following upper and lower bounds for ||V =1||
in the infinity norm (Gautschi 1975):

t 1 t 9
max H —— < IV Yo € max H .
1<5<t 4 |25 — 24| 1<t |25 — 2l

uj uj

Now we look at the condition of our associated Vandermonde system. Sup-
pose pi,...,p, are distinct primes, p, > deg,, f, and w = exp(27wi/m) for
m = pp---Pp. U the target polynomial f is evaluated at powers of (w1, ...,
wn) for wy, = w™/P+ | the distribution of term values on the unit circle is fixed
because the polynomial terms are fixed.

To scrutinize the distribution of term values, instead of f = 22:1 cjxfj Lo
jor ¢ with dj = dj, - (m/py) + -+

dj, - (m/p,). Now the term values are w?,... w9 and their distribution on
the unit circle depends on m and the differences between exponents d; and d
for j # k. If some of them are bunched together, then comparing to m some
d;’s are relatively close to each other, which may lead to the ill-conditioning of
the Vandermonde system.

Therefore, we propose to randomize the distribution of term values on the
unit circle. Under the condition that py,...,p, are given (hence their product
m), we randomly pick an integer r such that 0 < r < min(ps,...,p,) and con-
sider f evaluated at powers of (w],...,w!). Now the corresponding univariate
f1 are evaluated at powers of w”, but it can also be viewed as another univariate
polynomial fl[r] = Z;:l cj:cdf'T evaluated at powers of w. In other word, the
difference between ever pair of exponents is now multiplied by a random r in
mod m, and may produce a distribution of term values that provides a better
condition for the Vandermonde system. (As for the interpolation result, the
original polynomial terms can be recovered by dividing each exponent by r in
mod m.)

We implement the randomization strategy as the following: the user de-
termines an integer threshold ( > 0 and randomly picks ¢ distinct integers
r1,...,7¢ such that 0 < 7, < min(py,...,p,) for each interpolation attempt.
It is very likely that at least one of these ( interpolation results is based on
the computation of a “well-distributed” term values. If { > 2, we may check
whether there are two (or more) interpolation results that are very closed to
each other. Such results are likely to be good approximations of the target
polynomial.

we consider the univariate fi(z) = 3

10



We can further randomize the multiples of differences for exponents in each
variable. For each interpolation attempt, we pick n random integers r1,...,ry,
such that 0 < 7, < pr for 1 < k < n, then interpolate the polynomial f
evaluated at the powers of (wi?,...,wl"). Rather than being multiplied by a
random r in mod m, the exponent difference d; — dj becomes a sum of random
multiples of its components in mod m. That is,

m m
- (djy — diy) - <—) +ot e (dy, —dk,) <—) :
y41 Pn
Similarly, to recover the original terms in the interpolation result, the exponents
in each variable x; are divided by r accordingly.

4 Future directions

We have implemented our methods in Maple and are currently conducting ex-
periments. A full sensitivity analysis, to obtain stronger guarantees, is being
pursued. Furthermore, the generalized eigenvalue approach may be exploited
for interpolation at real values.

On the other hand, based on the polynomial relations between trigonometric
functions, we have extended our sparse interpolation methods to the interpola-
tion of trigonometric functions. We intend to further investigate the sensitivity
and experiments in this context as well.
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